JPH0552441B2 - - Google Patents

Info

Publication number
JPH0552441B2
JPH0552441B2 JP59162595A JP16259584A JPH0552441B2 JP H0552441 B2 JPH0552441 B2 JP H0552441B2 JP 59162595 A JP59162595 A JP 59162595A JP 16259584 A JP16259584 A JP 16259584A JP H0552441 B2 JPH0552441 B2 JP H0552441B2
Authority
JP
Japan
Prior art keywords
coordinates
plate
scanning
height
flat portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59162595A
Other languages
Japanese (ja)
Other versions
JPS6140503A (en
Inventor
Hidefumi Tachibana
Kenichi Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16259584A priority Critical patent/JPS6140503A/en
Publication of JPS6140503A publication Critical patent/JPS6140503A/en
Publication of JPH0552441B2 publication Critical patent/JPH0552441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱延鋼板の平坦度制御などにおいて
好適に使用される連続搬送鋼板の平坦度測定方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the flatness of a continuously conveyed steel plate, which is suitably used in flatness control of hot rolled steel plates.

〔従来の技術〕[Conventional technology]

熱間圧延において鋼板の平坦度制御のために、
VCロール、HCミルやロールベンダー等の圧延
機が近年開発されており、実用化されている。鋼
板の平坦度制御は、製品価値低下防止の点から重
要であるため、上記圧延機を最適に作動させるた
めに、平坦度を適確に測定せんとして、種々の方
式も開発されている。
For flatness control of steel plates during hot rolling,
Rolling machines such as VC rolls, HC mills, and roll benders have been developed in recent years and are in practical use. Since flatness control of steel plates is important from the viewpoint of preventing a decrease in product value, various methods have been developed to accurately measure flatness in order to optimally operate the rolling mill.

たとえば、棒状光源式、水柱式、渦流センサー
式のほか、レーザー光式がある。この中でも、レ
ーザー光を鋼板表面に投光し、巾方向に走査させ
るものが、精度等の点で優れていることを、本発
明者らは知見している。
For example, there are bar light source types, water column types, eddy current sensor types, and laser light types. Among these, the present inventors have found that a method in which a laser beam is projected onto the surface of a steel plate and scanned in the width direction is superior in terms of accuracy and the like.

その例として、特開昭56−124006号、同55−
40924号、同58−11708号公報等に示されたものが
ある。特に、特開昭56−124006号公報に示された
ものは、基本的には有効である。
Examples include JP-A-56-124006 and JP-A-55-124006;
There are those shown in No. 40924, No. 58-11708, etc. In particular, the method disclosed in Japanese Unexamined Patent Publication No. 124006/1986 is basically effective.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特に、熱延鋼板は、板が上下振動しながら搬送
される。上記従来の技術によつて、板が振動する
ことなくパスラインに沿つてスムーズに流れる場
合には、平坦度の測定は容易に行うことができる
けれども、熱延鋼板のように、板の上下振動(い
わゆるバタツキ)に伴つて波打ちしている状態の
中で、中伸びや耳波などの非平坦部があらわれる
場合、全く対処できなかつた。事実、前記各公報
においても、このような事態を全く想定していな
い。
In particular, hot-rolled steel plates are transported while vibrating up and down. With the above-mentioned conventional technology, if the plate flows smoothly along the pass line without vibration, flatness measurement can be easily performed. When non-flat areas such as mid-length elongation and ear waves appear in a state of waving due to so-called flapping (so-called flapping), it has not been possible to deal with this at all. In fact, the above-mentioned publications do not assume such a situation at all.

