JPH0552041B2 - - Google Patents

Info

Publication number
JPH0552041B2
JPH0552041B2 JP58188356A JP18835683A JPH0552041B2 JP H0552041 B2 JPH0552041 B2 JP H0552041B2 JP 58188356 A JP58188356 A JP 58188356A JP 18835683 A JP18835683 A JP 18835683A JP H0552041 B2 JPH0552041 B2 JP H0552041B2
Authority
JP
Japan
Prior art keywords
weight
carbon black
crosslinking
resistance value
crystalline polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58188356A
Other languages
Japanese (ja)
Other versions
JPS6080201A (en
Inventor
Hitoshi Myake
Takafumi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP18835683A priority Critical patent/JPS6080201A/en
Publication of JPS6080201A publication Critical patent/JPS6080201A/en
Publication of JPH0552041B2 publication Critical patent/JPH0552041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は感熱抵抗性導電性材料の製造法に関
し、詳しくはポリエチレン等の結晶性重合体に微
細なカーボンブラツクを混入し、しかる後にゲル
分率が一定範囲となるように架橋することによつ
て、正温度係数特性の優れた感熱抵抗正導電性材
料を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-sensitive electrically conductive material, and more specifically, it involves mixing fine carbon black into a crystalline polymer such as polyethylene, and then adjusting the gel fraction to a certain range. The present invention relates to a method for producing a heat-sensitive resistive positive conductive material having excellent positive temperature coefficient characteristics by crosslinking the present invention.

従来から正温度係数特性を有する材料、特に電
気抵抗値が特定の温度領域に達すると急激に正の
温度係数の増大する特性を有する材料を製造する
方法については様々なものが知られている(特公
昭36−16338号公報、特公昭50−33707号公報、特
公昭56−10352号公報)。
Various methods have been known for producing materials that have positive temperature coefficient characteristics, particularly materials that have the characteristic that the positive temperature coefficient increases rapidly when the electrical resistance value reaches a specific temperature range ( (Japanese Patent Publication No. 36-16338, Publication No. 33707-1987, Publication No. 10352-1982).

しかしながら、これらの従来方法により得られ
る材料は、特定の温度領域に到達した際の抵抗値
の増大率があまり大きくないという欠点があり、
また抵抗値の増大率が大きいものは初期抵抗値が
大きいという欠点があつた。
However, the materials obtained by these conventional methods have the disadvantage that the rate of increase in resistance value when reaching a specific temperature range is not very large.
Also, those with a large rate of increase in resistance value had the disadvantage of a large initial resistance value.

本発明者らは、上記従来法の欠点を解消し、常
温での抵抗値(初期抵抗値)が小さく、しかも正
温度係数特性のすぐれた感熱抵抗性導電性材料を
製造すべく鋭意研究を重ねた。その結果、結晶性
重合体に特定の平均粒径を有するカーボンブラツ
クを混入し、さらにゲル分率が一定割合となるよ
うに架橋することにより目的を達成しうることを
見出し、本発明を完成するに至つた。すなわち本
発明は、結晶性重合体に、平均粒径0.08ミクロン
未満のカーボンブラツクを前記結晶性重合体とカ
ーボンブラツクの合計量に対して25〜60重量%と
なる割合で混入し、次いでゲル分率が結晶性重合
体の30〜55重量%となるように架橋することを特
徴とする感熱抵抗性導電性材料の製造法を提供す
るものである。
The present inventors have conducted extensive research in order to eliminate the drawbacks of the conventional method described above and to produce a heat-sensitive resistive conductive material that has a small resistance value (initial resistance value) at room temperature and has excellent positive temperature coefficient characteristics. Ta. As a result, they discovered that the objective could be achieved by mixing carbon black with a specific average particle size into a crystalline polymer and further crosslinking it so that the gel fraction was constant, and completed the present invention. It came to this. That is, in the present invention, carbon black having an average particle size of less than 0.08 microns is mixed into a crystalline polymer at a ratio of 25 to 60% by weight based on the total amount of the crystalline polymer and carbon black, and then the gel component is mixed. The present invention provides a method for producing a heat-sensitive, electrically conductive material, which is characterized in that the material is crosslinked so that the crosslinking ratio is 30 to 55% by weight of the crystalline polymer.

