JPH055218A - Production of carbon fiber having high strand strength - Google Patents

Production of carbon fiber having high strand strength

Info

Publication number
JPH055218A
JPH055218A JP30639991A JP30639991A JPH055218A JP H055218 A JPH055218 A JP H055218A JP 30639991 A JP30639991 A JP 30639991A JP 30639991 A JP30639991 A JP 30639991A JP H055218 A JPH055218 A JP H055218A
Authority
JP
Japan
Prior art keywords
fibers
carbon fiber
fiber
pitch
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30639991A
Other languages
Japanese (ja)
Other versions
JP3024319B2 (en
Inventor
Iwao Yamamoto
巌 山本
Akihiko Yoshitani
明彦 葭谷
Akira Nakakoshi
明 中越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Publication of JPH055218A publication Critical patent/JPH055218A/en
Application granted granted Critical
Publication of JP3024319B2 publication Critical patent/JP3024319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce the subject carbon fibers having excellent openability by melt-spinning a pitch, collecting the spun fibers, subjecting the collected pitch fibers to an infusibilization treatment and further to a carbonization treatment, and subsequently subjecting the infusibilized fibers or carbonized fibers to a thermal treatment in a prescribed temperature range under an atmosphere containing steam. CONSTITUTION:A method for producing the objective carbon fibers 1 by melt- spinning a pitch, collecting the spun fibers, subjecting the collected fibers to an infusibilization treatment, subjecting the infusibilized fibers to a carbonization treatment and, if necessary, further subjecting the carbonized fibers to a graphitization treatment is characterized by subjecting the infusibilized fibers or the carbonized fibers to a thermal treatment at 1000-1800 deg.C under a steam- containing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はピッチ系炭素繊維の製造
方法に関するものであり、より詳しくは、高ストランド
強度を有する炭素繊維の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pitch-based carbon fiber, and more particularly to a method for producing carbon fiber having high strand strength.

【0002】[0002]

【従来の技術】炭素繊維は、比強度及び比弾性率が高い
材料であり、高性能複合材料のフィラー繊維として注目
されている。現在、炭素繊維はポリアクリロニトリル
(PAN)を原料とするPAN系炭素繊維とピッチ類を
原料とするピッチ系炭素繊維が製造されているが、一般
に開発が先行していた為にPAN系がより広く使用さ
れ、高強度、高弾性の高特性炭素繊維としても主にPA
N系炭素繊維が種々の工夫を加えて使用されている現状
にある。
2. Description of the Related Art Carbon fiber is a material having a high specific strength and a high specific elastic modulus, and has attracted attention as a filler fiber for high performance composite materials. Currently, PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from pitches are manufactured as carbon fibers, but PAN-based carbon fibers are more widely used because they were generally preceded by development. Used as a high-strength, high-elasticity, high-performance carbon fiber, mainly PA
At present, N-based carbon fibers are being used with various modifications.

【0003】しかしながら、PAN系炭素繊維は、更に
高弾性化することには限界があり、又、その原料である
PANが高価であること、原料当りの炭素繊維の収量が
低いという難点も有している。そこで、近年、より高弾
性な特徴を有し、より広範な用途の期待されるピッチ系
炭素繊維の高特性化が種々検討されている。
However, the PAN-based carbon fiber has a limit in further increasing the elasticity, and the PAN as the raw material is expensive, and the yield of the carbon fiber per raw material is low. ing. Therefore, in recent years, various studies have been conducted to improve the characteristics of pitch-based carbon fibers, which have higher elasticity and are expected to be used in a wider range of applications.

【0004】ピッチ系炭素繊維の高特性化は、従来紡糸
原料として使用していた等方質ピッチの代りに、原料ピ
ッチを加熱処理して、異方性が発達し、配向しやすい分
子種が形成されたピッチ、所謂、メソフエーズピッチを
使用する方法(特公昭49−8634号公報)が提案さ
れて以来、主に紡糸ピッチの性状を調節することによっ
て行なわれている。
In order to improve the characteristics of pitch-based carbon fibers, instead of the isotropic pitch conventionally used as a spinning raw material, the raw material pitch is heat-treated to develop a molecular species that develops anisotropy and is easily oriented. Since the method of using the formed pitch, so-called mesophase pitch (Japanese Patent Publication No. Sho 49-8634), has been proposed, it is mainly carried out by adjusting the properties of the spinning pitch.

【0005】例えば、特開昭49−19127号公報に
は、原料ピッチを不活性ガス雰囲気下に加熱処理して高
度に配向されたメソフエーズを形成し、該メソフエーズ
を40〜90重量%含有するピッチを紡糸ピッチとする
方法が提案されている。しかし、かかる方法により等方
質の原料ピッチをメソ化するには長時間を要するので、
特開昭54−160427号公報は、予め原料ピッチを
十分量の溶媒で処理しておくことにより、短時間でメソ
化を行なう方法を提案している。即ち、原料ピッチをベ
ンゼン、トルエン等の溶媒で処理してその不溶分を得、
それを230〜400℃の温度で10分以下の短時間加
熱処理して、高度に配向され、光学的異方性部分が7.
5重量%以上で、キノリン不溶分25重量%以下の所謂
ネオメソフエーズを形成し、かかるネオメソフエーズを
紡糸ピッチとする方法を提案している。
For example, in JP-A-49-19127, a raw material pitch is heat-treated in an inert gas atmosphere to form highly oriented mesophases, and a pitch containing 40 to 90% by weight of the mesophases. Has been proposed as a spinning pitch. However, since it takes a long time to mesomorphize the isotropic raw material pitch by such a method,
Japanese Unexamined Patent Publication No. 54-160427 proposes a method in which the raw material pitch is previously treated with a sufficient amount of a solvent to perform mesomorphization in a short time. That is, the raw material pitch is treated with a solvent such as benzene and toluene to obtain the insoluble matter,
7. It is heat-treated at a temperature of 230 to 400 ° C. for a short time of 10 minutes or less, so that it is highly oriented and the optically anisotropic portion is 7.
A method has been proposed in which so-called neo-mesophases having a quinoline-insoluble content of 5% by weight or more and 25% by weight or less are formed, and such neo-mesophases are used as a spinning pitch.

