JPH0552152A - Internal combustion engine control device - Google Patents

Internal combustion engine control device

Info

Publication number
JPH0552152A
JPH0552152A JP3213368A JP21336891A JPH0552152A JP H0552152 A JPH0552152 A JP H0552152A JP 3213368 A JP3213368 A JP 3213368A JP 21336891 A JP21336891 A JP 21336891A JP H0552152 A JPH0552152 A JP H0552152A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
intake pipe
egr
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3213368A
Other languages
Japanese (ja)
Other versions
JP2595148B2 (en
Inventor
Seiji Asano
誠二 浅野
Toshio Ishii
俊夫 石井
Akito Watanabe
明人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP3213368A priority Critical patent/JP2595148B2/en
Publication of JPH0552152A publication Critical patent/JPH0552152A/en
Application granted granted Critical
Publication of JP2595148B2 publication Critical patent/JP2595148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve diagnostic accuracy relating to an EGR system self diagnostic device for an internal combustion engine used in an automobile or the like. CONSTITUTION:A pressure in an intake pipe is calculated based on an output of a hot-wire air flow meter 8 in an internal combustion engine control device for an internal combustion engine 1. A pressure sensor 13 is provided in the intake pipe to detect a trouble in an EGR system by comparing a pressure with the above-mentioned calculated value at the time of exhaust gas recirculation(EGR). Wrong decision in an EGR system trouble diagnosis can be prevented by accurately detecting the trouble in the EGR system by the internal combustion engine control device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車等に用いられる内
燃機関のEGRシステムが正常に動作しているか否かの
診断を行う内燃機関制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine controller for diagnosing whether an EGR system of an internal combustion engine used in an automobile or the like is operating normally.

【0002】[0002]

【従来の技術】従来のEGR自己診断装置としては、例
えば特開平1−170747号 公報があり、内燃機関のスロッ
トル弁上流に設けられた空気流量計で、内燃機関が減速
運転時にEGRバルブを開閉した場合の吸気量の直接的
な変化を計測することにより、EGRシステムの自己診
断を行っていた。
2. Description of the Related Art As a conventional EGR self-diagnosis device, there is, for example, Japanese Unexamined Patent Publication No. 1-174747, which is an air flow meter provided upstream of a throttle valve of an internal combustion engine, and opens and closes the EGR valve during deceleration operation of the internal combustion engine. The self-diagnosis of the EGR system was performed by measuring the direct change in the intake air amount in the case of the above.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、E
GRシステムの故障診断は、内燃機関が減速運転に限定
されている。そのため、実際の内燃機関の運転中は、減
速パターンが一定せずシステムの故障診断量が、確定し
ない。またここに記載されているシステムは故障診断量
が吸入吸気温の影響をうけるため寒冷地等でのEGR還
流時には吸気温が大きく変化し診断できなくなる可能性
がある。
In the above prior art, E
Fault diagnosis of the GR system is limited to the deceleration operation of the internal combustion engine. Therefore, during actual operation of the internal combustion engine, the deceleration pattern is not constant and the system failure diagnosis amount is not fixed. Further, in the system described here, the failure diagnosis amount is affected by the intake air intake temperature, so that the intake air temperature may change significantly during EGR recirculation in a cold region, etc., and diagnosis may not be possible.

【0004】本発明では上記のシステムのように運転状
態を限定せず且つ吸気温の影響を受けないシステムを提
供することにある。
An object of the present invention is to provide a system that does not limit the operating state and is not affected by the intake air temperature, unlike the above system.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では内燃機関の吸気温を計測する吸気温セン
サーを吸気管に設置する。またEGR還流時の吸気管内
圧力を計測する圧力センサーを吸気管に設置する。さら
に質量流量を計測するため、熱線式空気流量計の如き質
量流量計を設置し内燃機関制御装置にてそれぞれの物理
情報をもとに、EGRバルブの診断を行うものである。
In order to achieve the above object, in the present invention, an intake air temperature sensor for measuring the intake air temperature of an internal combustion engine is installed in the intake pipe. A pressure sensor that measures the pressure in the intake pipe during EGR recirculation is installed in the intake pipe. Further, in order to measure the mass flow rate, a mass flow meter such as a hot-wire air flow meter is installed, and the internal combustion engine control device diagnoses the EGR valve based on the respective physical information.

