JPH0551961B2 - - Google Patents

Info

Publication number
JPH0551961B2
JPH0551961B2 JP14854687A JP14854687A JPH0551961B2 JP H0551961 B2 JPH0551961 B2 JP H0551961B2 JP 14854687 A JP14854687 A JP 14854687A JP 14854687 A JP14854687 A JP 14854687A JP H0551961 B2 JPH0551961 B2 JP H0551961B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
head
sliding surface
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14854687A
Other languages
Japanese (ja)
Other versions
JPS63311614A (en
Inventor
Takeshi Takahashi
Hiroshi Yoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14854687A priority Critical patent/JPS63311614A/en
Priority to US07/163,105 priority patent/US4868698A/en
Priority to EP88103229A priority patent/EP0281931B1/en
Priority to DE3886569T priority patent/DE3886569T2/en
Publication of JPS63311614A publication Critical patent/JPS63311614A/en
Publication of JPH0551961B2 publication Critical patent/JPH0551961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • G11B5/3146Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
    • G11B5/3153Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers including at least one magnetic thin film coupled by interfacing to the basic magnetic thin film structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高品位VTRやデイジタルVTRのよう
に高周波信号を扱うシステムに好適な、高周波信
号を効率良く記録再生する磁気ヘツドに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic head for efficiently recording and reproducing high frequency signals, which is suitable for systems handling high frequency signals such as high-quality VTRs and digital VTRs.

従来の技術 従来、VTR等の高周波信号を記録再生する装
置においては、ビデオヘツド用磁性材料として一
般に高周波損失の少ないフエライト材料が用いら
れている。しかし、近年になつて高品位VTRや
デイジタルVTRのように更に広帯域の信号を取
り扱うシステムの開発が盛んになつてきており、
記録媒体もこのような大量な情報を記録する為の
高密度化の流れの中で酸化鉄系から合金粉末媒体
や金属蒸着媒体等の高抗磁力媒体へ移行しつつあ
る。これに対してフエライトヘツドではその最大
磁束密度が高々5000ガウス程度であり、又短波長
信号を効率良く再生するためには狭ギヤツプにす
る必要があり、上述のようなHcが1000エルステ
ツド以上の高抗磁力媒体ではギヤツプ先端部のフ
エライトコアが飽和し、十分な記録が出来ない。
そこで最大磁束密度の高いセンダスト合金やアモ
ルフアス磁性合金等の金属磁性材料を用いた磁気
ヘツドの開発が行われているが、バルク状の金属
磁性材料を用いたのでは渦電流による高周波損失
が大きくとても上記システムには使えない。この
為、上記損失をできるだけ抑える為に金属磁性材
料を薄膜化して用いることが検討されており、例
えば金属磁性薄膜と絶縁薄膜の積層体で主磁気回
路を構成することによつて高周波対応を図つてい
る。
BACKGROUND ART Conventionally, in devices for recording and reproducing high frequency signals such as VTRs, ferrite materials with low high frequency loss have generally been used as magnetic materials for video heads. However, in recent years, the development of systems that handle wider band signals, such as high-definition VTRs and digital VTRs, has become active.
In order to record such large amounts of information, recording media are also shifting from iron oxide based media to high coercive force media such as alloy powder media and metal evaporated media. On the other hand, the maximum magnetic flux density of a ferrite head is about 5000 Gauss at most, and in order to efficiently reproduce short wavelength signals, it is necessary to have a narrow gap. With anti-magnetic media, the ferrite core at the tip of the gap becomes saturated, making it impossible to record adequately.
Therefore, magnetic heads using metallic magnetic materials such as sendust alloys and amorphous magnetic alloys with high maximum magnetic flux density are being developed, but using bulk metallic magnetic materials suffers from large high frequency losses due to eddy currents. It cannot be used with the above systems. For this reason, in order to suppress the above-mentioned loss as much as possible, it is being considered to use a thin film of metal magnetic material. For example, by constructing the main magnetic circuit with a laminate of a metal magnetic thin film and an insulating thin film, it is possible to cope with high frequencies. It's on.