【0006】このようにして得られた紡糸ピッチを溶融
紡糸して、ピッチ繊維を得、次いで不融化、炭化あるい
は、更に黒鉛化することにより高強度、高弾性等の高特
性炭素繊維が製造される。ところで、こうして得られる
炭素繊維は、通常エポキシ樹脂、ポリアミド樹脂、フェ
ノール樹脂等のマトリックス樹脂に含浸され、いわゆる
プリプレグとし、これを種々の成形法にて成形し、繊維
強化プラスチックとしてレジャー・スポーツ用や、各種
工業用資材として用いられる。したがって前記炭素繊維
強化プラスチックの機械的特性を発現させるためには、
1本1本の炭素繊維自体の高強度、高弾性等の機械的特
性と同時に、炭素繊維がマトリックス樹脂中で、良好に
分散し炭素繊維自体の機械的特性が充分に発揮されるこ
とが重大な要因となる。
The spinning pitch thus obtained is melt-spun to obtain pitch fibers, which are then infusibilized, carbonized or further graphitized to produce high-strength, high-elasticity and other high-performance carbon fibers. It By the way, the carbon fiber thus obtained is usually impregnated with a matrix resin such as an epoxy resin, a polyamide resin, or a phenol resin to form a so-called prepreg, which is molded by various molding methods, and is used as a fiber-reinforced plastic for leisure / sports or , Used as various industrial materials. Therefore, in order to develop the mechanical properties of the carbon fiber reinforced plastic,
It is important for each carbon fiber to have good mechanical properties such as high strength and high elasticity, and at the same time, the carbon fiber should be well dispersed in the matrix resin and the mechanical properties of the carbon fiber itself should be sufficiently exhibited. It becomes a factor.

【0007】云い換えれば炭素繊維の強度や弾性率がい
かに大きくても該繊維のマトリックス樹脂中での分散が
不良では、炭素繊維強化プラスチックの機械的機能は不
充分なものになってしまうと云うことである。そこでま
ずマトリックス樹脂中での分散性に対しては使用する炭
素繊維の単繊維同士の融着がないこと、即ち該炭素繊維
が充分に解繊されなければならない。
In other words, no matter how large the strength or elastic modulus of carbon fiber is, if the dispersion of the carbon fiber in the matrix resin is poor, the mechanical function of the carbon fiber reinforced plastic will be insufficient. That is. Therefore, first, regarding the dispersibility in the matrix resin, it is necessary that the single fibers of the carbon fibers used are not fused to each other, that is, the carbon fibers must be sufficiently defibrated.

【0008】すなわち、ピッチ系炭素繊維製造工程にお
いて不融化処理された繊維(以下単に不融化繊維と記
す)、及び炭化又は黒鉛化処理された繊維(以下単に炭
素繊維と記す)は、前の工程で用いられた集束剤、サイ
ジング剤等の油剤や各工程での繊維自体の熱変質などの
ために単繊維同士が融着し、品質むらを呈したり、マト
リックス樹脂中での単繊維分散が不均一となり、複合材
料の均質性を損ったりするので、不融化、炭化又は黒鉛
化の何れかの段階で、しなやかで融着のない状態に解繊
しなければならない。
That is, the infusibilized fiber (hereinafter simply referred to as infusible fiber) and the carbonized or graphitized fiber (hereinafter simply referred to as carbon fiber) in the pitch-based carbon fiber manufacturing step are the same as those in the previous step. Due to the sizing agent, sizing agent, and other oiling agents used in the above, and due to the thermal alteration of the fibers themselves in each process, the single fibers fuse together, resulting in uneven quality, and inconsistent dispersion of the single fibers in the matrix resin. Since it becomes uniform and the homogeneity of the composite material is impaired, it must be defibrated in a supple and non-fusion state at any stage of infusibilization, carbonization or graphitization.

