JPH0551827B2 - - Google Patents

Info

Publication number
JPH0551827B2
JPH0551827B2 JP61258809A JP25880986A JPH0551827B2 JP H0551827 B2 JPH0551827 B2 JP H0551827B2 JP 61258809 A JP61258809 A JP 61258809A JP 25880986 A JP25880986 A JP 25880986A JP H0551827 B2 JPH0551827 B2 JP H0551827B2
Authority
JP
Japan
Prior art keywords
gas
refrigerant
liquid
filling material
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61258809A
Other languages
Japanese (ja)
Other versions
JPS63113257A (en
Inventor
Katsuhiko Fujiwara
Masahiko Kagami
Takumi Imoto
Naoki Shimokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61258809A priority Critical patent/JPS63113257A/en
Priority to GB8725124A priority patent/GB2198223B/en
Priority to AU80165/87A priority patent/AU579774B2/en
Priority to KR1019870011932A priority patent/KR900007203B1/en
Priority to CA000550505A priority patent/CA1279491C/en
Priority to US07/113,961 priority patent/US4769999A/en
Priority to KR1019870011974A priority patent/KR900007204B1/en
Publication of JPS63113257A publication Critical patent/JPS63113257A/en
Publication of JPH0551827B2 publication Critical patent/JPH0551827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はサイクル内を循環する非共沸混合冷媒
の濃度を変えるための気液接触器の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a gas-liquid contactor for varying the concentration of a non-azeotropic refrigerant mixture circulating within a cycle.

従来の技術 非共沸混合冷媒を用いた冷凍サイクル装置の一
例を第2図に、冷媒の濃度を変えるための気液接
触器の構造を第3図に示す。
Prior Art FIG. 2 shows an example of a refrigeration cycle device using a non-azeotropic mixed refrigerant, and FIG. 3 shows the structure of a gas-liquid contactor for changing the concentration of the refrigerant.

第2図において、1は圧縮機、2は凝縮機、3
は第1の絞り装置、4は第2の絞り装置、5は蒸
発器、6は気液接触器、7は冷却器、8は貯溜器
である。
In Figure 2, 1 is a compressor, 2 is a condenser, 3
4 is a first throttle device, 4 is a second throttle device, 5 is an evaporator, 6 is a gas-liquid contactor, 7 is a cooler, and 8 is a reservoir.

また第3図において、9は容器、10は冷凍サ
イクル上流側との連結管、11は下流側との連結
管、12,13は充填材保持具、14は充填材、
15はガス流出管、16は貯溜器からの液戻し管
である。
Further, in FIG. 3, 9 is a container, 10 is a connecting pipe with the upstream side of the refrigeration cycle, 11 is a connecting pipe with the downstream side, 12 and 13 are filler holders, 14 is a filler,
15 is a gas outflow pipe, and 16 is a liquid return pipe from the reservoir.

以下その動作を述べる。 The operation will be described below.

圧縮機1から吐出された混合冷媒は第2図中矢
印の方向へ循環し圧縮機1へ戻る。その際凝縮器
2で凝縮した冷媒は第1の絞り装置3で膨張し、
一部蒸気を発生し、この蒸気は上流側連結管10
を通つて気液接触器6に入り、容器9の中の充填
材14のすきまを上昇し、ガス流出管15を通り
冷却管7へ入り、冷却液化されて貯溜器8内へ入
る。
The mixed refrigerant discharged from the compressor 1 circulates in the direction of the arrow in FIG. 2 and returns to the compressor 1. At that time, the refrigerant condensed in the condenser 2 is expanded in the first expansion device 3,
Some steam is generated, and this steam is transferred to the upstream connecting pipe 10.
The gas passes through the gas-liquid contactor 6, rises through the gap in the filling material 14 in the container 9, passes through the gas outlet pipe 15, enters the cooling pipe 7, is cooled and liquefied, and enters the reservoir 8.