発明が解決しようとする問題点 高品位VTRやデイジタルVTRではその記録信
号帯域は30〜60MHzに達し、磁気ヘツド用コア材
料としてはこのような高周波帯で高い初透磁率を
有するものが要求される。第2図はCoNbTaZr
非晶質磁性薄膜とSiO2膜との積層体の初透磁率
の周波数特性を示したものである。1層当たりの
磁性薄膜の膜厚は渦電流損失を考慮して4μmと
し層間のSiO2膜厚は0.2μmで5層積層したもので
ある。図においては無配向の積層膜で、積層効
果により渦電流損失は改善されているがその高周
波特性は強磁性共鳴によるスヌークの限界線で制
限されており、30MHz以上の高周波帯での初透磁
率は500以下となる。従つてこのような無配向の
磁性薄膜をヘツドコアとして用いたのでは前記の
ような高周波システムには対応出来できない。一
方、一軸異方性を有する非晶質磁性薄膜をその容
易軸方向を揃えて積層した多層膜の初透磁率特性
は、容易軸方向に測定するとのように全周波数
帯で極めて低い初透磁率特性を示すのに対し、困
難軸方向に測定した場合はのように高周波まで
高い初透磁率を維持し、60MHzでも1000以上の値
を有する。しかし、このような一方向に異方性を
有する磁気コアでビデオヘツド等の比較的大きな
巻線窓の磁気ヘツドを構成した場合、その磁路中
に容易軸方向を含むことになりヘツド効率として
の低下が大きい。又、全ての磁路を困難軸方向で
構成することはヘツド製造法からみて極めて難し
い。
Problems to be Solved by the Invention The recording signal band of high-quality VTRs and digital VTRs reaches 30 to 60 MHz, and core materials for magnetic heads are required to have high initial magnetic permeability in such high frequency bands. . Figure 2 shows CoNbTaZr
This figure shows the frequency characteristics of the initial magnetic permeability of a laminate of an amorphous magnetic thin film and a SiO 2 film. The thickness of the magnetic thin film per layer was 4 μm in consideration of eddy current loss, and the SiO 2 film thickness between layers was 0.2 μm, and five layers were laminated. The figure shows an unoriented laminated film, and the eddy current loss is improved due to the lamination effect, but its high frequency characteristics are limited by Snook's limit line due to ferromagnetic resonance, and the initial permeability in the high frequency band of 30MHz or higher will be less than 500. Therefore, if such a non-oriented magnetic thin film is used as a head core, it cannot be applied to the above-mentioned high frequency system. On the other hand, the initial magnetic permeability characteristic of a multilayer film in which amorphous magnetic thin films with uniaxial anisotropy are laminated with their easy axes aligned is that the initial magnetic permeability is extremely low in all frequency bands when measured in the easy axis direction. On the other hand, when measured in the difficult axis direction, it maintains a high initial permeability up to high frequencies, and has a value of 1000 or more even at 60MHz. However, if a magnetic head with a relatively large winding window, such as a video head, is constructed using such a magnetic core having anisotropy in one direction, the magnetic path will include the easy axis direction, resulting in a decrease in head efficiency. There is a large decrease in Furthermore, it is extremely difficult to configure all magnetic paths in the hard axis direction from the viewpoint of the head manufacturing method.

問題点を解決するための手段 強磁性薄膜と絶縁薄膜とを交互に積層した多層
膜磁気コアで磁路の一部あるいは全部を構成した
磁気ヘツドにおいて、前記多層膜磁気コアが互い
に異方性の方向が略直交し且つその一方の磁化容
易軸の方向が記録媒体摺動面と略直交するように
構成されると共に、前記磁化容易軸の方向が記録
媒体摺動面に略直交する強磁性薄膜の総厚が他方
の強磁性薄膜の総厚より大なる構成とするもので
ある。
Means for Solving the Problems In a magnetic head in which part or all of the magnetic path is formed by a multilayer magnetic core in which ferromagnetic thin films and insulating thin films are alternately laminated, the multilayer magnetic cores are anisotropic with respect to each other. A ferromagnetic thin film whose directions are substantially orthogonal and one of the easy axes of magnetization is configured to be substantially perpendicular to the sliding surface of the recording medium, and the direction of the easy axis of magnetization is substantially perpendicular to the sliding surface of the recording medium. The total thickness of the two ferromagnetic thin films is larger than the total thickness of the other ferromagnetic thin film.