【0009】従来、不融化繊維又は炭素繊維の解繊方法
としては、繊維に乱気流処理を施す方法、バー、ワイ
ヤ、回転ピン等のガイドにジクザクに屈曲させながら通
過させる曲げ処理法、凸状の曲面を有するロールの曲面
に接触させる方法(特開昭55−57015号公報)、
2個以上のテーパーローラの傾斜面に当接させる方法
(特開昭61−124645号公報)、及び流体中で解
繊する方法(特開昭57−89638号公報)等が提案
されている。又、この他に炭素繊維又は不融化繊維の表
面を酸素を含有するガス等で処理し、解繊又は炭素繊維
の強度を向上する方法(特開昭61−215716号公
報、特開昭63−665523号公報、特開昭63−1
75122号公報)が知られている。これらはいずれも
酸素を含む不活性ガス中で炭素繊維を処理し、表面を若
干エッチングすることにより目的を達するものである。
Conventionally, as a method for defibrating infusible fibers or carbon fibers, a method of subjecting the fibers to turbulence, a bending method of passing through a guide such as a bar, a wire or a rotating pin while bending zigzag, a convex shape A method of contacting a curved surface of a roll having a curved surface (JP-A-55-57015),
A method of contacting the inclined surfaces of two or more taper rollers (Japanese Patent Laid-Open No. 61-124645), a method of defibrating in a fluid (Japanese Patent Laid-Open No. 57-89638), and the like have been proposed. In addition, a method of treating the surface of carbon fiber or infusibilized fiber with a gas containing oxygen or the like to defibrate or improve the strength of carbon fiber (Japanese Patent Laid-Open No. 61-215716, Japanese Patent Laid-Open No. 63-215716). Japanese Patent No. 665523, JP-A-63-1
No. 75122) is known. All of these achieve the purpose by treating the carbon fiber in an inert gas containing oxygen and slightly etching the surface.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
方法、例えば機械的な解繊方法は設備コストが高い割に
は解繊効果が不充分であり、また表面積向上の方法とし
て、陽極酸化は装置や操作が複雑な上に、表面積向上も
小さく、かつ廃液処理等の課題がある。また不活性雰囲
気下、高温で炭化処理した炭素繊維ないし黒鉛繊維酸素
含有の不活性ガスを雰囲気中で加熱処理しても、既に繊
維表面が安定化されて不活性になっているため、その表
面積向上の効果は大きくなく、しかも、実際には酸素ガ
スは、炭素繊維と大きな発熱を伴なって反応する為に反
応の制御が難しく、一部のフィラメントで過酸化反応が
進行し、充分に満足するべき高いストランド強度を有す
る炭素繊維を得るのが困難であった。
However, the conventional method, for example, the mechanical defibration method is insufficient in the defibration effect in spite of the high equipment cost, and the anodic oxidation is a device for increasing the surface area. In addition to complicated operations and small surface area improvement, there are problems such as waste liquid treatment. In addition, even if carbon fiber or graphite fiber carbonized at high temperature in an inert atmosphere is heat-treated in an atmosphere containing an oxygen-containing inert gas, the surface of the fiber is already stabilized and becomes inactive. The effect of improvement is not large, and in reality, oxygen gas reacts with carbon fiber with a large amount of heat generation, so it is difficult to control the reaction, and the peroxidation reaction progresses in some filaments, making it sufficiently satisfactory. It has been difficult to obtain carbon fibers with high strand strength to be achieved.

【0011】[0011]

【課題を解決するための手段】そこで本発明者等は、ピ
ッチ系炭素繊維の解繊およびストランド強度向上を図る
方法について鋭意検討を重ねた結果、驚くべきことに不
融化繊維又は炭素繊維を水蒸気含有雰囲気下加熱処理す
ることにより、解繊性の良好な高ストランド強度の炭素
繊維を製造出来るという画期的な方法を見い出した。
The inventors of the present invention have made extensive studies as to a method for defibrating pitch-based carbon fibers and improving the strand strength. As a result, surprisingly, the infusible fibers or carbon fibers were steamed. We have found an epoch-making method in which carbon fibers with high strand strength and good defibration property can be produced by heat treatment in an atmosphere containing them.

【0012】更にかくして得られた炭素繊維を不活性雰
囲気下、前述の一次炭化温度より高い温度で二次炭化処
理することにより繊維の強度、弾性率をその使用目的に
応じて自由に制御することができることを見出し、本発
明を完成した。すなわち本発明の目的は解繊性が良好で
かつ高ストランド強度の炭素繊維の製造方法を提供する
ことであり、さらに本発明の他の目的は、繊維の強度、
弾性率を自由に制御しうる高ストランド強度の炭素繊維
の製造方法を提供することにあり、また本発明の他の目
的としては、単繊維自体の強度、特にJIS R−76
01−1986,6.6.1により求めた単繊維自体の
強度に匹敵する樹脂含浸ストランド強度を発現する高ス
トランド強度炭素繊維の製造方法の提供にあり、かかる
本発明の目的は、ピッチを溶融紡糸し、集束して得られ
るピッチ繊維を不融化処理し、不融化繊維を得、次いで
炭化処理し、更に必要に応じて黒鉛化処理することによ
り炭素繊維を製造する方法において、不融化繊維又は炭
素繊維を水蒸気含有雰囲気下1,000℃を超え、1,
800℃以下に加熱処理することを特徴とする高ストラ
ンド強度炭素繊維の製造方法により容易に解決される。
Further, the carbon fiber thus obtained is subjected to secondary carbonization in an inert atmosphere at a temperature higher than the above-mentioned primary carbonization temperature to freely control the strength and elastic modulus of the fiber according to the purpose of use. The present invention has been completed by finding that the above can be achieved. That is, an object of the present invention is to provide a method for producing a carbon fiber having good defibration property and high strand strength, and yet another object of the present invention is the strength of the fiber,
Another object of the present invention is to provide a method for producing a carbon fiber having a high strand strength, the elastic modulus of which can be freely controlled. Another object of the present invention is to provide strength of the single fiber itself, particularly JIS R-76.
The purpose of the present invention is to provide a method for producing a high-strand-strength carbon fiber that expresses a resin-impregnated strand strength comparable to the strength of the single fiber itself, which is obtained according to 01-1986, 6.6.1. Spinning, infusibilizing the pitch fiber obtained by bundling, to obtain infusibilized fiber, then carbonized, further in the method of producing a carbon fiber by graphitizing treatment, infusible fiber or Carbon fiber in a steam-containing atmosphere at a temperature of over 1,000 ° C.
It is easily solved by a method for producing a high-strand-strength carbon fiber, which is characterized by performing a heat treatment at 800 ° C. or lower.