【0006】[0006]

【作用】質量空気流量計の出力と、あらかじめ定められ
た吸気管内圧力と内燃機関の回転数のマップの検索値と
の差分で、吸気管内平均圧力をもとめる場合、吸気温の
影響を受ける。そこで吸気温センサーで計測された吸気
温で補正を吸気管内平均圧力に加える。尚、ここで計算
された吸気管内平均圧力は質量式空気流量計の出力でも
とめられたものであるので、内燃機関の如何なる状態で
も吸入空気量の分圧を計算できる。さらに圧力センサー
の出力と前述の空気分圧を用てEGR還流時の分圧を計
算しEGRシステムの診断に用いる。
When the average pressure in the intake pipe is determined by the difference between the output of the mass air flow meter and the predetermined value in the intake pipe pressure and the search value in the map of the engine speed, the intake air temperature is affected. Therefore, the correction is added to the average pressure in the intake pipe by the intake temperature measured by the intake temperature sensor. Since the average pressure in the intake pipe calculated here is determined by the output of the mass air flow meter, the partial pressure of the intake air amount can be calculated in any state of the internal combustion engine. Further, the partial pressure at the time of EGR recirculation is calculated using the output of the pressure sensor and the partial pressure of the air described above, and used for the diagnosis of the EGR system.

【0007】[0007]

【実施例】本発明の一実施例を図を用いて説明する。図
1は本発明の全体の構成図である。内燃機関1の吸気管
2と排気管3は、排気ガスの還流を行うためにEGR通
路4で連結されており、EGR通路途中には、排気ガス
還流量を調整するEGRバルブ5が設けられている。ま
たEGR通路以外の吸気管への導気通路としてはキャニ
スタ18に吸着されたガソリンベーパを吸気管へパージ
するキャニスタパージ通路16,ブローバイガスを吸気
管へ還流するブローバイガス通路20がある。キャニス
ターパージ通路には、キャニスターパージバルブ17が
設けられておりキャニスタパージ量を調整する。ブロー
バイガス通路には、ブローバイガス還流バルブ21がも
うけられており、ブローバイガスの還流量を調整する。
ここで、ブローバイガスは、内燃機関の状態により通路
20を介して吸気管に吸入される場合と、エアクリーナ
を通して吸入空気とともに吸入される場合がある。EGR
バルブの駆動は、内燃機関制御装置24によって行われ
予めさだめられた所定手順により、排気ガスの還流量が
制御される。また、同様にしてキャニスターパージバル
ブ及びブローバイガス還流バルブも内燃機関制御装置に
より駆動され、キャニスターパージ量及びブローバイガ
ス還流量が制御される。内燃機関制御装置24は、吸入
する空気量を質量流量で計測する熱線式空気流量計8,
クランク角度センサ9,排気ガスの酸素濃度を計測する
排気ガス濃度センサ10,冷却水温センサ11,吸気管
内の気温を計測する吸気温センサ12,吸気管内の圧力
を計測する圧力センサ13等のセンサ群の信号により、
内燃機関の運転状態を検出し、これらの情報により予め
定められた手順に基づき上記の各バルブを制御する。同
様にして、燃料噴射信号をインジェクタ14ヘ、点火時
期信号を点火装置15へ、アイドル回転数制御信号をI
SCバルブ23へ出力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of the present invention. The intake pipe 2 and the exhaust pipe 3 of the internal combustion engine 1 are connected by an EGR passage 4 for recirculating exhaust gas, and an EGR valve 5 for adjusting the exhaust gas recirculation amount is provided in the middle of the EGR passage. There is. In addition to the EGR passage, the canister purge passage 16 for purging the gasoline vapor adsorbed by the canister 18 into the intake pipe and the blow-by gas passage 20 for returning blow-by gas to the intake pipe are provided as the intake passage to the intake pipe. A canister purge valve 17 is provided in the canister purge passage to adjust the canister purge amount. A blow-by gas recirculation valve 21 is provided in the blow-by gas passage to adjust the recirculation amount of the blow-by gas.
Here, the blow-by gas may be sucked into the intake pipe via the passage 20 or may be sucked together with the intake air through the air cleaner depending on the state of the internal combustion engine. EGR
The valve is driven by the internal combustion engine controller 24, and the recirculation amount of the exhaust gas is controlled by a predetermined procedure that has been set in advance. Similarly, the canister purge valve and the blow-by gas recirculation valve are also driven by the internal combustion engine controller to control the canister purge amount and the blow-by gas recirculation amount. The internal combustion engine control device 24 uses a hot-wire air flow meter 8, which measures the amount of intake air as a mass flow rate.
Crank angle sensor 9, exhaust gas concentration sensor 10 for measuring oxygen concentration of exhaust gas, cooling water temperature sensor 11, intake air temperature sensor 12 for measuring air temperature in the intake pipe, pressure sensor 13 for measuring pressure in the intake pipe, and the like. Signal of
The operating state of the internal combustion engine is detected, and each of the above valves is controlled based on the procedure determined in advance by these information. Similarly, the fuel injection signal is sent to the injector 14, the ignition timing signal is sent to the ignition device 15, and the idle speed control signal is sent to I.
Output to the SC valve 23.