作 用 上述の構成により、記録媒体上の信号磁化から
発生し磁気ヘツド内にとりこまれた信号磁器は、
磁気ギヤツプ近傍では記録媒体摺動面と平行な方
向の初透磁率が大きな強磁性薄膜の膜厚の方が大
きい為、その大半はギヤツプ深さ方向より記録媒
体摺動面と平行な方向に流れる。従つて、磁気ギ
ヤツプ部での漏洩磁束が相対的に減少して磁気ヘ
ツドとしての再生効率が高くなる。一方、記録媒
体摺動面と直行する方向の磁路においては摺動面
と直交する方向の初透磁率の高い強磁性導膜が総
厚は薄くても膜幅が広い為十分に磁路としてのレ
ラクタンスを小さくでき前記再生効率を更に向上
させることが出来る。即ち、本発明の磁気ヘツド
は大半の磁路において上記異方性を有する強磁性
薄膜の困難軸方向の特性を有効に利用出来る為に
30MHz以上の高周波でも十分高い効率で信号を記
録再生出来る磁気ヘツドが得られるものである。
Effect With the above configuration, the signal magnetization generated from the signal magnetization on the recording medium and taken into the magnetic head is
Near the magnetic gap, the thickness of the ferromagnetic thin film, which has a large initial magnetic permeability in the direction parallel to the recording medium sliding surface, is larger, so most of the magnetic flux flows in the direction parallel to the recording medium sliding surface rather than in the gap depth direction. . Therefore, leakage magnetic flux at the magnetic gap portion is relatively reduced, and the reproduction efficiency of the magnetic head is increased. On the other hand, in the magnetic path in the direction perpendicular to the sliding surface of the recording medium, the ferromagnetic conductive film with high initial magnetic permeability in the direction perpendicular to the sliding surface is thin, but the film width is wide, so it is sufficient to function as a magnetic path. The reluctance can be reduced, and the regeneration efficiency can be further improved. That is, since the magnetic head of the present invention can effectively utilize the characteristics of the hard-axis direction of the ferromagnetic thin film having the above-mentioned anisotropy in most of the magnetic paths,
A magnetic head capable of recording and reproducing signals with sufficiently high efficiency even at high frequencies of 30 MHz or higher can be obtained.

実施例 本発明の一実施例の斜視図(部分切欠図)を第
1図に示す。図において、1および2は非晶質合
金やセンダスト合金等の強磁性薄膜からなりそれ
ぞれ磁路面内に一軸異方性を有しており、図1の
切欠部に矢印で示したように1はその容易軸の方
向が記録媒体摺動面に略直交するように配置され
ており、一方2は1と略直交する方向に容易軸が
配置されている。これらの強磁性薄膜1,2は、
SiO2等の絶縁薄膜3を介して積層することによ
り多層膜からなる磁気コア4を構成している。
又、1層当たりの膜厚は使用周波数帯における渦
電流損失を考慮した厚さ以下になつており、且つ
容易軸方向が記録媒体摺動面とほぼ直交する強磁
性薄膜1の総厚が、他方の強磁性薄膜2の総厚よ
り大きくなるように構成されている。このような
積層膜からなる磁気コア4はチタン酸バリウム系
セラミツクス等の非磁性基板5で挟持され、巻線
窓6を有する対向コアとボンデイングガラス7に
よつて接合され磁気ギヤツプ8を形成している。
Embodiment A perspective view (partially cutaway view) of an embodiment of the present invention is shown in FIG. In the figure, 1 and 2 are made of ferromagnetic thin films such as amorphous alloys and Sendust alloys, and each has uniaxial anisotropy in the magnetic path plane. The easy axis is arranged so that the direction of the easy axis is substantially perpendicular to the recording medium sliding surface, while the easy axis of 2 is arranged in a direction that is substantially perpendicular to 1. These ferromagnetic thin films 1 and 2 are
A magnetic core 4 made of a multilayer film is constructed by laminating them with an insulating thin film 3 of SiO 2 or the like interposed therebetween.
In addition, the film thickness per layer is less than the thickness considering eddy current loss in the frequency band used, and the total thickness of the ferromagnetic thin film 1 whose easy axis direction is almost perpendicular to the recording medium sliding surface is: It is configured to be larger than the total thickness of the other ferromagnetic thin film 2. A magnetic core 4 made of such a laminated film is sandwiched between non-magnetic substrates 5 such as barium titanate ceramics, and bonded to an opposing core having a winding window 6 through a bonding glass 7 to form a magnetic gap 8. There is.