したがつて、本発明課題は、板の上下振動を伴
う波打現象時においても、対象とする平坦度を正
確に測定することができるようにすることにあ
る。
Therefore, an object of the present invention is to enable accurate measurement of the target flatness even during a waving phenomenon accompanied by vertical vibration of the plate.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、連続搬送鋼板の平坦度を測定する
方法において、 3本以上の集光性光を板に対して斜角状態で板
の長手方向に間隔を置いて投光し、これら各光を
板の巾方向に走査させ、その走査ビーム軌跡下の
拡散光を撮像し、軌跡中に非平坦部を把えた中央
走査ビームと、この中央走査ビームの前後に位置
する、軌跡中に非平坦部を含まない前後走査ビー
ムとの計3本の走査ビームの軌跡について、前記
中央走査ビームの前記非平坦部が現れない幅方向
位置における搬送基準面からの高さおよび搬送方
向座標を求めるとともに、他の2本の前後走査ビ
ームについて任意の幅方向位置における搬送基準
面からの高さおよび搬送方向座標を求めて、これ
ら3点の座標を結んで得られる断面形状線を基準
平坦部形状線とし、 他方で、前記中央走査ビームの前記非平坦部に
おける搬送基準面からの高さと搬送方向座標を求
め、この非平坦部の座標値と前記3点の座標値と
の計4点の高さおよび搬送方向座標より、前記基
準平坦部形状線を基準とする前記非平坦部の急峻
度、または伸び率を求めることで解決できる。
The above problem is solved by a method for measuring the flatness of a continuously conveyed steel plate, in which three or more condensing lights are projected at oblique angles to the plate at intervals in the longitudinal direction of the plate, and each of these lights is The board is scanned in the width direction, and the diffused light under the scanning beam trajectory is imaged.The central scanning beam captures the non-flat areas in the trajectory, and the non-flat areas in the trajectory located before and after this central scanning beam. Regarding the trajectories of a total of three scanning beams including the front and rear scanning beams that do not include Determine the height from the conveyance reference plane and the conveyance direction coordinates at an arbitrary width direction position for the two front and rear scanning beams, and define the cross-sectional shape line obtained by connecting the coordinates of these three points as the reference flat part shape line, On the other hand, the height and conveyance direction coordinates of the non-flat portion of the central scanning beam from the conveyance reference plane are determined, and the height and conveyance of a total of four points, including the coordinate values of this non-flat portion and the coordinate values of the three points, are determined. This can be solved by determining the steepness or elongation rate of the non-flat portion based on the reference flat portion shape line from the direction coordinates.

具体的な測定方法を図面を参照して説明する
と、 3本以上の集光性光R1,R2,R3を板Mに対し
て斜角状態で板Mの長手方向に間隔を置いて投光
し、これら角光を板の巾方向に走査させ、その走
査ビーム軌跡下の拡散光を撮像し、軌跡上に非平
坦部mを把えた中央走査ビームR2と、その前後
の非平坦部mを含まない前後走査ビームR1,R3
との3本の走査ビームの軌跡について、前記非平
坦部mを避けた同一幅方向位置での各走査ビーム
R1,R2,R3の搬送基準面からの個々の高さZA
ZB,ZEおよび搬送方向座標XA、XB、XEを求め、
これらを結んで得られる形状線を基準平坦部形状
線とし、 他方で、中央走査ビームR2の非平坦部mでの
他高さZCと搬送方向座標Xcとを測定し、この座
標値と前記3点の座標値を合わせた計4点のZ、
X座標位置(ZA、XA)、(ZB、XB)、(ZE、XE)、
(ZC、Xc)より、基準平坦部形状線を基準とする
非平坦部mの急峻度e、伸び率Sを求めるもので
ある。
To explain the specific measurement method with reference to the drawings, three or more condensing lights R 1 , R 2 , R 3 are placed at an oblique angle to the plate M and spaced apart in the longitudinal direction of the plate M. The light is projected, these angular lights are scanned in the width direction of the plate, the diffused light under the scanning beam trajectory is imaged, and the central scanning beam R 2 with non-flat areas m detected on the trajectory and the non-flat areas before and after it are imaged. Front and rear scanning beams R 1 , R 3 that do not include part m
Regarding the trajectory of the three scanning beams, each scanning beam at the same width direction position avoiding the non-flat portion m.
The individual heights Z A of R 1 , R 2 , and R 3 from the conveyance reference plane,
Determine Z B , Z E and transport direction coordinates X A , X B , X E ,
The shape line obtained by connecting these is taken as the reference flat part shape line, and on the other hand, measure the other height Z C and the transport direction coordinate X c of the central scanning beam R 2 at the non-flat part m, and calculate this coordinate value. and the coordinate values of the three points above, totaling four points Z,
X coordinate position (Z A , X A ), (Z B , X B ), (Z E , X E ),
From (Z C , X C ), the steepness e and elongation rate S of the non-flat portion m are determined based on the standard flat portion shape line.