【0008】図2は、内燃機関制御装置24の内部回路
ブロック図である。外部アクチュエータ、センサとの入
出力を行うドライバ25、各センサの出力電圧をA/D
コンバータによりディジタル信号に変換したり、各アク
チュエータにパルス信号を送るI/O26,I/O26
からの信号値を基に内燃機関の状態を判別し、ディジタ
ル演算を行い、燃料噴射幅、点火信号、アイドル回転数
制御信号、等をI/O26に送るCPU27,CPU2
7のプログラム及び定数を格納する不揮発性メモリRO
M28、計算された変数を一時的に格納する揮発性メモ
リRAM29,内燃機関制御装置24に供給される電源
が切断されても、RAM29の内容を保持する電源バッ
クアップ回路30から構成される。
FIG. 2 is a block diagram of the internal circuit of the internal combustion engine controller 24. A / D for the output voltage of each sensor and driver 25 that inputs and outputs with external actuators and sensors
I / O26, I / O26 which converts into digital signal by converter and sends pulse signal to each actuator
The state of the internal combustion engine is determined based on the signal value from the CPU 27, the digital calculation is performed, and the fuel injection width, the ignition signal, the idle speed control signal, and the like are sent to the I / O 26.
Non-volatile memory RO for storing 7 programs and constants
M28, a volatile memory RAM29 that temporarily stores the calculated variables, and a power supply backup circuit 30 that retains the contents of the RAM29 even when the power supplied to the internal combustion engine control device 24 is cut off.

【0009】図3は、本発明の内燃機関制御装置24の
制御方式のブロック図である。ブロック301は、圧力
差分式のブロックを表す。Pi(i)は、現在の吸気管内
圧力の推定値、Pi(i−1)は前回の吸気管内圧力の推
定値を示す。ブロック301の右辺第2項はブロック3
02で検索される気筒流入空気量Qc と、現在の熱線式
空気流量計の出力Qs との差分に気体方程式から導かれ
る定数Kt を乗じ、圧力変化分を算出している。この時
定数Kt には吸気温センサの出力から算出される吸気温
による補正がなされることはいうまでもない。ブロック
302は吸気管内圧力の推定値と内燃機関の回転数の軸
をもつ気筒流入空気量の2次元マップ(以下Qc MAP
と略す)を検索する。このブロックヘの入力は、ブロッ
ク301で計算された吸気管内圧力の推定値Pi とクラン
ク角度センサの信号から計算された内燃機関の回転数で
ある。気筒流入空気量をQc MAPで検索する場合は面
補間をおこなうことは、いうまでもない。ブロック30
2で推定された気筒流入空気量Qc は、ブロック301
の圧力差分式の入力とブロック303の燃料噴射量の計
算の入力となる。気筒流入空気量Qc の単位は、kg/
hであるのでブロック303で内燃機関の回転数Nで除
し、インジェクタ定数Ki を乗じて、そののちにインジ
ェクタ無効噴射幅を加算して燃料噴射量Ti として出力
される。ブロック301からブロック302はマイクロ
コンピュータのデジタル演算で時間割込みの一定周期あ
るいはクランク角度毎の割込みの一定角度周期で演算さ
れる。
FIG. 3 is a block diagram of a control system of the internal combustion engine controller 24 of the present invention. A block 301 represents a pressure difference type block. P i (i) indicates the current estimated value of the intake pipe internal pressure, and P i (i−1) indicates the previous estimated value of the intake pipe internal pressure. The second term on the right side of block 301 is block 3
Multiplying the cylinder inflow air quantity Q c being searched by 02, the constant K t derived from the gas equation difference between the output Q s of the current hot-wire type air flow meter, and calculates the pressure change amount. It goes without saying that the time constant K t is corrected by the intake air temperature calculated from the output of the intake air temperature sensor. A block 302 is a two-dimensional map (hereinafter referred to as Q c MAP) of a cylinder inflow air amount having an axis of the estimated value of the intake pipe pressure and the rotation speed of the internal combustion engine.
Abbreviated). The input to this block is the estimated value P i of the intake pipe internal pressure calculated in block 301 and the rotational speed of the internal combustion engine calculated from the signal of the crank angle sensor. It goes without saying that surface interpolation is performed when the cylinder inflow air amount is searched by Q c MAP. Block 30
The cylinder inflow air amount Q c estimated in 2 is calculated in block 301.
The input of the pressure difference formula and the calculation of the fuel injection amount in block 303 are input. Unit cylinder inflow air quantity Q c is, kg /
Since it is h, it is divided by the engine speed N of the internal combustion engine in block 303, multiplied by the injector constant K i, and then the injector ineffective injection width is added and output as the fuel injection amount T i . Blocks 301 to 302 are digitally calculated by the microcomputer and are calculated at a constant cycle of time interruption or a constant angle cycle of interruption for each crank angle.