【0013】以下本発明を詳細に説明する。本発明で用
いる炭素繊維を得るための紡糸ピッチとしては、配向し
やすい分子種が形成されており、光学的に異方性の炭素
繊維を与えるようなものであれば特に制限はなく、前述
の様な従来の種々のものが使用できる。これら紡糸ピッ
チを得るための炭素質原料としては、例えば、石炭系の
コールタール、コールタールピッチ、石炭液化物、石油
系の重質油、タール、ピッチ又はナフタレンやアントラ
センの触媒反応による重合反応生成物等が挙げられる。
これらの炭素質原料にはフリーカーボン、未溶解石炭、
灰分、触媒などの不純物が含まれているがこれらの不純
物は濾過、遠心分離、あるいは溶剤を使用する静置沈降
分離などの周知の方法で予め除去しておくことが望まし
い。
The present invention will be described in detail below. The spinning pitch for obtaining the carbon fiber used in the present invention is not particularly limited as long as the molecular species that are easily oriented are formed and it gives an optically anisotropic carbon fiber. Various conventional types can be used. Examples of the carbonaceous raw material for obtaining these spinning pitches include, for example, coal-based coal tar, coal tar pitch, coal liquefaction, petroleum-based heavy oil, tar, pitch, or polymerization reaction produced by catalytic reaction of naphthalene or anthracene. Things etc. are mentioned.
Free carbon, unmelted coal,
Impurities such as ash and catalyst are contained, but it is desirable to remove these impurities in advance by a known method such as filtration, centrifugation, or stationary sedimentation separation using a solvent.

【0014】また、前記炭素質原料を、例えば、加熱処
理した後特定溶剤で可溶分を抽出するといった方法、あ
るいは水素供与性溶剤、水素ガスの存在下に水添処理す
るといった方法で予備処理を行なっておいても良い。本
発明においては、40%以上、好ましくは、70%以
上、更に好ましくは90%以上の光学的異方性組織を含
む炭素質原料が好適であり、この為に前述の炭素質原料
あるいは予備処理を行なった炭素質原料を必要によって
は通常350〜500℃、好ましくは380〜450℃
で、2分〜50時間、好ましくは5分〜5時間、窒素、
アルゴン、水蒸気等の不活性ガス雰囲気下、或いは、吹
き込み下に加熱処理することがある。
Further, the carbonaceous raw material is pretreated by, for example, a method of subjecting the carbonaceous material to heat treatment and then extracting a soluble component with a specific solvent, or a method of hydrogenating in the presence of a hydrogen-donating solvent and hydrogen gas. You may have done. In the present invention, a carbonaceous raw material having an optically anisotropic structure of 40% or more, preferably 70% or more, more preferably 90% or more is suitable. If necessary, the carbonaceous raw material is usually 350 to 500 ° C., preferably 380 to 450 ° C.
2 minutes to 50 hours, preferably 5 minutes to 5 hours, nitrogen,
The heat treatment may be performed in an atmosphere of an inert gas such as argon or water vapor, or while blowing.

【0015】本発明でいうピッチの光学的異方性組織割
合は、常温下偏光顕微鏡でのピッチ試料中の光学的異方
性を示す部分の面積割合として求めた値である。具体的
には、例えばピッチ試料を数mm角に粉砕したものを常
法に従って2cm直径の樹脂の表面のほぼ全面に試料片
を埋込み、表面を研磨後、表面全体をくまなく偏光顕微
鏡(100倍率)下で観察し、試料の全表面積に占める
光学的異方性部分の面積の割合を測定することによって
求める。
The ratio of the optically anisotropic structure of the pitch in the present invention is a value obtained as the area ratio of the portion showing the optical anisotropy in the pitch sample under a polarization microscope at room temperature. Specifically, for example, a pitch sample crushed into several mm square is embedded with a sample piece on almost the entire surface of a resin having a diameter of 2 cm according to a conventional method, and after polishing the surface, the entire surface is covered with a polarizing microscope (100 magnification). ), And the ratio of the area of the optically anisotropic portion to the total surface area of the sample is measured.

【0016】上記の様な紡糸ピッチを用いて通常の方法
に従って溶融紡糸、集束、不融化および炭化して炭素繊
維を得る。この炭化処理は、窒素、アルゴン等の不活性
ガス雰囲気下、400℃以上1,800℃以下、好まし
くは400℃以上1,400℃以下の温度範囲において
通常10秒以上6時間以下、好ましくは1分以上2時間
以下で実施される。
Carbon fibers are obtained by melt spinning, bundling, infusibilizing and carbonizing in the usual manner using the above spinning pitch. The carbonization treatment is usually performed for 10 seconds or longer and 6 hours or shorter, preferably 1 second or longer in a temperature range of 400 ° C. or higher and 1,800 ° C. or lower, preferably 400 ° C. or higher and 1,400 ° C. or lower in an atmosphere of an inert gas such as nitrogen or argon. It is carried out in the range of minutes to 2 hours.

【0017】また、炭素繊維は用途によっては強度の絶
対値が不足することがある。したがって前述の方法で得
る炭素繊維よりも、強度、弾性率など機械的な面でより
一層高性能の炭素繊維を得たい場合には、前述の加熱処
理の後、さらに不活性雰囲気下、前述炭化温度より高い
温度で該繊維を二次炭化処理又は黒鉛化処理することに
より目的を達成することが出来る。
Further, the absolute value of the strength of carbon fiber may be insufficient depending on the application. Therefore, when it is desired to obtain a carbon fiber having higher mechanical properties such as strength and elastic modulus than the carbon fiber obtained by the above-mentioned method, after the heat treatment described above, the carbonization is further performed in an inert atmosphere. The object can be achieved by subjecting the fibers to secondary carbonization treatment or graphitization treatment at a temperature higher than the temperature.