ところで、鋼板自体がパスラインに沿つて円滑
に水平に搬送される場合の下での平坦度検出は、
前記特開昭56−124006号公報記載の技術によつて
行うことができる。
By the way, flatness detection when the steel plate itself is conveyed smoothly and horizontally along the pass line is as follows:
This can be carried out by the technique described in the above-mentioned Japanese Patent Application Laid-Open No. 124006/1983.

しかし、第1B図のように、鋼板Mが波打つて
搬送されるバタツキ現象の下で、たとえば中伸び
部mが存在する場合、前記公報の技術のよつては
平坦度を測定することが不可能である。
However, as shown in Fig. 1B, under the flapping phenomenon in which the steel plate M is conveyed in waves, for example, when there is a middle elongated part m, it is impossible to measure the flatness using the technique disclosed in the above publication. It is.

そこで、本発明では、第1B図のように、3本
の走査ビームR1,R2,R3と鋼板Mの平坦部との
交点A,B,EのX、Z座標を求め、また鋼板M
の中伸び部mとの交点CとのX、Z座標を求め、
これらによつて急峻度および/または伸び率の平
坦度を検出するものである。
Therefore, in the present invention , as shown in FIG . M
Find the X and Z coordinates of the intersection point C with the middle extension part m,
These are used to detect the steepness and/or the flatness of the elongation rate.

〔作用〕[Effect]

中伸び部mの山高さは、交点Cから鋼板Mの平
坦部に対して垂線を下したときの交点をDとする
と、線分CDで与えられるが、近似的にA、B点
を結ぶ線への垂線との交点をD′としたときの、
線分CD′によつて求める。この線分CD′をhとす
ると、次式によつてhを求めることができる。
The height of the peak of the middle elongated part m is given by a line segment CD, where D is the intersection point of a perpendicular line drawn from the intersection point C to the flat part of the steel plate M. Approximately, it is given by a line connecting points A and B. When the intersection with the perpendicular to D is D′,
Obtained by line segment CD′. Letting this line segment CD' be h, h can be determined by the following equation.

h=L3・sinθ =(Xc−XA2+(Zc−ZA2×sinθ ……(1) ここで; θ=tan-1Zc−ZA/Xc−XA−tan-1ZB−ZA/XB−XA したがつて、急峻度(%)は(2)式で与えられ
る。
h=L 3・sinθ=(X c −X A ) 2 + (Z c −Z A ) 2 ×sinθ ……(1) Here; θ=tan −1 Z c −Z A /X c −X A −tan −1 Z B −Z A /X B −X A Therefore, the steepness (%) is given by equation (2).

e=h/L1+L2×100 ……(2) しかるに、L1、L2は(3)式で与えられるので急
峻度eを求めることができる。
e=h/L 1 +L 2 ×100 (2) However, since L 1 and L 2 are given by equation (3), the steepness e can be determined.

L1=(XB−XA2+(ZB−ZA2 L2=(XE−XB2+(ZE−ZB2 (3) 一方、L3およびL4は(4)式で求めることができ
る。
L 1 = (X B − X A ) 2 + (Z B − Z A ) 2 L 2 = (X E − X B ) 2 + (Z E − Z B ) 2 (3) Meanwhile, L 3 and L 4 can be obtained using equation (4).

L3=(Xc−XA2+(Zc−ZA2 L4=(XE−Xc2+(ZE−Zc2 (4) したがつて、(5)式で定義される伸び率S(%)
も容易に求めることができる。
L 3 = (X c - X A ) 2 + (Z c - Z A ) 2 L 4 = (X E - X c ) 2 + (Z E - Z c ) 2 (4) Therefore, (5) Elongation rate S (%) defined by the formula
can also be easily determined.