【0010】図4は、本発明の内燃機関における吸気管
内の圧力を示す。吸気管にはEGR通路401が、内燃
機関からみて熱線式空気流量計402の前方に連結され
ている。また吸気管の吸気脈動の影響を消すサージタン
クに吸気管の負圧を計測する圧力センサ403,吸入す
る空気の温度を計測する吸気温センサ404が取り付け
られている。熱線式空気流量計402を通過する空気流
量をQs とすると、スロットルバルブを通過する空気量
と同じとみなせる為、サージタンク内の吸入空気の分圧
の圧力勾配には、以下に示す数1が成立する。またサー
ジタンク内の平均圧をPとしたときに、EGR還流時に
はEGRの分圧をPe 、吸入空気量の分圧をPq とする
と、それぞれの関係は以下に示す数2が成立する。数1
は連続領域での計算式であるので、マイクロコンピュー
タでデジタル演算を行う場合には離散化する必要があ
る。Z変換等を用いて離散化した式が、数2である。数
2は図3のブロック301の圧力差分式で実現される。
FIG. 4 shows the pressure in the intake pipe of the internal combustion engine of the present invention. An EGR passage 401 is connected to the intake pipe in front of the hot-wire air flow meter 402 when viewed from the internal combustion engine. Further, a pressure sensor 403 for measuring the negative pressure of the intake pipe and an intake air temperature sensor 404 for measuring the temperature of the intake air are attached to a surge tank that eliminates the influence of intake air pulsation of the intake pipe. Assuming that the air flow rate passing through the hot wire air flow meter 402 is Q s, it can be regarded as the same as the air flow rate passing through the throttle valve. Therefore, the pressure gradient of the partial pressure of the intake air in the surge tank is expressed by the following formula 1 Is established. When the average pressure in the surge tank is P and the partial pressure of EGR is P e and the partial pressure of the intake air amount is P q at the time of EGR recirculation, the following relationships 2 hold. Number 1
Since is a calculation formula in a continuous region, it must be discretized when a digital operation is performed by a microcomputer. Equation 2 is a discretized expression using Z conversion or the like. Equation 2 is realized by the pressure difference equation in block 301 of FIG.