さらに貯溜器8から液冷媒の一部が液戻し管1
6を通つて再び気液接触器6に戻され充填材14
のすきまを下降し、途中上昇してくる蒸気と互い
に気液接触を行ない、熱交換、物質移動により循
環冷媒濃度が変化する。
Furthermore, a part of the liquid refrigerant from the reservoir 8 is transferred to the liquid return pipe 1
6 and returned to the gas-liquid contactor 6 again.
The circulating refrigerant concentration changes due to heat exchange and mass transfer.

濃度が変化した冷媒は下流側連結管11を通り
第2の絞り装置4に入り更に減圧され蒸発器5に
入る。
The refrigerant whose concentration has changed passes through the downstream connecting pipe 11 and enters the second throttling device 4, where the pressure is further reduced, and the refrigerant enters the evaporator 5.

以上のサイクルを構成することによりサイクル
内を循環する濃度を可変するのであるが、この濃
度可変幅は、気液接触器6の性能に大きく影響さ
れる。
By configuring the above cycle, the concentration circulating within the cycle is varied, and the range of concentration variation is greatly influenced by the performance of the gas-liquid contactor 6.

つまり、冷媒蒸気と液冷媒の接触面積を増加さ
せ接触を良好にすれば、熱交換、物質交換が促進
され、濃度可変幅が広がるため、できるだけ充填
材に投入される蒸気量を増加させる構造にする必
要がある。
In other words, if the contact area between refrigerant vapor and liquid refrigerant is increased to improve the contact, heat exchange and mass exchange will be promoted, and the range of concentration variation will be widened. Therefore, the structure should increase the amount of vapor injected into the filling material as much as possible. There is a need to.

発明が解決しようとする問題点 しかし、この従来の気液接触器6の構造である
と上流側連結管10を通つて気液接触器6に入つ
た冷媒蒸気は、下部の充填材保持具12を通り充
填材14中に入るのであるが、充填材保持具の形
状が蒸気の流れに対し直角であるため抵抗が大き
く、気液接触器6に入つた冷媒蒸気の大部分が下
流側連結管11を通つて主回路側へ逃げ、投入蒸
気量の一部分しか充填材中に入らず、気液接触面
積が減少し濃度可変幅が減少するという問題点が
あつた。
Problems to be Solved by the Invention However, with this conventional structure of the gas-liquid contactor 6, the refrigerant vapor that has entered the gas-liquid contactor 6 through the upstream connecting pipe 10 is transferred to the lower filler holder 12. The refrigerant vapor enters the filling material 14 through the gas-liquid contactor 6, but since the shape of the filling material holder is perpendicular to the vapor flow, there is a large resistance, and most of the refrigerant vapor entering the gas-liquid contactor 6 flows into the downstream connecting pipe. 11 to the main circuit side, and only a portion of the input steam enters the filling material, resulting in a problem that the gas-liquid contact area is reduced and the range of concentration variation is reduced.

本発明は非共沸混合冷媒を用いた冷凍サイクル
装置の気液接触器の改良に係り、冷媒循環濃度を
大きく可変することを目的としたものである。
The present invention relates to an improvement of a gas-liquid contactor for a refrigeration cycle device using a non-azeotropic mixed refrigerant, and is aimed at greatly varying the refrigerant circulation concentration.

問題点を解決するための手段 上記問題点を解決するために本発明は、非共沸
混合冷媒を封入した冷凍サイクル装置に配置され
る気液接触器において、容器の底部に冷凍サイク
ルの上流側と連結管および下流側との連結管を、
開口が上方を向くように接続し、各連結管の開口
の上方に多くの穴を有する下部充填材保持具を設
けるとともに、その下部充填材保持具は連結管の
接続方向に対して垂直とならない面を有するよう
に、上方に向かつて突出する形状に形成されてい
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a gas-liquid contactor disposed in a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed. and the connecting pipe and the connecting pipe with the downstream side,
A lower filler holder is provided above the opening of each connecting pipe and has many holes, and the lower filler holder is not perpendicular to the connecting direction of the connecting pipes. It is formed in a shape that protrudes upward so as to have a surface.

