JPH0551793A - Method for electrodeposition of electroconductive polymer or the like - Google Patents

Method for electrodeposition of electroconductive polymer or the like

Info

Publication number
JPH0551793A
JPH0551793A JP3209314A JP20931491A JPH0551793A JP H0551793 A JPH0551793 A JP H0551793A JP 3209314 A JP3209314 A JP 3209314A JP 20931491 A JP20931491 A JP 20931491A JP H0551793 A JPH0551793 A JP H0551793A
Authority
JP
Japan
Prior art keywords
film
conductive film
transparent conductive
plate
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3209314A
Other languages
Japanese (ja)
Other versions
JP2935917B2 (en
Inventor
Katsuhiko Ogaki
大柿克彦
Chiaki Ikeno
池野千晶
Hiroshi Inaba
稲葉博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP3209314A priority Critical patent/JP2935917B2/en
Publication of JPH0551793A publication Critical patent/JPH0551793A/en
Application granted granted Critical
Publication of JP2935917B2 publication Critical patent/JP2935917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To electrodeposit a film of an electroconductive polymer or the like in uniform thickness on a transparent electroconductive film having relatively large area by electrodepositing to make the transparent electroconductive film to be electrodeposited to be a functional pole and to face an electroconductive plate like body shaped in similar to the transparent electroconductive film and having a specific similarity ratio. CONSTITUTION:The substrate 5 (glass plate), on which the transparent conductive film 3 (such as ITO film) having >=800cm<2> area, is formed and the conductive plate like body 6 (such as platinum plate) are dipped to face each other into the electrolyte 1 (such as saturated calomel electrolyte). The conductive polymer, metallic complexing material and metallic oxide are electrodeposited on the transparent conductive film to make the substrate 5 and the conductive plate like body respectively to be the functional pole and the counter electrode. In this case, the conductive belt 4 lower in resistance than the conductive film 3 is provided on the peripheral part of the transparent conductive film 3. The conductive plate like body is shaped similar to the transparent conductive film 3 and similarity ratio to the transparent conductive film 3 excepting the low resistant conductive belt 4 is 0.55-0.80. As the result, electrodeposition uniform in thickness is executed on the transparent conductive film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエレクトロクロミック表
示素子の発色電極などとして有用なポリアニリン、ポリ
ピロ−ル、ポリチオフェン、ポリトリフェニルアミンな
どの導電性高分子、プルシアンブル−などの金属錯体あ
るいは五酸化バナジウムなどの金属酸化物を透明導電膜
に電着する方法に関する。
FIELD OF THE INVENTION The present invention relates to conductive polymers such as polyaniline, polypyrrole, polythiophene and polytriphenylamine, which are useful as color-forming electrodes for electrochromic display devices, metal complexes such as Prussian blue or pentoxide. The present invention relates to a method of electrodepositing a metal oxide such as vanadium on a transparent conductive film.

【0002】[0002]

【従来の技術とその問題点】白金や金などの金属電極上
にポリアニリンなどを電着させる場合には均一な膜を得
ることが比較的容易であるが、ITO膜、NESA膜な
どの透明導電膜上にポリアニリンを電着させる場合に
は、アニリンモノマーと酸性水溶液の濃度がそれぞれ1
モル/l程度では付着が可能であるが、充分な膜厚のポ
リアニリンを合成することが困難であり、また、濃度を
低くして、長時間重合させるとポリアニリンが透明導電
膜上に微粉化されて堆積し、均一な膜を得ることが困難
であった。また、濃度をさらに高くすると重合されたポ
リアニリンが電解液に溶解して剥離してしまうという問
題点があった。
2. Description of the Related Art It is relatively easy to obtain a uniform film when electrodepositing polyaniline or the like on a metal electrode such as platinum or gold, but it is possible to obtain a transparent conductive film such as an ITO film or a NESA film. When polyaniline is electrodeposited on the film, the concentration of the aniline monomer and the acidic aqueous solution are each 1
Adhesion is possible at about mol / l, but it is difficult to synthesize polyaniline with a sufficient film thickness, and polyaniline is finely pulverized on the transparent conductive film when polymerized for a long time at a low concentration. It was difficult to obtain a uniform film. Further, if the concentration is further increased, there is a problem that the polymerized polyaniline is dissolved in the electrolytic solution and peeled off.