本発明者の実験によると、同じ厚さの非晶質磁
性薄膜をその異方性の方向が互いに直交するよう
に形成した多層膜ではその一方の異方性の方向に
測定した初透磁率特性は第2図に示すように、
異方性の方向をそろえた多層膜の困難軸方向の値
の約半分程度であるが、その周波数特性は困難軸
方向の特性とほぼ等しく60MHzでも500以上の初
透磁率が得られた。更に測定方向を90゜回転して
もう一方の異方性の方向に測定してもほぼ同様の
特性が得られることがわかつた。
According to the inventor's experiments, in a multilayer film in which amorphous magnetic thin films of the same thickness are formed so that their anisotropy directions are orthogonal to each other, the initial magnetic permeability characteristic measured in one of the anisotropy directions As shown in Figure 2,
Although it is about half of the value in the hard axis direction of a multilayer film with aligned anisotropic directions, its frequency characteristics are almost equal to those in the hard axis direction, and an initial permeability of more than 500 was obtained even at 60MHz. Furthermore, it was found that almost the same characteristics could be obtained by rotating the measurement direction by 90 degrees and measuring in the other anisotropic direction.

更に他の実験では第3図a,bに示すように同
じ方向に一軸異方性を有する非晶質磁性薄膜でビ
デオヘツドを試作してそのヘツド出力特性を測定
すると第4図に示すような結果が得られた。即
ち、磁化容易軸方向が記録媒体摺動面と直交する
ように構成したヘツドaの方が、平行になるよう
に構成したヘツドbよりかなり高いヘツド出力が
得られた。これは作用の項でも説明したようにヘ
ツドbでは磁気ギヤツプ近傍の記録媒体摺動面に
直交する方向即ちギヤツプ面と平行な方向の初透
磁率が高い為に、記録媒体上の信号磁化から発生
した信号磁束は大半がギヤツプ面に沿つて流れ
る。従つて、磁気ギヤツプ部での漏洩磁束が増大
して再生効率が低下するものと考えられる。これ
に対してヘツドaではギヤツプ面と平行な方向の
初透磁率はかなり小さく、ギヤツプ先端から流入
した信号磁束のうち大半は初透磁率の高い摺動面
と平行な方向に流れる為ギヤツプ面に沿つて流れ
る磁束が少なくなり、従つて磁気ギヤツプ部での
漏洩磁束が減つて再生効率が高くなるものと考え
られる。この傾向は有限要素法で計算した結果の
磁束線図を見ると良くわかる。
Furthermore, in another experiment, a video head was prototyped using an amorphous magnetic thin film having uniaxial anisotropy in the same direction as shown in Figures 3a and b, and the head output characteristics were measured, resulting in the results shown in Figure 4. The results were obtained. That is, the head a configured so that the axis of easy magnetization is perpendicular to the sliding surface of the recording medium obtained a considerably higher head output than the head b configured so that the axis of easy magnetization is parallel to the sliding surface of the recording medium. This is caused by the signal magnetization on the recording medium because the initial magnetic permeability in the direction perpendicular to the sliding surface of the recording medium near the magnetic gap, that is, in the direction parallel to the gap surface, is high in head b, as explained in the operation section. Most of the signal magnetic flux generated flows along the gap surface. Therefore, it is thought that the leakage magnetic flux at the magnetic gap increases and the regeneration efficiency decreases. On the other hand, in head a, the initial magnetic permeability in the direction parallel to the gap surface is quite small, and most of the signal magnetic flux flowing in from the tip of the gap flows in the direction parallel to the sliding surface, which has high initial magnetic permeability, so it flows into the gap surface. It is thought that the magnetic flux flowing along the magnetic gap is reduced, and therefore the leakage magnetic flux at the magnetic gap portion is reduced, and the regeneration efficiency is increased. This tendency can be clearly seen by looking at the magnetic flux line diagram calculated using the finite element method.