本発明に用いる結晶性重合体は様々なものをあ
げることができるが、たとえば、ポリエチレン、
ポリエチレン系共重合体、ポリプロピレン、ポリ
プロピレン系共重合体、さらには各種のポリエス
テルならびにポリアミドなどをあげることができ
る。
Various crystalline polymers can be used in the present invention, such as polyethylene,
Examples include polyethylene copolymers, polypropylene, polypropylene copolymers, and various polyesters and polyamides.

本発明の方法では、上述の結晶性重合体に平均
粒径0.08ミクロン未満、好ましくは0.076ミクロ
ン以下のカーボンブラツクを混入する。カーボン
ブラツクの平均粒径が0.08ミクロン以上のもので
は得られる導電性材料の常温における抵抗値が大
きくなり好ましくない。また、このカーボンブラ
ツクの混入量は、前記の結晶性重合体とカーボン
ブラツクの合計量に対して25〜60重量%、好まし
くは30〜55重量%とすべきである。ここで混入量
が25重量%未満では、得られる導電性材料の初期
抵抗値が大きくなり、逆に60重量%を超えると、
特定温度領域での抵抗値の上昇率が低下する。な
お、ここで用いるカーボンブラツクの種類は様々
なものがあり、特に制限はないが、一般にはオイ
ルフアーネスブラツク、サーマルブラツク、アセ
チレンブラツクなどが充当される。
In the method of the present invention, carbon black having an average particle size of less than 0.08 microns, preferably less than 0.076 microns, is mixed into the crystalline polymer described above. If the average particle size of the carbon black is 0.08 microns or more, the resulting conductive material will have a large resistance value at room temperature, which is undesirable. The amount of carbon black mixed in should be 25 to 60% by weight, preferably 30 to 55% by weight, based on the total amount of the crystalline polymer and carbon black. If the amount of the mixed material is less than 25% by weight, the initial resistance value of the resulting conductive material will be large, whereas if it exceeds 60% by weight,
The rate of increase in resistance value decreases in a specific temperature range. There are various types of carbon black used here, and there are no particular restrictions, but oil furnace black, thermal black, acetylene black, etc. are generally used.

上述のカーボンブラツクを混入するには、所定
量のカーボンブラツクを結晶性重合体に添加した
後に充分混練することが好ましい。この混練は通
常の混練機を用いて行なえばよく、140〜200℃に
おいて5分間以上行なえば充分である。
In order to incorporate the above-mentioned carbon black, it is preferable to add a predetermined amount of carbon black to the crystalline polymer and then thoroughly knead it. This kneading may be carried out using an ordinary kneading machine, and it is sufficient to carry out the kneading at 140 to 200°C for 5 minutes or more.

本発明の方法によれば、結晶性重合体にカーボ
ンブラツクを混入した後に架橋を行なう。架橋は
様々な手段により行なうことができ、例えば有機
パーオキサイドなどの架橋剤を加えて行なう方法
をはじめ、オゾンを用いる方法や紫外線、電子線
等の活性エネルギー線を照射する方法などをあげ
ることができる。ここで有機パーオキサイドとし
ては、ベンゾイルパーオキサイド、t−ブチルパ
ーオキシベンゾエート、ジクミルパーオキサイ
ド、t−ブチルクミルパーオキサイド、t−ブチ
ルパーオキサイド、2,5−ジ(t−ブチルパー
オキシ)ヘキシン−3などをあげることができ
る。
According to the method of the present invention, crosslinking is carried out after carbon black is mixed into the crystalline polymer. Cross-linking can be carried out by various means, including a method of adding a cross-linking agent such as an organic peroxide, a method of using ozone, and a method of irradiating with active energy rays such as ultraviolet rays and electron beams. can. Here, the organic peroxides include benzoyl peroxide, t-butylperoxybenzoate, dicumyl peroxide, t-butylcumyl peroxide, t-butyl peroxide, 2,5-di(t-butylperoxy)hexyne -3 etc. can be given.

上述の架橋の程度は、用いる結晶性重合体に対
してゲル分率が30〜55重量%、好ましくは40〜50
重量%となるような範囲に調節すべきである。ゲ
ル分率が30重量%未満では得られる導電性材料の
正温度係数特性が充分なものとならず、また55重
量%を超えると特定温度領域における抵抗値の上
昇倍率が低下し好ましくない。
The degree of crosslinking mentioned above is such that the gel fraction is 30 to 55% by weight, preferably 40 to 50% by weight based on the crystalline polymer used.
It should be adjusted within a range such that the percentage by weight. If the gel fraction is less than 30% by weight, the resulting conductive material will not have sufficient positive temperature coefficient characteristics, and if it exceeds 55% by weight, the rate of increase in resistance value in a specific temperature range will decrease, which is undesirable.