S=(L3+L4/L1+L2−1)×100……(5) なお、正確な伸び率は、鋼板上に沿つて測定さ
れるものであるが、(5)式にて近似的に求めても誤
差はきわめて小さい。
S = (L 3 + L 4 / L 1 + L 2 -1) × 100...(5) Although the exact elongation rate is measured along the steel plate, it can be approximated using equation (5). Even when calculated manually, the error is extremely small.

〔実施例〕〔Example〕

以下、本発明を第1A図を示す具体例によつて
さらに詳説する。
Hereinafter, the present invention will be further explained in detail with reference to a specific example shown in FIG. 1A.

本発明によれば、少なくとも3本の集光性光た
とえばレーザー光R1,R2,R3が鋼板(以下単に
板ともいう)Mに斜角状態でかつ板の長手方向に
間隔を置いて投射される。また、各レーザー光
R1,R2,R3は板Mの巾方向に走査される。
According to the present invention, at least three condensing beams, such as laser beams R 1 , R 2 , R 3 , are directed at a steel plate (hereinafter also simply referred to as a plate) M at an oblique angle and at intervals in the longitudinal direction of the plate. Projected. In addition, each laser beam
R 1 , R 2 , and R 3 are scanned in the width direction of the plate M.

このために、1台のレーザー光発生源1からの
レーザー光を、反射ミラー2により反射させた
後、ハーフミラー3A,3Bおよび全反射ミラー
3Cを備えたビームスプリツター3にて分割し、
各オプテイカルスキヤナー4A〜4Cにて投射と
走査を行うようになつている。オプテイカルスキ
ヤナー4A〜4Cのミラー部は回転軸心回りに回
転して、レーザー光を板巾方向に走査させる。こ
れによつて、板M上に3本の走査ビームR1,R2
R3があらわれる。
For this purpose, the laser beam from one laser beam generation source 1 is reflected by a reflection mirror 2, and then split by a beam splitter 3 equipped with half mirrors 3A, 3B and a total reflection mirror 3C.
Projection and scanning are performed by each optical scanner 4A to 4C. The mirror portions of the optical scanners 4A to 4C rotate around the rotation axis to scan the laser beam in the width direction of the plate. Thereby, three scanning beams R 1 , R 2 ,
R 3 appears.

このレーザー光投射域をカバーするように、た
とえば板幅1800mm長を睨んで、上方にはITV5
とこれをコントロールするカメラヘツドコントロ
ーラ6からなる撮像器7が配置されている。
ITV5の前面には、可能な限りレーザー光のみ
を把えるために、干渉フイルター8が設けられて
いる。撮像信号は、ビデオ信号としてモニターテ
レビ9にそのまま映し出されるとともに、他方
で、メモリー部10を介しての画像データを画像
信号演算部11において演算処理し、急峻度およ
び伸び率を算出し、これをプリンター12等の表
示器に表示させる。
To cover this laser beam projection area, for example, looking at the board width 1800mm long, ITV5
An image pickup device 7 consisting of a camera head controller 6 and a camera head controller 6 for controlling the image pickup device 7 is disposed.
An interference filter 8 is provided in front of the ITV 5 in order to detect only the laser beam as much as possible. The imaging signal is displayed as it is on the monitor television 9 as a video signal, and on the other hand, the image data via the memory section 10 is processed in the image signal calculation section 11 to calculate the steepness and elongation rate. The information is displayed on a display device such as the printer 12.