【0011】[0011]

【数1】 [Equation 1]

【0012】[0012]

【数2】 [Equation 2]

【0013】図5は、本発明の内燃機関制御装置の燃料
計算のゼネラルフローチャートを示す。ステップ501
では、熱線式空気流量計の出力電圧を読み込み、流量工
学値変換をおこなう。ステップ502では図3のブロッ
ク301、および式2で示される圧力差分式を計算す
る。ステップ503ではステップ502で計算された吸
気管内圧力の推定値と内燃機関の回転数からテーブル検
索を行い気筒流入空気量を推定する(図3のブロック3
02)。次にステップ504で推定された気筒流入空気
量と内燃機関の回転数を基に内燃機関の要求する燃料噴
射幅を計算する。本計算課程は、デジタルフィルタを形
成するため一定周期で実行される。
FIG. 5 shows a general flow chart of fuel calculation of the internal combustion engine controller of the present invention. Step 501
Now, read the output voltage of the hot wire air flow meter and convert the flow rate engineering value. In step 502, the pressure difference equation shown in block 301 of FIG. 3 and equation 2 is calculated. In step 503, a table is searched from the estimated value of the intake pipe internal pressure calculated in step 502 and the rotation speed of the internal combustion engine to estimate the cylinder inflow air amount (block 3 in FIG. 3).
02). Next, the fuel injection width required by the internal combustion engine is calculated based on the cylinder inflow air amount and the internal combustion engine rotation speed estimated in step 504. This calculation process is executed at regular intervals to form a digital filter.

【0014】図6は、本発明の内燃機関制御装置のEG
R診断のゼネラルフローチャートを示す。ステップ60
1ではEGR還流中であるかどうかを判断する。EGR
還流中であれば、ステップ602へすすむ。ステップ6
02では吸気管に取り付けられた圧力センサの電圧値を
読み込み、吸気管内の圧力を計算する。ステップ603で
は推定された吸気管内圧力を読み込む。この推定値はR
GR還流中の吸気管内の空気流量の分圧を示している。
ステップ604ではステップ602で計算された吸気管
内圧力とステップ603の空気分圧から、EGR還流量
の分圧を計算する。その後ステップ605でEGR還流
分圧と内燃機関の回転数の軸をもつQc MAPを検索
し、EGRバルブが故障していない場合のEGR還流量
MEを計算する。ステップ606ではステップ604で
計算したEGRの分圧から吸気管内容積、吸気管内温度
等を用いてEGR還流量MEt を計算する。ステップ6
07ではステップ604,605で計算されたEGR還
流量MEと真の還流量MEt の差の絶対値を計算し、そ
の絶対値が一定値JME以上出あればステップ607で
EGR故障と判断する。ステップ606で真の還流量を
計算する場合、EGRの還流手段、たとえばデューティ
制御かON−OFF制御かどうかにより、デューティの
補正をかけることが有効であることは言うまでもない。
FIG. 6 shows an EG of the internal combustion engine controller of the present invention.
The general flowchart of R diagnosis is shown. Step 60
At 1, it is determined whether the EGR is being recirculated. EGR
If it is under reflux, the process proceeds to step 602. Step 6
In 02, the voltage value of the pressure sensor attached to the intake pipe is read and the pressure in the intake pipe is calculated. In step 603, the estimated intake pipe pressure is read. This estimate is R
The partial pressure of the air flow rate in the intake pipe during GR recirculation is shown.
In step 604, the partial pressure of the EGR recirculation amount is calculated from the intake pipe internal pressure calculated in step 602 and the air partial pressure in step 603. After that, in step 605, Q c MAP having the axes of the EGR recirculation partial pressure and the rotation speed of the internal combustion engine is searched, and the EGR recirculation amount ME when the EGR valve is not broken is calculated. In step 606, the EGR recirculation amount ME t is calculated from the EGR partial pressure calculated in step 604 using the intake pipe internal volume, intake pipe internal temperature, and the like. Step 6
At 07, the absolute value of the difference between the EGR recirculation amount ME calculated at steps 604 and 605 and the true recirculation amount ME t is calculated, and if the absolute value exceeds a certain value JME, it is judged at step 607 that the EGR failure has occurred. Needless to say, when calculating the true recirculation amount in step 606, it is effective to correct the duty depending on the EGR recirculation means, for example, the duty control or the ON-OFF control.

【0015】図7は、図6のステップ607の絶対値の
比較値の決定法を示す。本実施例では吸気管内圧力と内
燃機関の回転数のテーブル検索とし、格子点を両軸とも
2ポイントで9の比較値をもつようにしている。
FIG. 7 shows a method of determining the absolute value comparison value in step 607 of FIG. In this embodiment, a table search for the pressure in the intake pipe and the rotation speed of the internal combustion engine is performed, and the grid points have a comparison value of 9 at 2 points on both axes.