【0018】この二次炭化処理又は黒鉛化処理の温度
は、要求される強度、弾性率など機械的特性によって決
定すればよいが、一次炭化処理より高い温度であること
が重要である。すなわち二次炭化処理又は黒鉛化処理温
度が一次炭化処理温度以下の場合、二次炭化処理又は黒
鉛化処理が炭素繊維の機械的特性の向上に殆ど寄与しな
いからである。
The temperature of the secondary carbonization treatment or graphitization treatment may be determined depending on the required mechanical properties such as strength and elastic modulus, but it is important that the temperature is higher than that of the primary carbonization treatment. That is, when the temperature of the secondary carbonization treatment or the graphitization treatment is equal to or lower than the temperature of the primary carbonization treatment, the secondary carbonization treatment or the graphitization treatment hardly contributes to the improvement of the mechanical properties of the carbon fiber.

【0019】二次炭化処理又は黒鉛化処理温度は、80
0〜3,000℃が好ましい。800℃未満では該繊維
の機械的特性の向上が少なく、また3,000℃を超え
ても、熱源コストの大きい割に、機械的特性の温度によ
る向上効果がかなり緩やかになり、工業的に有利とは云
えないからである。本発明においてはかかる不融化繊維
又は炭素繊維を、次いで水蒸気雰囲気下又は窒素ガス、
アルゴンガス等の不活性ガスと水蒸気の混合ガスの雰囲
気下で、1,000℃を超え1,800℃以下、好まし
くは1,050℃以上1,400℃以下の温度範囲にお
いて通常0.1秒以上24時間以下、好ましくは1秒以
上6時間以下の時間で、加熱処理される。水蒸気濃度と
しては通常100ppmから100vol%、好ましく
は1,000ppmから100vol%である。
The secondary carbonization treatment or graphitization treatment temperature is 80
0-3,000 degreeC is preferable. If the temperature is less than 800 ° C, the mechanical properties of the fiber are not improved so much, and if the temperature exceeds 3,000 ° C, the effect of improving the mechanical properties due to the temperature becomes considerably gradual in spite of the large heat source cost, which is industrially advantageous. It cannot be said that. In the present invention, such infusible fiber or carbon fiber, then under a steam atmosphere or nitrogen gas,
In an atmosphere of a mixed gas of an inert gas such as argon gas and water vapor, it is usually 0.1 seconds in a temperature range of more than 1,000 ° C and less than 1,800 ° C, preferably more than 1,050 ° C and less than 1,400 ° C. The heat treatment is performed for 24 hours or less and preferably for 1 second to 6 hours. The water vapor concentration is usually 100 ppm to 100 vol%, preferably 1,000 ppm to 100 vol%.

【0020】本発明での水蒸気濃度は処理温度、処理時
間により大きく左右され、例えば長時間もしくは高温で
処理する場合は水蒸気濃度を低くして実施するのが好ま
しく、又、短時間もしくは低温で処理する場合には、水
蒸気濃度を高くして実施するのがよい。解繊性が良好で
且つ繊維単独でも樹脂含浸ストランドとしても高強度を
発現するという本発明の効果を考慮した場合、工業的に
最も好ましい処理条件は、1,050℃以上1,400
℃以下、5秒以上90分以下、濃度3000ppm以上
60vol%以下である。
The water vapor concentration in the present invention largely depends on the treatment temperature and the treatment time. For example, when the treatment is carried out for a long time or at a high temperature, it is preferable to carry out the treatment with a low water vapor concentration, and the treatment at a short time or at a low temperature. In that case, it is preferable to increase the water vapor concentration. Considering the effect of the present invention that the defibration property is good and the fiber exhibits high strength both as a fiber alone and as a resin-impregnated strand, the industrially most preferable treatment condition is 1,050 ° C. or higher and 1,400.
C. or lower, 5 seconds or longer and 90 minutes or shorter, and concentration is 3000 ppm or higher and 60 vol% or lower.

【0021】なお、この二次炭化処理又は黒鉛化処理
は、炭素繊維の機械的特性の向上を目的とし、必要に応
じて実施するものであるが、二次炭化処理又は黒鉛化処
理が、前述の水蒸気含有雰囲気の加熱処理によって得ら
れた炭素繊維の解繊とストランド強度向上の効果を阻害
するものではなく、水蒸気含有雰囲気の加熱処理のあ
と、前述の二次炭化処理又は黒鉛化処理、表面処理等を
行なうことも可能である。以上の様に、不融化繊維又は
炭素繊維を水蒸気含有雰囲気下で1,000℃を超え
1,8000℃以下で加熱処理することにより該繊維の
解繊とストランド強度の大幅な向上が達成される。また
本発明による方法によれば繊維が解繊され、各単繊維の
マトリックス樹脂中での分散性が向上し、ストランド強
度が向上するのみではなく、各単繊維単位でみる単繊維
強度も向上しておりこれは、単繊維間の融着により発生
した表面欠陥を水蒸気ガスがエッチングにより除去した
ことによる効果も含まれている。
The secondary carbonization treatment or graphitization treatment is carried out if necessary for the purpose of improving the mechanical properties of the carbon fiber. Does not inhibit the effect of fibrillation and strand strength improvement of the carbon fiber obtained by the heat treatment of the water vapor-containing atmosphere, after the heat treatment of the water vapor-containing atmosphere, the above-mentioned secondary carbonization treatment or graphitization treatment, the surface It is also possible to perform processing and the like. As described above, by heat-treating the infusible fiber or the carbon fiber at a temperature of more than 1,000 ° C. and not more than 1,8,000 ° C. in a steam-containing atmosphere, defibration of the fiber and a significant improvement in strand strength are achieved. .. Further, according to the method of the present invention, the fibers are defibrated, the dispersibility of each single fiber in the matrix resin is improved, and not only the strand strength is improved, but also the single fiber strength seen in each single fiber unit is improved. This also includes the effect that the steam gas removes the surface defects caused by fusion between the single fibers by etching.