【0003】そこで本発明者らは特願平1−31129
0号として特定条件下において、二度電着する方法を提
案した。しかしながら、面積が800cm2 以上の透明
導電膜が形成された比較的大面積の透明導電膜に電着す
る場合には、電圧降下のために均一な膜厚で電着するこ
とは不可能であった。
Therefore, the present inventors have filed Japanese Patent Application No. 1-31129.
As No. 0, a method of twice electrodeposition under specific conditions was proposed. However, when electrodeposition is performed on a transparent conductive film having a relatively large area on which a transparent conductive film having an area of 800 cm 2 or more is formed, it is impossible to perform electrodeposition with a uniform film thickness due to a voltage drop. It was

【0004】本発明はこのような点に鑑みてなされたも
のであり、比較的大面積の透明導電膜上に、ポリアニリ
ンなどの導電性高分子、プルシアンブル−などの金属錯
体あるいは五酸化バナジウムなどの金属酸化物を均一な
厚さに電着する方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a conductive polymer such as polyaniline, a metal complex such as Prussian blue or vanadium pentoxide is formed on a transparent conductive film having a relatively large area. It is an object of the present invention to provide a method for electrodepositing the metal oxide of 1 to a uniform thickness.

【0005】[0005]

【問題点を解決するための手段】面積が800cm2
上の透明導電膜が形成された基板と導電性板状体を対向
するように電解液に浸漬し、該基板を作用極、導電性板
状体を対極として、透明導電膜上に導電性高分子、金属
錯体あるいは金属酸化物を電着する方法において、前記
透明導電膜の周辺部には該導電膜より低抵抗の導電帯を
設けるとともに、前記導電性板状体は前記透明導電膜と
ほぼ相似形とし、相似比を低抵抗導電帯を除いた透明導
電膜に対して0.55〜0.80とするようにしたこと
を特徴とする。
[Means for Solving the Problems] A substrate on which a transparent conductive film having an area of 800 cm 2 or more and a conductive plate-like body are immersed in an electrolytic solution so as to face each other, and the substrate is worked or conductive plate. In a method of electrodepositing a conductive polymer, a metal complex or a metal oxide on a transparent conductive film with a sheet as a counter electrode, a conductive band having a resistance lower than that of the conductive film is provided in the peripheral portion of the transparent conductive film. The conductive plate-shaped body has a shape similar to that of the transparent conductive film, and the similarity ratio is 0.55 to 0.80 with respect to the transparent conductive film excluding the low resistance conductive band. To do.

【0006】[0006]