【0016】本実施例によれば単にEGRの故障診断だ
けでなく、EGRの劣化の度合も診断できる。
According to this embodiment, not only the EGR failure diagnosis but also the degree of EGR deterioration can be diagnosed.

【0017】[0017]

【発明の効果】EGRシステムの故障を精度よく検出
し、EGRシステム故障診断に於ける誤判定を防止でき
る。
EFFECT OF THE INVENTION It is possible to detect a failure of the EGR system with high accuracy and prevent an erroneous determination in the EGR system failure diagnosis.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の主な構成図。FIG. 1 is a main configuration diagram of the present invention.

【図2】本発明の内燃機関制御装置の回路構成。FIG. 2 is a circuit configuration of an internal combustion engine controller according to the present invention.

【図3】本発明のプログラムブロック図。FIG. 3 is a program block diagram of the present invention.

【図4】本発明の吸気管のダイナミックモデル。FIG. 4 is a dynamic model of the intake pipe of the present invention.

【図5】本発明のジェネラルフローチャート。FIG. 5 is a general flowchart of the present invention.

【図6】本発明のディテールフローチャート。FIG. 6 is a detail flowchart of the present invention.

【図7】本発明のプログラム定数。FIG. 7 is a program constant of the present invention.

【符号の説明】[Explanation of symbols]

1…内燃機関、2…吸気管、3…排気管、4…EGR通
路、5…EGRバルブ、8…熱線式空気流量計、12…
吸気温センサー、13…圧力センサー、24…内燃機関
制御装置。
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Intake pipe, 3 ... Exhaust pipe, 4 ... EGR passage, 5 ... EGR valve, 8 ... Hot wire air flow meter, 12 ...
Intake air temperature sensor, 13 ... Pressure sensor, 24 ... Internal combustion engine control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 俊夫 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 渡辺 明人 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモテイブエンジニアリング 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Ishii 2520 Takaba, Katsuta City, Ibaraki Prefecture, Hitachi Automotive Systems Division, Hitachi, Ltd. Address 3 Inside Hitachi Automotive Engineering Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気管と排気管を結び排気ガス
を前記吸気管へ還流するEGR通路と、前記EGR通路
に設けられ排気ガスの還流量を制御するEGRバルブと
を備えたEGRシステムと、前記内燃機関に吸入される
空気量を計測する手段と吸気管内圧力を計測する手段と
吸気管内の空気温度を計測する手段とを持った内燃機関
制御装置において、内燃機関が吸入する空気量の吸気管
内の分圧を計算し、吸気管内圧力の実測値からEGRの
還流量を求めることを特徴とした内燃機関制御装置。
1. An EGR system including an EGR passage for connecting an intake pipe and an exhaust pipe of an internal combustion engine to recirculate exhaust gas to the intake pipe, and an EGR valve provided in the EGR passage for controlling a recirculation amount of exhaust gas. And an internal combustion engine control device having means for measuring the amount of air taken into the internal combustion engine, means for measuring the pressure in the intake pipe, and means for measuring the air temperature in the intake pipe. The internal combustion engine control device is characterized in that the partial pressure in the intake pipe is calculated and the EGR recirculation amount is obtained from the measured value of the intake pipe pressure.
【請求項2】請求項1において、前記EGR通路は、内
燃機関の空気量を計測する手段より内燃機関寄りに設け
られたことを特徴とする内燃機関制御装置。
2. The internal combustion engine controller according to claim 1, wherein the EGR passage is provided closer to the internal combustion engine than a means for measuring the air amount of the internal combustion engine.
【請求項3】請求項1において、内燃機関の吸入する空
気量を計測する手段は、質量流量を計測できる質量空気
流量計であることを特徴とした内燃機関制御装置。
3. The internal combustion engine controller according to claim 1, wherein the means for measuring the amount of air taken in by the internal combustion engine is a mass air flow meter capable of measuring a mass flow rate.
【請求項4】請求項3において、内燃機関の吸入する空
気流量の分圧を計算する手法は、前記質量空気流量計の
出力と、あらかじめ設定された空気流量のマップを内燃
機関の負荷と回転数で検出した値との差分から計算する
ことを特徴とした内燃機関制御装置。
4. The method of calculating the partial pressure of the air flow rate of intake air of an internal combustion engine according to claim 3, wherein the output of the mass air flow meter and a preset air flow rate map are used to determine the load and rotation of the internal combustion engine. An internal combustion engine controller characterized by being calculated from a difference from a value detected by a number.
【請求項5】請求項4において、内燃機関のEGR還流
量を求める手法は、前記質量空気流量計の出力とあらか
じめ設定された空気量マップを負荷と回転数で検出した
値との差分から計算された分圧に吸気温補正をくわえた
ものと、吸気管内圧力実測値との差分からもとめること
を特徴とした内燃機関制御装置。
5. The method for determining the EGR recirculation amount of an internal combustion engine according to claim 4, wherein the calculation is made from the difference between the output of the mass air flow meter and a preset air amount map detected by the load and the rotational speed. An internal combustion engine control device, characterized in that it is obtained from the difference between the measured partial pressure plus intake air temperature correction and the measured value in the intake pipe pressure.
JP3213368A 1991-08-26 1991-08-26 Internal combustion engine control device Expired - Lifetime JP2595148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213368A JP2595148B2 (en) 1991-08-26 1991-08-26 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213368A JP2595148B2 (en) 1991-08-26 1991-08-26 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JPH0552152A true JPH0552152A (en) 1993-03-02
JP2595148B2 JP2595148B2 (en) 1997-03-26