作 用 かかる構成とすることにより、気液接触器へ流
入した蒸気の流れを円滑に充填材中へ導くことが
できる。
Effect: With this configuration, the flow of steam that has flowed into the gas-liquid contactor can be smoothly guided into the filling material.

実施例 以下、本発明の一実施例における気液接触器を
第1図に示し、冷凍サイクル装置に適用した構成
実施例を第2図に示して説明する。第2図の気液
接触6の容器20において、21は冷凍サイクル
上流側との連結管、22は下流側との連結管、2
3,24は上部・下部の充填材保持具で多数の透
孔を有している。25は充填材で、前記上部・下
部双方の充填材保持具23,24間に満たして充
填されている。26はガス流出管、27は貯溜器
からの液戻し管である。この液戻し管27は、容
器20の上部側部から貫通し、その先端を下方に
わん曲し、容器20のほぼ軸心上において下部に
開口させてもよい。また前記下部充填材保持具2
3は連結管21の接続方向に対して、垂直となら
ない傾斜面23aを有するように、上方に突出す
るように形成されている。
Embodiment Hereinafter, a gas-liquid contactor according to an embodiment of the present invention is shown in FIG. 1, and a configuration example applied to a refrigeration cycle device is shown in FIG. 2 and explained. In the container 20 of the gas-liquid contact 6 in FIG. 2, 21 is a connecting pipe with the upstream side of the refrigeration cycle, 22 is a connecting pipe with the downstream side, 2
3 and 24 are upper and lower filler holders having a large number of through holes. A filler 25 is filled between the filler holders 23 and 24 on both the upper and lower sides. 26 is a gas outflow pipe, and 27 is a liquid return pipe from the reservoir. The liquid return pipe 27 may penetrate from the upper side of the container 20, have its tip bent downward, and open at the bottom approximately on the axis of the container 20. In addition, the lower filling material holder 2
3 is formed to protrude upward so as to have an inclined surface 23a that is not perpendicular to the direction in which the connecting pipe 21 is connected.

かかる気液接触器をもつた冷凍サイクル装置に
おいてその作用様態を以下に説明する。
The mode of operation of a refrigeration cycle device having such a gas-liquid contactor will be explained below.

第2図の冷凍サイクル装置の凝縮器2で凝縮し
た冷媒は、第1の絞り装置3で膨張し、一部蒸気
を発生し、この蒸気は上流側連結管21を通つて
気液接触器6に入る。そして容器20の中の充填
材25のすきまを上昇し、ガス流出管26を通り
冷却管7へ入り、冷却液化されて貯溜器8内へ入
る。
The refrigerant condensed in the condenser 2 of the refrigeration cycle apparatus shown in FIG. to go into. The gas then rises through the gap between the filling material 25 in the container 20, passes through the gas outlet pipe 26, enters the cooling pipe 7, is cooled and liquefied, and enters the reservoir 8.

さらに貯溜器8から液冷媒の一部が液戻し管2
7を通つて再び気液接触器6に戻された充填材2
5をすきまを下降し、途中上昇してくる蒸気と互
いに気液接触を行ない、熱交換、物質移動により
循環冷媒濃度を変化させる。
Furthermore, some of the liquid refrigerant from the reservoir 8 is transferred to the liquid return pipe 2.
7 and returned to the gas-liquid contactor 6 again.
5 descends through the gap and comes into gas-liquid contact with the steam rising on the way, changing the concentration of the circulating refrigerant through heat exchange and mass transfer.

濃度が変化した冷媒は下流側連結管22を通り
第2の絞り装置4に入り更に減圧され蒸発器5に
入る。
The refrigerant whose concentration has changed passes through the downstream connecting pipe 22 and enters the second throttling device 4, where the pressure is further reduced, and the refrigerant enters the evaporator 5.