【作用】面積が800cm2 以上の透明導電膜が形成さ
れた基板は大型であるので、透明導電膜の周辺部に低抵
抗の導電帯を配設しても、プルシアンブル−などでは電
着時の電流密度が5μA/cm2 程度であり、比較的小
さいので電圧降下も小さく45cm角程度の透明導電膜
であれば、均一厚さにプルシアンブル−を電着すること
ができるが、ポリアニリン、ポリピロールなどの導電性
高分子を電着する場合の電流密度は30〜200μA/
cm2 と大きくなるので、周辺部分から中央部分にかけ
て電圧降下が大きくなり、作用極としての透明導電膜と
対極としての導電性板状体を同じ寸法、形状のものによ
り電着すると、電界の向きは透明導電膜面から導電性板
状体面に平行となり、周辺部分に比較して中央部分に電
着量が少なく、膜厚さが不均一になるのは避けられな
い。そこで本発明は対極である導電性板状体の形状を電
着しようとする透明導電膜と相似形にし、相似比を透明
導電膜に対して0.55〜0.80とすることにより、
対極を透明導電膜より小さくして、透明導電膜周辺部へ
のイオンの拡散が遅れ、しかも電界の強さも中央部分に
比較して弱いので、対極の寸法、形状を同じにした場合
より電着量が減り結果的に周辺部分と中央部分の電着量
がバランスし、ほぼ均一の膜厚とすることができる。
[Function] Since the substrate on which the transparent conductive film having an area of 800 cm 2 or more is formed is large, even if a low resistance conductive band is provided in the peripheral portion of the transparent conductive film, it can be electrodeposited by Prussian blue or the like. Current density of about 5 μA / cm 2 and a relatively small voltage drop and a transparent conductive film of about 45 cm square can deposit Prussian blue to a uniform thickness, but polyaniline, polypyrrole The current density when electrodepositing a conductive polymer such as 30 to 200 μA /
Since it becomes as large as cm 2 , the voltage drop increases from the peripheral part to the central part, and when the transparent conductive film as the working electrode and the conductive plate as the counter electrode are electrodeposited with the same size and shape, the direction of the electric field is changed. Is parallel to the surface of the conductive plate from the surface of the transparent conductive film, the amount of electrodeposition is small in the central portion as compared with the peripheral portion, and it is unavoidable that the film thickness becomes uneven. Therefore, in the present invention, the shape of the conductive plate-shaped body as the counter electrode is made similar to the transparent conductive film to be electrodeposited, and the similarity ratio is 0.55 to 0.80 with respect to the transparent conductive film.
Since the counter electrode is made smaller than the transparent conductive film, the diffusion of ions to the peripheral part of the transparent conductive film is delayed, and the strength of the electric field is weaker than that in the central part, so electrodeposition is better than when the size and shape of the counter electrode are the same. As a result, the amount of electrodeposition on the peripheral portion and the central portion is balanced, resulting in a substantially uniform film thickness.

【0007】対極の相似比を0・55以下とすると透明
導電膜周辺部分が中央部分より膜厚が薄くなり、0.8
0以上とすると周辺部分が中央部分より膜厚が厚くなり
いずれも均一な膜を電着することはできない。
When the similarity ratio of the counter electrode is 0.55 or less, the film thickness in the peripheral portion of the transparent conductive film becomes thinner than that in the central portion, and 0.8
When it is 0 or more, the peripheral portion has a larger film thickness than the central portion, and a uniform film cannot be electrodeposited in any case.

【0008】また、プルシアンブル−などの金属錯体を
電着する場合にも、透明導電膜が45cm角程度までの
大きさであれば、同じ大きさに対極を用いればよいが、
1辺が50cm以上の四辺形、直径が50cm以上の円
形の透明導電膜になると、対極の相似比を透明導電膜に
対して0.55〜0.80とする必要がある。
Also, in the case of electrodepositing a metal complex such as Prussian blue, if the transparent conductive film has a size of up to about 45 cm square, the counter electrode may be used in the same size.
In the case of a quadrilateral transparent conductive film having a side of 50 cm or more and a diameter of 50 cm or more, the similarity ratio of the counter electrode needs to be 0.55 to 0.80 with respect to the transparent conductive film.

【0009】[0009]

【実施例】以下、本発明の実施例を比較例とともに、詳
細に説明する。図1は本発明の導電性高分子などを電着
する方法を実施するための装置の1例を示す概略図であ
る。
EXAMPLES Examples of the present invention will be described in detail below together with comparative examples. FIG. 1 is a schematic view showing an example of an apparatus for carrying out the method of electrodeposition of a conductive polymer or the like of the present invention.

【0010】実施例1 アニリン0.1モル/lと硫酸0.1モル/lを混合し
たものを電解液1として入れた電解槽2に、透明導電膜
3としてのITO膜を全面に被覆し、さらにより低抵抗
の導電帯4として銀ペーストを幅20mmで周辺部分全
周にわたりスクリーン印刷、焼成した45cm角の正方
形状の基板5としての3mm厚さのガラス板、導電性板
状体6としての正方形状の白金板および飽和カロメル電
極をそれぞれ作用極、対極、参照電極7として浸漬し、
直流電源8に接続した。
EXAMPLE 1 An electrolytic cell 2 containing a mixture of 0.1 mol / l of aniline and 0.1 mol / l of sulfuric acid as an electrolytic solution 1 was coated with an ITO film as a transparent conductive film 3 on the entire surface. Further, as a conductive band 4 having a lower resistance, a silver paste having a width of 20 mm is screen-printed over the entire circumference of the peripheral portion, and a glass plate having a thickness of 3 mm as a square substrate 5 of 45 cm square and baked, and a conductive plate-shaped body 6. The square platinum plate and the saturated calomel electrode are immersed as the working electrode, the counter electrode, and the reference electrode 7, respectively,
It was connected to a DC power supply 8.