メモリー部10および画像演算部11では次の
ように信号処理する。すなわち、第2図のよう
に、板Mの長手方向(X方向)に多数の水平走査
線1〜nをもつて走査させ、レーザー光像R1
R2,R3との交点を信号レベルの高低から求め、
デジタル情報としてメモリー部10においてスト
ツクしておく。そして、適宜のタイミングで、こ
れを読み出し、前述のような演算を行う。走査線
の走査によつて、走査ビームR1〜R3についての
x、y(幅方向位置)座標情報が得られる。いま、
中央走査ビームR2が中伸び部mを把えたとする
と、第3図からも明らかなように、中伸び部mに
おいて、中央走査ビームR2の軌跡が中央部にお
いても屈曲する。
The memory section 10 and the image calculation section 11 perform signal processing as follows. That is, as shown in FIG. 2, a large number of horizontal scanning lines 1 to n are scanned in the longitudinal direction (X direction) of the plate M, and laser light images R 1 ,
Find the intersection with R 2 and R 3 from the signal level,
It is stored in the memory section 10 as digital information. Then, at an appropriate timing, this is read out and the calculations described above are performed. By scanning the scanning line, x, y (width direction position) coordinate information about the scanning beams R 1 to R 3 is obtained. now,
Assuming that the central scanning beam R 2 grasps the middle extension part m, as is clear from FIG. 3, the locus of the central scanning beam R 2 also curves in the middle part of the middle extension part m, as is clear from FIG.

一方、第1B図を参照すれば、各レーザー光の
パスラインlに対する傾斜角は、設置条件によつ
て既知であり、パスラインlとの交点X1,X2
X3も既知である。したがつて、いま検知した各
走査ビームR1,R2,R3軌跡のA、B、C、E点
のX座標とから、各A、B、C、E点の基準面た
とえばパスライン面基準のZ座標を求めることが
できる。この場合、B点としては中央走査ビーム
R2の前記非平坦部mを避けた幅方向位置、すな
わち第2図における水平走査線jの位置における
座標値をとり、C点としては非平坦部mが存在す
る幅方向位置、すなわち水平走査線iの位置にお
ける座標値をとる。また、AおよびE点について
は、幅方向のどの位置であつても基準面からの高
さおよびX座標値は同じであるため、第2図に示
す水平走査線i(中央走査ビームR2の凹凸部、換
言すれば非平坦部を通る線)上の点を選んでもよ
いし、水平走査線j(中央走査ビームR2の平坦部
を通る線)上の点を選んでもよい。
On the other hand, referring to FIG. 1B, the inclination angle of each laser beam with respect to the path line l is known depending on the installation conditions, and the intersection points X 1 , X 2 ,
X 3 is also known. Therefore, from the X coordinates of points A, B, C, and E of the trajectories of the scanning beams R 1 , R 2 , and R 3 just detected, the reference plane of each point A, B, C, and E, for example, the path line plane The reference Z coordinate can be determined. In this case, point B is the center scanning beam.
Take the coordinate values at the width direction position of R2 that avoids the non-flat portion m, that is, the position of the horizontal scanning line j in FIG. Take the coordinate values at the position of line i. Furthermore, since the height and X coordinate value of points A and E from the reference plane are the same no matter where they are in the width direction, the horizontal scanning line i (center scanning beam R 2 The point on the horizontal scanning line j (the line passing through the flat part of the central scanning beam R2 ) may be selected.

このようにして、A、B、E、C点のX、Z座
標点が得られた。したがつて、前記(2)式によつ
て、急峻度eが、(5)式によつて伸び率Sが求めら
れる。
In this way, the X and Z coordinate points of points A, B, E, and C were obtained. Therefore, the steepness e is determined by the above equation (2), and the elongation rate S is determined by the equation (5).