【0022】従来技術でも表面欠陥等をエッチングによ
り除去しようとした試みは前述の如くなされてきた訳で
あるが、いずれも酸素ガス等の大きな発熱を伴う方法に
よるものであった。本発明で用いる水蒸気ガスが、特に
大きな効果を示したのは炭素繊維表面の炭素原子と水蒸
気の反応が、1,000℃を超え1,8000℃以下で
は吸熱反応か又は微少な発熱反応である為に、特に過酸
化等による強度劣化を起こさず処理可能なためであると
考えられる。
Even in the prior art, attempts to remove surface defects and the like by etching have been made as described above, but all of them were methods involving a large amount of heat generation such as oxygen gas. The steam gas used in the present invention shows a particularly great effect when the reaction between carbon atoms on the surface of the carbon fiber and steam is an endothermic reaction or a slight exothermic reaction at a temperature of more than 1,000 ° C. and not more than 18,000 ° C. Therefore, it is considered that the treatment can be performed without causing the strength deterioration due to the peroxidation or the like.

【0023】[0023]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明の要旨を超えない限り、本発明は実施例に限
定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples as long as the gist of the present invention is not exceeded.

【0024】実施例1 コールタールピッチより、軟化点300℃かつ偏光顕微
鏡下で観察した光学的異方性割合が95%の紡糸ピッチ
を調製した。これをノズル径0.1mm、孔数4,00
0の紡糸口金を用い、口金温度330℃で溶融紡糸し、
得られた糸径12μmのピッチ繊維にシリコン系の油剤
を付着させ集束した。このピッチ繊維を310℃で30
分間空気中で加熱処理することにより、不融化繊維を得
た。更にこの不融化繊維を窒素ガス中545℃で炭化
し、炭素繊維を得た。この炭素繊維を水蒸気を8,40
0ppm含む窒素ガス雰囲気中に保たれた連続式の加熱
炉中で1,200℃滞留時間20分の条件で加熱処理し
た。
Example 1 A spinning pitch having a softening point of 300 ° C. and an optical anisotropy ratio of 95% observed under a polarizing microscope was prepared from coal tar pitch. This has a nozzle diameter of 0.1 mm and a hole count of 4,000.
Using a spinneret of 0, melt spinning at a spinneret temperature of 330 ° C.,
A silicon-based oil agent was attached to the obtained pitch fibers having a thread diameter of 12 μm and bundled. This pitch fiber is 30 at 310 ℃
The infusible fiber was obtained by heat-treating in air for 1 minute. Further, this infusible fiber was carbonized in nitrogen gas at 545 ° C. to obtain a carbon fiber. This carbon fiber is steamed with 8,40
Heat treatment was performed in a continuous heating furnace maintained in a nitrogen gas atmosphere containing 0 ppm under conditions of 1,200 ° C. and a residence time of 20 minutes.

【0025】かくして得られた炭素繊維は、繊維同士の
融着がなく、マトリックスのエポキシ樹脂中に含浸し、
130℃、30分で乾燥、硬化させ該炭素繊維の長手方
向に対する横断面を顕微鏡により観察すると、図1に示
すように単繊維1が、エポキシ樹脂マトリックス2中に
均一に分散し優れた均質性を示した。
The carbon fiber thus obtained is impregnated into the epoxy resin of the matrix without fusion of the fibers,
When the cross section of the carbon fiber with respect to the longitudinal direction is dried and cured at 130 ° C. for 30 minutes and observed with a microscope, the single fiber 1 is uniformly dispersed in the epoxy resin matrix 2 as shown in FIG. showed that.

【0026】また、得られた繊維の単繊維物性及び樹脂
含浸ストランド物性をJIS R−7601の方法によ
り測定したところ下記の通りであった。 単繊維物性 引張り強さ 330 kgf/mm2 引張り弾性率 19tonf/mm2 樹脂含浸ストランド物性 引張り強さ 300 kgf/mm2 引張り弾性率 21tonf/mm2
The physical properties of single fiber and resin-impregnated strand of the obtained fiber were measured by the method of JIS R-7601. The results were as follows. Single fiber physical properties Tensile strength 330 kgf / mm 2 Tensile elastic modulus 19 tonf / mm 2 Resin impregnated strand physical properties Tensile strength 300 kgf / mm 2 Tensile elastic modulus 21 tonf / mm 2

【0027】実施例2 水蒸気を8,400ppm含む窒素ガス雰囲気中での
1,200℃滞留時間を30分とした以外、実施例1と
同様に実施した。得られた繊維の各種の特性を実施例1
と同様に測定した結果を第1表に示した。
Example 2 Example 1 was repeated except that the residence time at 1,200 ° C. in a nitrogen gas atmosphere containing 8,400 ppm of water vapor was 30 minutes. Various properties of the obtained fiber are shown in Example 1.
The results measured in the same manner as in Table 1 are shown in Table 1.