【0011】このような状態で、白金板の寸法を30c
m角(相似比:0.73)、23cm角(相似比:0.
56)、32cm角(相似比:0.78)とした場合に
ついて、直流電源により、参照電極で陽極電位が電圧計
9により初期に約0.85V以上であることを確認し
て、電流密度100μA/cm2 ( 定電流)で5分間通
電してポリアニリン膜をITO膜上に重合した。その
後、電解糟からガラス板を取り出し水洗したところ、表
層の付着力の弱いポリアニリンが落とされ、ITO膜上
には200Å厚さのポリアニリン膜が製膜された。
In this state, the size of the platinum plate is 30c.
m square (similarity ratio: 0.73), 23 cm square (similarity ratio: 0.
56), in the case of 32 cm square (similarity ratio: 0.78), it was confirmed that the anode potential at the reference electrode was about 0.85 V or more initially by the voltmeter 9 by the DC power source, and the current density was 100 μA. / Cm 2 (constant current) was applied for 5 minutes to polymerize the polyaniline film on the ITO film. After that, the glass plate was taken out from the electrolytic bath and washed with water. As a result, polyaniline having a weak adhesive force on the surface layer was removed, and a 200 Å-thick polyaniline film was formed on the ITO film.

【0012】次に、このガラス板をアニリン0.5モル
/lと硫酸0.5モル/lを混合したものを電解液とし
て入れた電解槽に飽和カロメル電極、参照電極とともに
浸漬し、電流密度100μA/cm2 で10分間通電し
てポリアニリン膜を重合した。
Next, this glass plate was immersed together with a saturated calomel electrode and a reference electrode in an electrolytic cell containing a mixture of 0.5 mol / l of aniline and 0.5 mol / l of sulfuric acid as an electrolytic solution to obtain a current density. The polyaniline film was polymerized by energizing at 100 μA / cm 2 for 10 minutes.

【0013】このようにして得られたポリアニリンの膜
厚は約3500Åであり、それらの膜厚分布を低抵抗導
電帯を除いた41cm角について可視光透過率で示す
と、白金板の寸法を30cm角(相似比:0.73)、
23cm角(相似比:0.56)、32cm角(相似
比:0.78)とした場合にそれぞれ表1、表2、表3
に示すような結果が得られた。
The film thickness of the polyaniline thus obtained is about 3500Å, and the film thickness distribution of the polyaniline is shown in visible light transmittance for a 41 cm square excluding the low resistance conductive band. Corner (similarity ratio: 0.73),
Table 1, Table 2 and Table 3 for a 23 cm square (similarity ratio: 0.56) and a 32 cm square (similarity ratio: 0.78), respectively.
The results shown in are obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】この結果から明らかなように、隣接する地
域の透過率の差が小さく、しかも透過率の最大値と最小
値の差も小さく均一性が良好であり、色むらは全く認め
られなかった。
As is clear from this result, the difference in transmittance between adjacent regions is small, the difference between the maximum and minimum values of transmittance is small, and the uniformity is good, and no color unevenness is observed. ..

【0018】(エレクトロクロミック素子への応用)実
施例1で得られたポリアニリンをエレクトロクロミック
素子に応用した例を示す。
(Application to Electrochromic Element) An example in which the polyaniline obtained in Example 1 is applied to an electrochromic element will be shown.

【0019】実施例1で得られた3mm厚さのガラス基
板と、3mm厚さのガラス板に透明導電膜と発色層WO
3 が形成された基板を相対向させ、周辺部をシールした
後、電解液として1モル過塩素酸リチウムを含むプロピ
レンカーボネート溶液を充填した。
A glass substrate having a thickness of 3 mm obtained in Example 1, a glass plate having a thickness of 3 mm, a transparent conductive film and a coloring layer WO
After the substrates having 3 formed thereon were opposed to each other and the peripheral portions were sealed, a propylene carbonate solution containing 1 mol of lithium perchlorate was filled as an electrolytic solution.