このように、結晶性重合体の架橋の程度を上述
の範囲に調節するには、架橋対応の際の温度、時
間あるいは架橋剤等の使用量などを適宜定めるこ
とにより行なうことができる。例えば高密度ポリ
エチレンに架橋剤として有機パーオキサイドを用
いる場合には、この有機パーオキサイドの使用量
を高密度ポリエチレンに対して0.05〜0.30重量%
とし、温度145〜165℃にて0.5〜5分間程度混練
し、成形時に190℃前後で5〜15分間程度加熱す
れば、所望する範囲に架橋が進む。
In this way, the degree of crosslinking of the crystalline polymer can be adjusted within the above-mentioned range by appropriately determining the temperature, time, amount of crosslinking agent, etc. used during crosslinking. For example, when using organic peroxide as a crosslinking agent in high-density polyethylene, the amount of organic peroxide used is 0.05 to 0.30% by weight based on the high-density polyethylene.
By kneading the mixture at a temperature of 145 to 165°C for about 0.5 to 5 minutes, and heating it at around 190°C for about 5 to 15 minutes during molding, crosslinking will proceed to the desired range.

また、オゾンを用いて架橋を行なう場合は、オ
ゾンを0.5〜20容量%含むガスに0.5〜8時間曝露
したのち、ジビニルベンゼンなどの架橋助剤を高
密度ポリエチレン100重量部に対して0.5〜10重量
部、好ましくは1〜5重量部加えて混練すること
により架橋が進む。
In addition, when crosslinking is performed using ozone, after exposure to a gas containing 0.5 to 20% by volume of ozone for 0.5 to 8 hours, a crosslinking aid such as divinylbenzene is added at a concentration of 0.5 to 10% by volume per 100 parts by weight of high density polyethylene. Crosslinking progresses by adding parts by weight, preferably 1 to 5 parts by weight, and kneading.

さらに、電子線を用いて架橋を行なう場合に
は、高密度ポリエチレンに2〜15メガラド程度の
線量を照射すればよい。
Further, when crosslinking is performed using an electron beam, high density polyethylene may be irradiated with a dose of about 2 to 15 megarads.

如上の如き操作によつて得られた感熱抵抗性導
電性材料は正の温度係数特性にすぐれ、抵抗値の
立上り倍率が109にも達し、従来の104程度に比べ
てはるかにすぐれたものである。また、この導電
性材料は抵抗値の立上り倍率が大きいにもかかわ
らず、常温での抵抗値が6Ω・cm程度と低く、感
熱抵抗性材料としては極めて有利な特性を示す。
これは、従来の導電性材料が、抵抗値の立上り倍
率を大きくすると初期抵抗値(常温での抵抗値)
が大きくなる傾向にあることを考えると、本発明
の導電性材料が非常にすぐれた特性を示すことが
わかる。
The heat-sensitive resistive conductive material obtained by the above operation has excellent positive temperature coefficient characteristics, and the resistance value rise multiplier reaches 10 9 , which is far superior to the conventional value of about 10 4 . It is. Furthermore, although this conductive material has a large resistance value rise multiplier, its resistance value at room temperature is as low as about 6 Ω·cm, which is extremely advantageous as a heat-sensitive resistive material.
This is because when conventional conductive materials increase the resistance value rise magnification, the initial resistance value (resistance value at room temperature)
Considering that .

したがつて、本発明の方法によつて製造された
感熱抵抗性導電性材料は、温度検出器、自己温度
制御発熱体などに有利に利用される。
Therefore, the heat-sensitive resistive conductive material produced by the method of the present invention can be advantageously used in temperature detectors, self-temperature-controlled heating elements, and the like.