【0028】実施例3 545℃で炭化した炭素繊維約50mを回分式の加熱炉
に仕込み、水蒸気8,000ppmを含む窒素ガス中
1,200℃、滞留時間60分の条件で加熱処理した以
外、実施例1と同様に実施した。得られた繊維の各種の
特性を実施例1と同様に測定した結果を第1表に示し
た。
Example 3 Approximately 50 m of carbon fiber carbonized at 545 ° C. was charged into a batch type heating furnace and heat treated in nitrogen gas containing 8,000 ppm of steam at 1,200 ° C. for a residence time of 60 minutes. It carried out like Example 1. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0029】実施例4 窒素中の水蒸気濃度を12vol%とし、1,200
℃、滞留時間を30秒とした以外、実施例1と同様に実
施した。得られた繊維の各種の特性を実施例1と同様に
測定した結果を第1表に示した。
Example 4 The water vapor concentration in nitrogen was set to 12 vol% and 1,200
The same procedure as in Example 1 was carried out except that the temperature was 30 ° C. and the residence time was 30 seconds. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0030】実施例5 実施例3で得られた炭素繊維トウに対してさらにアルゴ
ンガス中2,150℃、滞留時間0.5分の条件で黒鉛
化処理した。得られた繊維の各種の特性を実施例1と同
様に測定した結果を第1表に示した。
Example 5 The carbon fiber tow obtained in Example 3 was further graphitized in argon gas at 2,150 ° C. for a residence time of 0.5 minutes. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0031】実施例6 窒素中の水蒸気濃度を49vol%とし、1,200
℃、滞留時間を10秒とした以外、実施例1と同様に実
施した。得られた繊維の各種の特性を実施例1と同様に
測定した結果を第1表に示した。
Example 6 Water vapor concentration in nitrogen was set to 49 vol% and 1,200
The same procedure as in Example 1 was carried out except that the temperature was 10 ° C. and the residence time was 10 seconds. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0032】実施例7 実施例5で得られた炭素繊維トウに対してさらにアルゴ
ンガス中2,500℃、滞留時間1分の条件で黒鉛化処
理した。得られた繊維の各種の特性を実施例1と同様に
測定した結果を第1表に示した。
Example 7 The carbon fiber tow obtained in Example 5 was further graphitized in argon gas at 2,500 ° C. for a residence time of 1 minute. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0033】実施例8 実施例1で用いた不融化繊維を水蒸気を8,400pp
m含む窒素ガス雰囲気中で、1,200℃滞留時間30
分の条件で加熱処理した。得られた繊維の各種の特性を
実施例1と同様に測定した結果を第1表に示した。
Example 8 The infusible fiber used in Example 1 was steamed at 8,400 pp.
m, nitrogen gas atmosphere, 1,200 ℃ residence time 30
Heat treatment was performed under the condition of minutes. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0034】比較例1 水蒸気を8,400ppm含む窒素ガス雰囲気中での加
熱処理温度を850℃とした以外、実施例1と同様に実
施し得られた炭素繊維トウに対して、さらに窒素ガス雰
囲気中、1,200℃、滞留時間20分の条件で、加熱
処理した。得られた繊維の各種の特性を実施例1と同様
に測定した結果を第1表及び図2に示した。
Comparative Example 1 A carbon fiber tow obtained in the same manner as in Example 1 except that the heat treatment temperature was 850 ° C. in a nitrogen gas atmosphere containing 8,400 ppm of steam was further subjected to a nitrogen gas atmosphere. The heat treatment was performed under the conditions of medium temperature of 1,200 ° C. and residence time of 20 minutes. Various properties of the obtained fiber were measured in the same manner as in Example 1, and the results are shown in Table 1 and FIG.

【0035】比較例2 窒素ガス中の水蒸気濃度を49vol%とし、加熱処理
温度850℃、滞留時間3分とした以外は、実施例1と
同様に実施し得られた炭素繊維トウに対して、さらに窒
素ガス雰囲気中1,200℃、滞留時間20分の条件で
加熱処理した。得られた繊維の各種の特性を実施例1と
同様に測定した結果を第1表に示した。
Comparative Example 2 A carbon fiber tow obtained in the same manner as in Example 1 except that the water vapor concentration in nitrogen gas was 49 vol%, the heat treatment temperature was 850 ° C., and the residence time was 3 minutes. Further, heat treatment was performed in a nitrogen gas atmosphere at 1,200 ° C. for a residence time of 20 minutes. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0036】比較例3 1,200℃の加熱処理を行う際の雰囲気ガスを窒素ガ
スとした以外、実施例1と同様に実施した。得られた繊
維の各種の特性を実施例1と同様に測定した結果を第1
表及び図3に示した。第1表及び図2から明らかなよう
に、この炭素繊維はエポキシ樹脂マトリックス中での分
散が悪く、ストランド強度も低いものであった。
Comparative Example 3 The procedure of Example 1 was repeated, except that nitrogen gas was used as the atmosphere gas for the heat treatment at 1,200 ° C. Various characteristics of the obtained fiber were measured in the same manner as in Example 1, and the results are
The results are shown in the table and FIG. As is clear from Table 1 and FIG. 2, this carbon fiber was poorly dispersed in the epoxy resin matrix and had low strand strength.