次に、処理フローを第4図によつて説明する
と、ステツプで画像取込みを行つた後、ステツ
プでレーザー光を検知して有効走査線(第2図
1〜n)を求める。ステツプで板平坦部の座標
を演算する。このとき、水平走査線1〜nのすべ
て、あるいは何本からのX座標の平均処理または
多数処理して平坦部とする基準座標XA、XB、XE
を求める。次にステツプで(1)、(2)、(5)式の演算
を行う。このときも、水平走査線1〜nの全て、
あるいは何本かに対して演算を行う。中伸びのみ
を調べる場合、中央の水平走査線n/2を求め
る。次いで、ステツプで耳波、中伸びの判定を
行う。
Next, the processing flow will be explained with reference to FIG. 4. After an image is captured in a step, a laser beam is detected in a step to obtain an effective scanning line (FIG. 2 1-n). Calculate the coordinates of the flat part of the plate in step. At this time, standard coordinates X A , X B , X E are obtained by averaging or processing multiple X coordinates from all or several horizontal scanning lines 1 to n to obtain a flat area.
seek. Next, in step, calculations of equations (1), (2), and (5) are performed. At this time, all horizontal scanning lines 1 to n,
Or perform calculations on several lines. When examining only the middle elongation, find the central horizontal scanning line n/2. Next, in a step, the ear wave and mid-length extension are determined.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、板が波打ち等の
変形状態、あるいは浮き上がり状態であつても、
平坦度を測定できる。したがつて、平坦度制御に
とつて優れたものとなり、板形状制御手段を有効
に活用できる。
As described above, according to the present invention, even if the board is in a deformed state such as waving or in a floating state,
Flatness can be measured. Therefore, flatness control is excellent, and plate shape control means can be effectively utilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図は本発明装置の概略図、第1B図は測
定方法の説明図、第2図はモニターテレビ画面上
での走査線走査説明図、第3図はレーザー光照射
状態斜視図、第4図は信号処理のフロー図であ
る。 M……鋼板、m……中伸び部、R1,R2,R3
…レーザー光(走査ビーム)、l……パスライン、
l……レーザー光発生源、5……ITV、7……
撮像部、9……モニターテレビ、10……メモリ
ー部、11……画像信号演算部。
Fig. 1A is a schematic diagram of the apparatus of the present invention, Fig. 1B is an explanatory diagram of the measurement method, Fig. 2 is an explanatory diagram of scanning line scanning on a monitor TV screen, Fig. 3 is a perspective view of the laser beam irradiation state, and Fig. 4 is an explanatory diagram of the measuring method. The figure is a flow diagram of signal processing. M...Steel plate, m...Middle extension, R1 , R2 , R3 ...
...laser light (scanning beam), l...pass line,
l... Laser light source, 5... ITV, 7...
Imaging unit, 9...Monitor TV, 10...Memory unit, 11...Image signal calculation unit.

Claims (1)

【特許請求の範囲】 1 連続搬送鋼板の平担度を測定する方法におい
て、 3本以上の集光性光を板に対して斜角状態で板
の長手方向に間隔を置いて投光し、これら各光を
板の巾方向に走査させ、その走査ビーム軌跡下の
拡散光を撮像し、軌跡中に非平坦部を把えた中央
走査ビームと、この中央走査ビームの前後に位置
する、軌跡中に非平坦部を含まない前後走査ビー
ムとの計3本の走査ビームの軌跡について、前記
中央走査ビームの前記非平坦部が現れない幅方向
位置における搬送基準面からの高さおよび搬送方
向座標を求めるとともに、他の2本の前後走査ビ
ームについて任意の幅方向位置における搬送基準
面からの高さおよび搬送方向座標を求めて、これ
ら3点の座標を結んで得られる断面形状線を基準
平坦部形状線とし、 他方で、前記中央走査ビームの前記非平坦部に
おける搬送基準面からの高さと搬送方向座標を求
め、この非平坦部の座標値と前記3点の座標値と
の計4点の高さおよび搬送方向座標より、前記基
準平坦部形状線を基準とする前記非平坦部の急峻
度、または伸び率を求めることを特徴とする連続
搬送鋼板の平坦度測定方法。
[Claims] 1. A method for measuring the flatness of a continuously conveyed steel plate, comprising: projecting three or more condensing lights at oblique angles to the plate at intervals in the longitudinal direction of the plate; Each of these lights is scanned in the width direction of the plate, and the diffused light under the scanning beam trajectory is imaged. Regarding the trajectories of a total of three scanning beams, including the front and rear scanning beams that do not include non-flat parts, the height from the transport reference plane and the transport direction coordinates of the central scanning beam at the widthwise position where the non-flat parts do not appear are calculated. At the same time, the height from the transport reference plane and the coordinates in the transport direction at arbitrary width direction positions of the other two front and rear scanning beams are determined, and the cross-sectional shape line obtained by connecting the coordinates of these three points is used as the reference flat part. On the other hand, determine the height and conveyance direction coordinates of the non-flat portion of the central scanning beam from the conveyance reference plane, and calculate the coordinate values of this non-flat portion and the coordinate values of the three points, for a total of four points. A method for measuring the flatness of a continuously conveyed steel plate, comprising determining the steepness or elongation of the non-flat portion based on the reference flat portion shape line from the height and conveyance direction coordinates.
JP16259584A 1984-07-31 1984-07-31 Measurement of flatness degree of plate Granted JPS6140503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16259584A JPS6140503A (en) 1984-07-31 1984-07-31 Measurement of flatness degree of plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16259584A JPS6140503A (en) 1984-07-31 1984-07-31 Measurement of flatness degree of plate