次に、本発明の方法を実施例によりさらに詳し
く説明する。
Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例 1 高密度ポリエチレン(出光石油化学(株)製、出光
ポリエチレン440M、密度0.954g/cm3、メルトイ
ンデツクス0.9g/10分)100重量部に対して、平
均粒径0.043μのカーボンブラツク(三菱化成(株)
製、ダイアブラツクE)67重量部を配合してラボ
プラストミルにより160℃において20分間混練し
た。ついで、これに架橋剤として2,5−ジ(t
−ブチルパーオキシ)ヘキシン−3を0.15重量部
添加して2分間混練した。
Example 1 Carbon black with an average particle size of 0.043μ was added to 100 parts by weight of high-density polyethylene (manufactured by Idemitsu Petrochemical Co., Ltd., Idemitsu Polyethylene 440M, density 0.954g/cm 3 , melt index 0.9g/10 minutes). (Mitsubishi Kasei Corporation)
67 parts by weight of Diablack E) manufactured by Diabrax E) were blended and kneaded for 20 minutes at 160°C using a Labo Plastomill. Then, 2,5-di(t
-butylperoxy)hexyne-3 was added in an amount of 0.15 parts by weight and kneaded for 2 minutes.

得られた生成物はラボプラストミルから取出
し、成形温度190℃、成形圧力100Kg/cm2Gにおい
て10分間熱プレス成形すると同時に架橋を促進
し、直径17.5mm、肉厚1mmの円板に成形した。こ
のものを125℃パラキシレン中に浸漬して8時間
抽出を行ない、残ゲル分よりカーボンブラツクを
除去した重合体についてゲル分率を重量法により
算出した結果、ゲル分率は46%であつた。
The obtained product was taken out of the Labo Plastomill, hot press molded for 10 minutes at a molding temperature of 190°C and a molding pressure of 100 kg/cm 2 G to promote crosslinking, and molded into a disc with a diameter of 17.5 mm and a wall thickness of 1 mm. . This polymer was immersed in paraxylene at 125°C and extracted for 8 hours, and the gel fraction of the polymer after removing carbon black from the remaining gel fraction was calculated by gravimetric method, and the gel fraction was 46%. .

また、上記成形体の両面に銀ペーストを塗布
し、乾燥したのち、温度と電気抵抗(4端子法)
を測定した結果、25℃における比抵抗は6.2Ω.
cmであり、150℃におけるPTC抵抗増大倍率(増
大した抵抗値と25℃での抵抗値の比)は約1.6×
109(109.2)であつた。
In addition, silver paste was applied to both sides of the above molded body, and after drying, temperature and electrical resistance (four-terminal method) were measured.
As a result of measurement, the specific resistance at 25℃ was 6.2Ω.
cm, and the PTC resistance increase factor at 150℃ (ratio of increased resistance value to resistance value at 25℃) is approximately 1.6×
It was 10 9 (10 9.2 ).

実施例 2 実施例1において架橋剤の添加量を0.075重量
部に変えたこと以外は実施例1の同様にして架橋
生成物を得た。このもののゲル分率は39%であ
り、25℃における比抵抗は7.4Ω・cm、150℃にお
けるPTC抵抗増大倍率は約2.0×109(109.3)であ
つた。
Example 2 A crosslinked product was obtained in the same manner as in Example 1 except that the amount of crosslinking agent added was changed to 0.075 parts by weight. The gel fraction of this product was 39%, the specific resistance at 25°C was 7.4Ω·cm, and the PTC resistance increase factor at 150°C was approximately 2.0×10 9 (10 9.3 ).

実施例 3 実施例1において架橋剤の添加量を0.2重量部
としたこと以外は実施例1と同様にして架橋生成
物を得た。このもののゲル分率は49%であり、25
℃における比抵抗は8.0Ω・cm、150℃における
PTC抵抗増大倍率は約1.3×109(109.1)であつた。
Example 3 A crosslinked product was obtained in the same manner as in Example 1 except that the amount of crosslinking agent added was 0.2 parts by weight. The gel fraction of this thing is 49%, 25
Specific resistance at ℃ is 8.0Ω・cm, at 150℃
The PTC resistance increase factor was approximately 1.3×10 9 (10 9.1 ).

比較例 1 実施例1において架橋剤を添加しなかつたこと
以外は実施例1と同様にして混練物を得た。この
もののゲル分率は26%であり、25℃における比抵
抗は3.9Ω・cm、134℃におけるPTC抵抗増大倍率
は約2.5×102(102.4)であつた。
Comparative Example 1 A kneaded product was obtained in the same manner as in Example 1 except that no crosslinking agent was added. The gel fraction of this product was 26%, the specific resistance at 25°C was 3.9Ω·cm, and the PTC resistance increase factor at 134°C was approximately 2.5×10 2 (10 2.4 ).