Family

ID=16638030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213368A Expired - Lifetime JP2595148B2 (en) 1991-08-26 1991-08-26 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP2595148B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379810B2 (en) 2005-12-22 2008-05-27 Denso Corporation Engine control system and engine control method
JP2014214673A (en) * 2013-04-25 2014-11-17 トヨタ自動車株式会社 Internal combustion engine controlling device
US9334819B2 (en) 2013-06-17 2016-05-10 Hyundai Motor Company Method for diagnosing EGR system and method for controlling fuel injection using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176112A (en) * 1984-02-23 1985-09-10 Mitsubishi Heavy Ind Ltd Rescue device of unattended guided track

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176112A (en) * 1984-02-23 1985-09-10 Mitsubishi Heavy Ind Ltd Rescue device of unattended guided track

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379810B2 (en) 2005-12-22 2008-05-27 Denso Corporation Engine control system and engine control method
JP2014214673A (en) * 2013-04-25 2014-11-17 トヨタ自動車株式会社 Internal combustion engine controlling device
US9334819B2 (en) 2013-06-17 2016-05-10 Hyundai Motor Company Method for diagnosing EGR system and method for controlling fuel injection using the same

Also Published As

Publication number Publication date
JP2595148B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
US7677091B2 (en) Air-fuel ratio controller for an internal combustion engine and diagnosis apparatus for intake sensors
US4598684A (en) Apparatus for controlling air/fuel ratio for internal combustion engine
US6752128B2 (en) Intake system failure detecting device and method for engines
US20060235604A1 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US6711490B2 (en) Intake air amount computing apparatus and method for the same, and intake pressure computing apparatus and method for the same
US11143134B2 (en) Engine controller, engine control method, and memory medium
JP5112382B2 (en) Oxygen sensor diagnostic device for internal combustion engine
JP3544197B2 (en) Electronic control unit for internal combustion engine
JP2006057523A (en) Failure diagnosis device for engine control system
JP2595148B2 (en) Internal combustion engine control device
US5728932A (en) Method for diagnosing performance of intake air amount detection device and apparatus thereof
JP2518294B2 (en) Failure diagnosis device for atmospheric pressure sensor
JP2001159574A (en) Diagnostic device for pressure sensor
JPH07139437A (en) Diagnostic device for engine control device and method thereof
JP4075027B2 (en) EGR control device
JPH11324783A (en) Fuel control device and control method for internal combustion engine
JP3106517B2 (en) Failure diagnosis device for evaporative fuel treatment equipment
JP2665823B2 (en) Exhaust gas recirculation control device
JP3627462B2 (en) Control device for internal combustion engine
JPS6161012A (en) Output control device of heat wire sensor
JP2609758B2 (en) Exhaust gas recirculation control device
JP4000539B2 (en) Fuel injection control device for internal combustion engine
JP2003293841A (en) Control system for internal combustion engine and flowmeter used therein
JPH09209845A (en) Controller for internal combustion engine
JPH1077883A (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15