Publications (2)

Publication Number Publication Date
JPS6140503A JPS6140503A (en) 1986-02-26
JPH0552441B2 true JPH0552441B2 (en) 1993-08-05

Family

ID=15757577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16259584A Granted JPS6140503A (en) 1984-07-31 1984-07-31 Measurement of flatness degree of plate

Country Status (1)

Country Link
JP (1) JPS6140503A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119583B2 (en) * 1986-08-09 1995-12-20 高浜工業株式会社 Roof tile strain measurement method
JP4797887B2 (en) * 2006-08-29 2011-10-19 住友金属工業株式会社 Flatness measuring method of plate material and flatness measuring device of plate material
JP4854602B2 (en) * 2007-06-15 2012-01-18 株式会社神戸製鋼所 Method for detecting the shape of rolled material
JP5060395B2 (en) * 2008-05-29 2012-10-31 株式会社神戸製鋼所 Shape measuring apparatus and shape measuring method
IN2012DN03206A (en) 2009-10-19 2015-10-23 Sumitomo Electric Industries
WO2011145168A1 (en) 2010-05-18 2011-11-24 住友金属工業株式会社 Method for measuring flatness of sheet material and steel sheet production method utilizing said method
US9482520B2 (en) * 2013-05-14 2016-11-01 Nippon Steel & Sumitomo Metal Corporation Method for measuring flatness of sheet, device for measuring flatness of sheet, and production method for steel sheet
CN110657763B (en) * 2019-11-15 2021-07-09 上海宝冶建筑工程有限公司 Method for detecting and controlling flatness of concrete surface of double-curved-surface track

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764103A (en) * 1980-10-06 1982-04-19 Kobe Steel Ltd Measuring method for flatness of steel plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636729Y2 (en) * 1981-03-31 1988-02-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764103A (en) * 1980-10-06 1982-04-19 Kobe Steel Ltd Measuring method for flatness of steel plate

Also Published As

Publication number Publication date
JPS6140503A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
US9138790B2 (en) Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
US4832049A (en) Apparatus for detecting abnormality of the spinal column
EP0627069B1 (en) Method and apparatus for measuring the shape of a surface of an object
JP2006038843A (en) Method for calibrating distance image sensor
JPH05215518A (en) Optical type inspection probe
JPH0552441B2 (en)
JP2501498B2 (en) Camber measuring device for rolled steel sheets
JPS5818103A (en) Shape measuring method for plane to be measured under environment with scattered substance
JPH0515202B2 (en)
JPH08189821A (en) Bending measuring apparatus for long material and method therefor
JPS5822903A (en) Rolling monitoring device of plate material
JP2966681B2 (en) A method of detecting the position of a plate using a TV camera
JP2913903B2 (en) Optical shape measurement method
JPH10185514A (en) Coil position detector
JPS62110138A (en) Method for outputting data in surface flaw
JPH10185515A (en) Coil position detector
JPH01153908A (en) Three-dimensional measuring instrument
JPH0626859A (en) Distance measuring apparatus of unmanned running vehicle
JPS5892806A (en) Measuring method for length of plate material
JPH10332323A (en) Optical position detecting device and following image pick-up device
JPH07324913A (en) Measuring method of dimension
JPH0553225B2 (en)
JP3201297B2 (en) Coil position detection device
JPS6338740B2 (en)
JP2001183459A (en) Light source angle measuring device of obstacle detecting device