比較例 2 実施例1において架橋剤の添加量を0.5重量部
としたこと以外は実施例1と同様にして架橋生成
物を得た。このもののゲル分率は73%であつた。
25℃における比抵抗は9.7Ω・cmであり、150℃に
おけるPTC抵抗増大倍率は約2.0×104(104.3)で
あつた。
Comparative Example 2 A crosslinked product was obtained in the same manner as in Example 1 except that the amount of crosslinking agent added was 0.5 parts by weight. The gel fraction of this product was 73%.
The specific resistance at 25°C was 9.7Ω·cm, and the PTC resistance increase factor at 150°C was approximately 2.0×10 4 (10 4.3 ).

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性重合体に、平均粒径0.08ミクロン未満
のカーボンブラツクを前記結晶性重合体とカーボ
ンブラツクの合計量に対して25〜60重量%となる
割合で混入し、次いでゲル分率が結晶性重合体の
30〜55重量%となるように架橋することを特徴と
する感熱抵抗性導電性材料の製造法。
1. Carbon black with an average particle size of less than 0.08 microns is mixed into a crystalline polymer at a ratio of 25 to 60% by weight based on the total amount of the crystalline polymer and carbon black, and then the gel fraction becomes crystalline. polymeric
A method for producing a heat-sensitive conductive material, characterized by crosslinking the material to a content of 30 to 55% by weight.
JP18835683A 1983-10-11 1983-10-11 Method of producing heat sensitive resistive conductive material Granted JPS6080201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18835683A JPS6080201A (en) 1983-10-11 1983-10-11 Method of producing heat sensitive resistive conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18835683A JPS6080201A (en) 1983-10-11 1983-10-11 Method of producing heat sensitive resistive conductive material

Publications (2)

Publication Number Publication Date
JPS6080201A JPS6080201A (en) 1985-05-08
JPH0552041B2 true JPH0552041B2 (en) 1993-08-04

Family

ID=16222188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18835683A Granted JPS6080201A (en) 1983-10-11 1983-10-11 Method of producing heat sensitive resistive conductive material

Country Status (1)

Country Link
JP (1) JPS6080201A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638362B2 (en) * 1986-05-29 1994-05-18 出光興産株式会社 Method for producing polymer positive temperature coefficient resistor
JP5412357B2 (en) 2010-04-01 2014-02-12 株式会社フジクラ Membrane wiring board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244860A (en) * 1975-08-04 1977-04-08 Raychem Corp Ptc compositions and process for manufacture
JPS57176605A (en) * 1981-04-02 1982-10-30 Raychem Corp Electric device and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244860A (en) * 1975-08-04 1977-04-08 Raychem Corp Ptc compositions and process for manufacture
JPS57176605A (en) * 1981-04-02 1982-10-30 Raychem Corp Electric device and method of producing same

Also Published As

Publication number Publication date
JPS6080201A (en) 1985-05-08

Similar Documents

Publication Publication Date Title
US4388607A (en) Conductive polymer compositions, and to devices comprising such compositions
EP0197781B1 (en) Melt-shapeable fluoropolymer compositions
US4188276A (en) Voltage stable positive temperature coefficient of resistance crosslinked compositions
US4304987A (en) Electrical devices comprising conductive polymer compositions
EP0038718B1 (en) Conductive polymer compositions containing fillers
JPH0369163B2 (en)
GB1597007A (en) Conductive polymer compositions and devices
JP3564758B2 (en)   PTC composition
JPH0552041B2 (en)
JP3525935B2 (en) Method for producing PTC composition
JPS6143633A (en) Production of heat-sensitive resistant electrically-conductive composition
JPH0342483B2 (en)
JPH0374002B2 (en)
JPH0453904B2 (en)
JPH0369164B2 (en)
KR100453681B1 (en) Method for preparing conductive polymer for overcurrent protection
JPH03426B2 (en)
GB2033707A (en) Conductive polymer compositions of an electrical device
JP2592105B2 (en) Manufacturing method of self-recovering overcurrent protection device by grafting method
CA1176452A (en) Conductive polymer compositions containing fillers
JPH0636859A (en) Manufacture of ptc heating element
JPH01186783A (en) Manufacture of heater element of positive temperature characteristic
JPS6164758A (en) Production of thermosensitive, electrically conductive material
CA1168432A (en) Conductive polymer compositions
JPH07335378A (en) Manufacture of ptc heating element