ここで、第1図に示す如く気液接触器6中の下
部充填材保持具23の中央部に、充填材25側に
傾斜面23aを設けているため、気液接触器6に
入つた蒸気の流れに対し下部側充填材保持具23
の抵抗が小さくできる。その結果、気液接触器6
に入つた冷媒蒸気の大部分は充填材25中に投入
され、気液接触面積が拡大できる。したがつて、
気液間の熱交換、物質交換をさらに促進でき、充
填材の性能を最大限に引きだし、幅広い冷媒濃度
可変を可能とすることができる。
Here, as shown in FIG. 1, since the lower filler holder 23 in the gas-liquid contactor 6 is provided with an inclined surface 23a on the filler 25 side at the center, the vapor that has entered the gas-liquid contactor 6 The lower filler holder 23
resistance can be reduced. As a result, the gas-liquid contactor 6
Most of the refrigerant vapor that has entered is thrown into the filler 25, so that the gas-liquid contact area can be expanded. Therefore,
Heat exchange and mass exchange between gas and liquid can be further promoted, the performance of the filler can be maximized, and the refrigerant concentration can be varied over a wide range.

また、液戻し管27を、容器20の略軸心で開
口させれば、戻し液は偏流が少ない状態で充填材
25中を流れることになり、その結果、充填材2
5の全域での気液接触を可能にし、気液接触面積
の拡大がはかれる。
Furthermore, if the liquid return pipe 27 is opened approximately at the axis of the container 20, the return liquid will flow through the filling material 25 with less biased flow, and as a result, the filling material 25
This enables gas-liquid contact over the entire area of 5, and expands the gas-liquid contact area.

したがつて、上記下部充填材保持具23の傾斜
面23aの作用に加えて一層の気液間の熱交換、
物質交換能力が得られ、幅広い冷媒濃度可変が可
能となる。
Therefore, in addition to the effect of the inclined surface 23a of the lower filler holder 23, further gas-liquid heat exchange,
This provides mass exchange ability and allows for a wide range of refrigerant concentration changes.

発明の効果 以上のように本発明によれば、蒸気の充填材中
への浸透度合が良好となり、気液接触面積の拡大
がはかれ、冷媒濃度を幅広く可変できる等の効果
を奏する。
Effects of the Invention As described above, according to the present invention, the degree of vapor penetration into the filling material is improved, the gas-liquid contact area is expanded, and the refrigerant concentration can be varied over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における非共沸混合
冷媒用気液接触器の断面図、第2図は非共沸混合
冷媒を用いた冷凍サイクル図、第3図は従来例を
示す気液接触器の断面図である。 6……気液接触器、20……容器、23……下
部充填材保持具、24……上部充填材保持具、2
5……充填材、26……ガス流出管、27……液
戻し管。
Fig. 1 is a sectional view of a gas-liquid contactor for a non-azeotropic mixed refrigerant according to an embodiment of the present invention, Fig. 2 is a refrigeration cycle diagram using a non-azeotropic mixed refrigerant, and Fig. 3 is a gas-liquid contactor showing a conventional example. FIG. 3 is a cross-sectional view of a liquid contactor. 6... Gas-liquid contactor, 20... Container, 23... Lower filler holder, 24... Upper filler holder, 2
5...Filling material, 26...Gas outflow pipe, 27...Liquid return pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 容器の底部に冷凍サイクルの上流側との連結
管および下流側との連結管を、開口が上方を向く
ように接続し、前記各連結管の開口の上方に多く
の穴を有する下部充填材保持具を設けるととも
に、前記容器の上部に冷媒ガス流出管と冷媒液戻
し管を接続し、その下方に多くの穴を有する上部
充填材保持具を設け、前記上部充填材保持具と下
部充填材保持具の間に充填材を満たし、さらに前
記下部充填材保持具は前記連結管の接続方向に対
して垂直とならない面を有するように、上方に向
かつて突出する形状に形成されている非共沸混合
冷媒用気液接触器。
1. A lower filling material that connects a connecting pipe to the upstream side of the refrigeration cycle and a connecting pipe to the downstream side of the refrigeration cycle to the bottom of the container with the openings facing upward, and has many holes above the openings of each of the connecting pipes. In addition to providing a holder, a refrigerant gas outflow pipe and a refrigerant liquid return pipe are connected to the upper part of the container, and an upper filling material holder having many holes is provided below the container, and the upper filling material holder and the lower filling material are connected to each other. A filler is filled between the holders, and the lower filler holder is formed in a shape that protrudes upward so as to have a surface that is not perpendicular to the connecting direction of the connecting pipe. Gas-liquid contactor for boiling mixed refrigerants.
JP61258809A 1986-10-30 1986-10-30 Gas-liquid contactor for non-azeotropic mixed refrigerant Granted JPS63113257A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61258809A JPS63113257A (en) 1986-10-30 1986-10-30 Gas-liquid contactor for non-azeotropic mixed refrigerant
GB8725124A GB2198223B (en) 1986-10-30 1987-10-27 Liquid-gas contactor for non-azeotropic mixture refrigerant
AU80165/87A AU579774B2 (en) 1986-10-30 1987-10-27 Liquid-gas contactor for non-azeotropic mixture refrigerant
KR1019870011932A KR900007203B1 (en) 1986-10-30 1987-10-28 Liquid-gas contactor for non-azeotropic mixture refrigerant
CA000550505A CA1279491C (en) 1986-10-30 1987-10-28 Liquid-gas contactor for non-azeotropic mixture refrigerant
US07/113,961 US4769999A (en) 1986-10-30 1987-10-29 Liquid-gas contactor for non-azeotropic mixture refrigerant
KR1019870011974A KR900007204B1 (en) 1986-10-30 1987-10-29 Liquid gas contactor for non-azeotropic mixture refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258809A JPS63113257A (en) 1986-10-30 1986-10-30 Gas-liquid contactor for non-azeotropic mixed refrigerant