第4図のcは本発明の構成において磁化容易軸
方向が記録媒体摺動面に直交する強磁性薄膜の厚
みを3μm、平行な強磁性薄膜の厚みを1μmとし
て積層したビデオヘツドのヘツド出力特性を示し
たものである。本発明の構成では上述のように、
磁気ギヤツプ近傍では摺動面と平行な方向の初透
磁率が高い強磁性薄膜1が断面積の上で優位にあ
る為支配的になり漏洩磁束が減つて再生効率が高
くなる。更に摺動面と直交する方向の磁路部では
磁路の幅が広い為に膜厚は薄くても摺動面と直交
する方向の初透磁率が高い強磁性薄膜2が支配的
になる。その結果、大半の磁路において困難軸方
向の特性を有効に利用出来る為に30MHz以上の高
周波領域でも十分高い効率で信号を記録再生でき
るものである。
Figure 4c shows the head output characteristics of a video head in which the ferromagnetic thin film whose easy axis of magnetization is perpendicular to the sliding surface of the recording medium has a thickness of 3 μm, and the parallel ferromagnetic thin film has a thickness of 1 μm. This is what is shown. In the configuration of the present invention, as described above,
In the vicinity of the magnetic gap, the ferromagnetic thin film 1 having a high initial magnetic permeability in the direction parallel to the sliding surface has an advantage in terms of cross-sectional area and is therefore dominant, reducing leakage magnetic flux and increasing regeneration efficiency. Furthermore, in the magnetic path section perpendicular to the sliding surface, since the width of the magnetic path is wide, the ferromagnetic thin film 2, which has a high initial magnetic permeability in the direction perpendicular to the sliding surface, is dominant even if the film thickness is thin. As a result, it is possible to effectively utilize the characteristics in the difficult axis direction in most of the magnetic paths, so that signals can be recorded and reproduced with sufficiently high efficiency even in the high frequency range of 30 MHz or higher.

このような磁気ヘツドの製造方法としては、先
ず非磁性基板上に強磁性薄膜と非磁性絶縁薄膜を
スパツタで交互に積層する。その際、強磁性薄膜
は固定磁場中でスパツタし、一層毎にマグネツト
の位置を90゜回転しながら積層膜を形成すること
によつて容易に上記のような異方性の方向が交互
に直交する多層膜が得られる。このように多層膜
が形成されたヘツド基板を複数枚積み重ねて結晶
化ガラス等で接着し切断することによつて上記多
層膜と非磁性基板が交互に積層されたコアブロツ
クができる。以降は従来のフエライトヘツドの製
造方法と同じ工程を経て第1図に示す磁気ヘツド
が製造出来る。
In a method of manufacturing such a magnetic head, first, ferromagnetic thin films and nonmagnetic insulating thin films are alternately laminated on a nonmagnetic substrate by sputtering. At that time, the ferromagnetic thin film is sputtered in a fixed magnetic field, and by forming a laminated film while rotating the magnet position 90 degrees for each layer, the anisotropic directions as described above can be easily alternately orthogonally crossed. A multilayer film is obtained. By stacking a plurality of head substrates on which multilayer films have been formed in this way, bonding them with crystallized glass or the like, and cutting them, a core block in which the multilayer films and nonmagnetic substrates described above are alternately laminated can be obtained. Thereafter, the magnetic head shown in FIG. 1 can be manufactured through the same steps as in the conventional ferrite head manufacturing method.

発明の効果 本発明によれば、30MHz以上の高周波帯でも十
分高い効率で記録再生できる高周波用磁気ヘツド
が容易に得られるものである。
Effects of the Invention According to the present invention, it is possible to easily obtain a high frequency magnetic head that can record and reproduce data with sufficiently high efficiency even in a high frequency band of 30 MHz or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における磁気ヘツド
の一部切欠いた斜視図、第2図は異方性の方向に
よる強磁性薄膜の初透磁率特性の測定結果を示す
図、第3図は一軸異方性を有する強磁性薄膜で構
成したビデオヘツド例を示す平面図、第4図は第
3図に示したビデオヘツド及び本発明の一実施例
のビデオヘツドのヘツド出力特性を示す図であ
る。 1,2……強磁性薄膜、3……絶縁薄膜、4…
…磁気コア、5……非磁性基板、8……磁気ギヤ
ツプ。
FIG. 1 is a partially cutaway perspective view of a magnetic head according to an embodiment of the present invention, FIG. 2 is a diagram showing the measurement results of the initial magnetic permeability characteristics of a ferromagnetic thin film depending on the direction of anisotropy, and FIG. FIG. 4 is a plan view showing an example of a video head constructed of a ferromagnetic thin film having uniaxial anisotropy; FIG. 4 is a diagram showing head output characteristics of the video head shown in FIG. 3 and a video head of an embodiment of the present invention; be. 1, 2...Ferromagnetic thin film, 3...Insulating thin film, 4...
...Magnetic core, 5...Nonmagnetic substrate, 8...Magnetic gap.