【0020】このようにして得られたエレクトロクロミ
ック素子にポリアニリンを陽極、WO3 を陰極として
1.0Vの直流電圧を印加したところ、ポリアニリンが
緑色に、WO3 が青色に発色して、可視光透過率が1
0.5%となり、良好な光遮蔽性を示し、WO3 を陽
極、ポリアニリンを陰極として−0.5Vの直流電圧を
印加したところ、ポリアニリン、WO3 ともに消色、可
視光透過率が55%となり、良好な光透過性を示した。
When a direct current voltage of 1.0 V was applied to the electrochromic device thus obtained using polyaniline as an anode and WO 3 as a cathode, polyaniline was colored green and WO 3 was colored blue to produce visible light. Transmittance is 1
It became 0.5%, showing a good light-shielding property, and when a DC voltage of -0.5 V was applied with WO 3 as an anode and polyaniline as a cathode, both polyaniline and WO 3 were decolored and the visible light transmittance was 55%. And showed good light transmittance.

【0021】この着消色を約2000回繰り返しても、
ポリアニリン膜は剥離することなく、しかも、着色時に
色むらを生ずることもなく、優れたエレクトロクロミズ
ムを示すことを確認した。また、この間エレクトロクロ
ミックミック素子は一定電圧を印加すると、濃度の変動
がきわめて小さく一定の濃度が得られ安定した駆動を行
うことができた。これは、ポリアニリンがITO膜上に
均一に重合され、その付着力も強いことを示すものであ
る。
Even if this coloring / decoloring is repeated about 2000 times,
It was confirmed that the polyaniline film exhibited excellent electrochromism without peeling and without causing color unevenness during coloring. Further, during this period, when a constant voltage was applied to the electrochromic device, the concentration fluctuation was extremely small and a constant concentration was obtained, and stable driving could be performed. This indicates that polyaniline is uniformly polymerized on the ITO film and its adhesive force is strong.

【0022】比較例 実施例1と同じように、アニリン0.1モル/lと硫酸
0.1モル/lを混合したものを電解液として入れた電
解槽に、透明導電膜としてのITO膜を全面に被覆し、
さらにより低抵抗の導電帯として銀ペーストを幅20m
mで周辺部分全周にわたりスクリーン印刷、焼成した4
5cm角の正方形状のガラス板、導電性板状体としての
正方形状の白金板および飽和カロメル電極をそれぞれ作
用極、対極、参照電極として浸漬し、直流電源に接続し
た。
Comparative Example As in Example 1, an ITO film as a transparent conductive film was placed in an electrolytic bath containing a mixture of 0.1 mol / l of aniline and 0.1 mol / l of sulfuric acid as an electrolytic solution. Cover the entire surface,
A silver paste with a width of 20 m is used as a conductive band having a lower resistance.
Screen-printed and fired on the entire circumference of the surrounding area at m. 4
A 5 cm square glass plate, a square platinum plate as a conductive plate, and a saturated calomel electrode were immersed as a working electrode, a counter electrode, and a reference electrode, respectively, and connected to a DC power source.

【0023】このような状態で、白金板の寸法を21c
m角(相似比:0.51)、34cm角(相似比:0.
83)とした場合について、直流電源により、参照電極
で陽極電位が初期に約0.85V以上であることを確認
して、電流密度100μA/cm2 (定電流)で5分間
通電してポリアニリン膜をITO膜上に重合した。その
後、電解糟からガラス板を取り出し水洗したところ、表
層の付着力の弱いポリアニリンが落とされ、ITO膜上
には200Å厚さのポリアニリン膜が製膜された。
In this state, the size of the platinum plate is 21c.
m square (similarity ratio: 0.51), 34 cm square (similarity ratio: 0.
In the case of No. 83), it was confirmed that the anode potential at the reference electrode was about 0.85 V or more at the initial stage by the DC power source, and the polyaniline film was energized at a current density of 100 μA / cm 2 (constant current) for 5 minutes. Was polymerized on the ITO film. After that, the glass plate was taken out from the electrolytic bath and washed with water. As a result, polyaniline having a weak adhesive force on the surface layer was removed, and a 200 Å-thick polyaniline film was formed on the ITO film.