Publications (2)

Publication Number Publication Date
JPS63113257A JPS63113257A (en) 1988-05-18
JPH0551827B2 true JPH0551827B2 (en) 1993-08-03

Family

ID=17325346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258809A Granted JPS63113257A (en) 1986-10-30 1986-10-30 Gas-liquid contactor for non-azeotropic mixed refrigerant

Country Status (2)

Country Link
JP (1) JPS63113257A (en)
KR (1) KR900007203B1 (en)

Also Published As

Publication number Publication date
KR880007986A (en) 1988-08-30
KR900007203B1 (en) 1990-10-05
JPS63113257A (en) 1988-05-18

Similar Documents

Publication Publication Date Title
JPH0515944B2 (en)
JPH08313178A (en) Evaporator for heat exchanger
JPH0551827B2 (en)
RU2101625C1 (en) Absorption refrigerator
KR900007204B1 (en) Liquid gas contactor for non-azeotropic mixture refrigerant
JP2881593B2 (en) Absorption heat pump
US4137727A (en) Absorption refrigeration system with precooler and inert gas control
KR970070851A (en) Absorption Chiller
US2715819A (en) Absorption refrigeration
JPS63116057A (en) Gas-liquid contactor for non-azeotropic mixed refrigerant
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
US2473730A (en) Refrigerating means
KR100297052B1 (en) Refrigerant flow path structure of ammonia absorption system
KR0124666Y1 (en) Structure suitable for circulating cooling fluid
US2704926A (en) Absorption refrigeration system having plural temperature cooling structure
JPH0247667B2 (en) NETSUHONPUSOCHI
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
DE58900709D1 (en) HEAT EXCHANGER AS A INJECTION EVAPORATOR FOR A REFRIGERATOR.
JPH06103127B2 (en) Heat pump device
US2664717A (en) Absorption refrigeration system of the inert gas type
KR960009590Y1 (en) Heater exchange combined use accumulator of truck cooler
JPS6458964A (en) Heat pump system
JPS6334453A (en) Refrigeration cycle
JPH0579896B2 (en)
JPH0480573A (en) Horizontal evaporator