Claims (1)

【特許請求の範囲】[Claims] 1 強磁性薄膜と絶縁薄膜とを交互に積層した多
層膜磁気コアで磁路の一部あるいは全部を構成し
た磁気ヘツドにおいて、前記多層膜磁気コアが互
いに異方性の方向が略直交し且つその一方の磁化
容易軸の方向が記録媒体摺動面と略直交するよう
に構成されると共に、前記磁化容易軸の方向が記
録媒体摺動面に略直交する強磁性薄膜の総厚が他
方の強磁性薄膜の総厚より大なることを特徴とす
る磁気ヘツド。
1. In a magnetic head in which part or all of the magnetic path is constituted by a multilayer magnetic core in which ferromagnetic thin films and insulating thin films are alternately laminated, the anisotropy directions of the multilayer magnetic cores are substantially orthogonal to each other and The direction of one easy axis of magnetization is substantially perpendicular to the sliding surface of the recording medium, and the total thickness of the ferromagnetic thin film whose direction of the easy axis of magnetization is substantially perpendicular to the sliding surface of the recording medium is A magnetic head characterized in that the thickness is greater than the total thickness of the magnetic thin film.
JP14854687A 1987-03-05 1987-06-15 Magnetic head Granted JPS63311614A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14854687A JPS63311614A (en) 1987-06-15 1987-06-15 Magnetic head
US07/163,105 US4868698A (en) 1987-03-05 1988-03-02 Magnetic head
EP88103229A EP0281931B1 (en) 1987-03-05 1988-03-03 Magnetic head
DE3886569T DE3886569T2 (en) 1987-03-05 1988-03-03 Magnetic head.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14854687A JPS63311614A (en) 1987-06-15 1987-06-15 Magnetic head

Publications (2)

Publication Number Publication Date
JPS63311614A JPS63311614A (en) 1988-12-20
JPH0551961B2 true JPH0551961B2 (en) 1993-08-04

Family

ID=15455181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14854687A Granted JPS63311614A (en) 1987-03-05 1987-06-15 Magnetic head

Country Status (1)

Country Link
JP (1) JPS63311614A (en)

Also Published As

Publication number Publication date
JPS63311614A (en) 1988-12-20

Similar Documents

Publication Publication Date Title
US4868698A (en) Magnetic head
JPH0778858B2 (en) Thin film magnetic head
JP3772458B2 (en) Magnetic head and manufacturing method thereof
JP2933638B2 (en) Manufacturing method of magnetic head
JPH0551961B2 (en)
JP2591109B2 (en) Magnetic head
JPH0664699B2 (en) Magnetic head
JP3011846B2 (en) Magnetic head
JP3461688B2 (en) Magnetic head and magnetic recording device using the same
JP2000011314A (en) Magnetic head and its production
JPS632109A (en) Magnetic head
JPH08263811A (en) Magnetic head and its production
JPH0660315A (en) Production of magnetic head
JPH02128310A (en) Magnetic head
JPH07192215A (en) Bulk type magnetic head
JPH07282414A (en) Magnetic head and its production
JPH0474302A (en) Magnetic head
JPH04360003A (en) Magnetic head
JPH0325708A (en) Production of magnetic head
JPH113506A (en) Magnetic head
JPH1064007A (en) Magnetic head and magnetic recording and reproducing device
JPH02302908A (en) Magnetic head
JPH0869609A (en) Magnetic head and its production
JPH02105309A (en) Thin film magnetic head
JPH04295604A (en) Manufacture of vertical recording magnetic head

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term