【0037】比較例4 1,200℃の加熱処理を行う際の雰囲気を、酸素ガス
を400ppm含む窒素ガスとした以外、実施例1と同
様に実施した。得られた繊維の各種の特性を実施例1と
同様に測定した結果を第1表に示した。
Comparative Example 4 The same procedure as in Example 1 was carried out except that the atmosphere for the heat treatment at 1,200 ° C. was nitrogen gas containing 400 ppm of oxygen gas. Various properties of the obtained fiber were measured in the same manner as in Example 1 and the results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明により、解繊性が良好でかつ高ス
トランド強度であり、単繊維自体の強度に匹敵する樹脂
含浸ストランド強度を発現する高ストランド強度炭素繊
維の製造方法を提供できる。
Industrial Applicability According to the present invention, it is possible to provide a method for producing a high-strand-strength carbon fiber having good defibration property and high-strand strength, and exhibiting resin-impregnated strand strength comparable to that of the single fiber itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素繊維横断面を光学顕微鏡にて観察した視野
の模式図である。
FIG. 1 is a schematic view of a field of view of a cross section of carbon fiber observed by an optical microscope.

【図2】炭素繊維横断面を光学顕微鏡にて観察した視野
の模式図である。
FIG. 2 is a schematic view of a field of view of a cross section of carbon fiber observed by an optical microscope.

【図3】炭素繊維横断面を光学顕微鏡にて観察した視野
の模式図である。
FIG. 3 is a schematic view of a field of view of a cross section of carbon fiber observed by an optical microscope.

【符号の説明】[Explanation of symbols]

1 炭素単繊維 2 マトリックス樹脂 1 carbon monofilament 2 matrix resin

Claims (1)

【特許請求の範囲】 【請求項1】 ピッチを溶融紡糸し、集束して得られる
ピッチ繊維を不融化処理し、不融化繊維を得、次いで炭
化処理し、更に必要に応じて黒鉛化処理することにより
炭素繊維を製造する方法において、不融化繊維又は炭素
繊維を水蒸気含有雰囲気下1,000℃を超え1,80
0℃以下にて加熱処理することを特徴とする高ストラン
ド強度炭素繊維の製造方法。 【請求項2】 水蒸気含有雰囲気下の加熱処理の温度が
1,050℃以上1,400℃以下である請求項1記載
の炭素繊維の製造方法。 【請求項3】 水蒸気含有雰囲気下の加熱処理の時間が
0.1秒以上24時間以下である請求項2記載の炭素繊
維の製造方法。 【請求項4】 水蒸気雰囲気下で加熱処理された不融化
繊維又は炭素繊維を更に炭化又は黒鉛化処理することを
特徴とする請求項1記載の炭素繊維の製造方法。
Claim: What is claimed is: 1. Pitch fibers obtained by melt-spinning pitch and bundling the fibers are infusibilized to obtain infusibilized fibers, then carbonized, and optionally graphitized. In the method for producing a carbon fiber according to the above method, the infusible fiber or the carbon fiber is heated to more than 1,000 ° C. in an atmosphere containing water vapor to exceed 1,80
A method for producing a high-strand-strength carbon fiber, which comprises performing heat treatment at 0 ° C. or lower. 2. The method for producing carbon fiber according to claim 1, wherein the temperature of the heat treatment in the atmosphere containing water vapor is 1,050 ° C. or higher and 1,400 ° C. or lower. 3. The method for producing carbon fiber according to claim 2, wherein the heat treatment time in the atmosphere containing water vapor is 0.1 seconds or more and 24 hours or less. 4. The method for producing carbon fiber according to claim 1, further comprising carbonizing or graphitizing the infusible fiber or the carbon fiber heat-treated in a steam atmosphere.
JP03306399A 1990-11-21 1991-11-21 Method for producing high strand strength carbon fiber Expired - Lifetime JP3024319B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-317427 1990-11-21
JP31742790 1990-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11278371A Division JP2000080525A (en) 1990-11-21 1999-09-30 Production of carbon fiber having high strand tenacity

Publications (2)

Publication Number Publication Date
JPH055218A true JPH055218A (en) 1993-01-14
JP3024319B2 JP3024319B2 (en) 2000-03-21

Family

ID=18088105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03306399A Expired - Lifetime JP3024319B2 (en) 1990-11-21 1991-11-21 Method for producing high strand strength carbon fiber

Country Status (1)

Country Link
JP (1) JP3024319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850715B2 (en) * 2006-09-07 2014-10-07 Eisenmann Ag Process and installation for drying articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850715B2 (en) * 2006-09-07 2014-10-07 Eisenmann Ag Process and installation for drying articles

Also Published As

Publication number Publication date
JP3024319B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US5348719A (en) Process for producing carbon fibers having high strand strength
JP3024319B2 (en) Method for producing high strand strength carbon fiber
JP3024320B2 (en) Method for producing high strand strength carbon fiber
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JP2849156B2 (en) Method for producing hollow carbon fiber
JP2000080525A (en) Production of carbon fiber having high strand tenacity
JP2000080524A (en) Production of carbon fiber having high strand tenacity
JP3321913B2 (en) Method for producing pitch-based carbon fiber
JP3531194B2 (en) Carbon fiber aggregate
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JPS63175122A (en) Production of carbon fiber tow
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JP2817232B2 (en) Method for producing high-performance carbon fiber
JP3291847B2 (en) Method for producing pitch-based carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JP3698156B2 (en) Carbon fiber
JP2766530B2 (en) Method for producing pitch-based carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JP3239490B2 (en) Optically anisotropic pitch for high compressive strength carbon fiber and method for producing carbon fiber
Fitzer et al. Carbon fibers
JPH1025626A (en) Production of carbon fiber
JPH0832974B2 (en) Method for producing pitch carbon fiber
JPS6183319A (en) Carbon fiber and its production
JPS6366324A (en) Knot carbon fiber, production thereof and composite material containing knot carbon fiber as reinforcing material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

EXPY Cancellation because of completion of term