【0024】次に、このガラス板をアニリン0.5モル
/lと硫酸0.5モル/lを混合したものを電解液とし
て入れた電解槽に飽和カロメル電極、参照電極とともに
浸漬し、電流密度100μA/cm2 で10分間通電し
てポリアニリン膜を重合した。
Next, this glass plate was immersed together with a saturated calomel electrode and a reference electrode in an electrolytic cell containing a mixture of 0.5 mol / l of aniline and 0.5 mol / l of sulfuric acid as an electrolytic solution to obtain a current density. The polyaniline film was polymerized by energizing at 100 μA / cm 2 for 10 minutes.

【0025】このようにして得られたポリアニリンの膜
厚分布を低抵抗導電帯を除いた41cm角について可視
光透過率で示すと、白金板の寸法を21cm角(相似
比:0.51)、34cm角(相似比:0.83)とし
た場合に、それぞれ表4、表5に示すような結果が得ら
れた。
The film thickness distribution of the polyaniline thus obtained is shown in visible light transmittance with respect to 41 cm square excluding the low resistance conductive band. The dimension of the platinum plate is 21 cm square (similarity ratio: 0.51), When 34 cm square (similarity ratio: 0.83), the results shown in Table 4 and Table 5 were obtained.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】この結果から明らかなように、隣接する地
域の透過率の差が大きいところがあり、しかも透過率の
最大値と最小値の差も大きく、均一性に劣り、色むらも
あり、実用に供しうるものではなかった。
As is clear from this result, there are some areas where the difference in transmittance between adjacent regions is large, and there is also a large difference between the maximum value and the minimum value of the transmittance, which is inferior in uniformity and uneven in color, making it practical. It was not something I could offer.

【0029】なお、白金板の寸法を低抵抗導電帯を除い
た透明導電膜と同じ41cm角(相似比:1.00)と
した場合については、34cm角(相似比:0.83)
にした場合よりさらに膜厚が不均一になり、実用に供し
得ないものであるので、膜厚分布は省略した。0.5モ
ル/lと硫酸0.5 モル/lを混合したものを電解液とし
て入れた電解槽に、ITO膜被覆の45cm角のガラス
板、白金板、飽和カロメル電極をそれぞれ陽極、陰極、
参照電極として浸漬し、電流密度100μA/cm
2(定電流)で30分間通電してポリアニリン膜を重合し
て、水洗したところ、ポリアニリン膜が流出して、膜厚
が100Åを下回ってしまい、しかも均一性が損なわ
れ、実用に供しうるものではなかった。
When the size of the platinum plate is 41 cm square (similarity ratio: 1.00), which is the same as that of the transparent conductive film excluding the low resistance conductive band, it is 34 cm square (similarity ratio: 0.83).
Since the film thickness becomes more uneven than in the case of No. 1 and cannot be put to practical use, the film thickness distribution is omitted. A 45 cm square glass plate coated with an ITO film, a platinum plate, and a saturated calomel electrode were placed in an electrolytic cell containing a mixture of 0.5 mol / l and sulfuric acid 0.5 mol / l as an electrolytic solution.
Immersion as a reference electrode, current density 100 μA / cm
When the polyaniline film is polymerized by being energized at 2 (constant current) for 30 minutes and washed with water, the polyaniline film flows out, the film thickness falls below 100Å, and the uniformity is impaired, which can be put to practical use. Was not.

【0030】実施例2〜実施例4 実施例2はポリピロールを電着する例であり、0.05
モル/lのピロール(C4H4N )と0.1モル/lの過塩
素酸銀(AgClO4 )を含むアセトニトリル溶液を電
解液1として、実施例1と同様に、作用極としての透明
導電膜3と低抵抗導電帯4が形成されたガラス基板5、
参照電極7とともに、低抵抗導電帯を除いた透明導電膜
に対する相似比が0.55〜0.80の大きさをもつ対
極(導電性板状体6)としての白金板を浸漬し、160
μA/cm2 の定電流で800秒電着すると3200Å
のポリピロールを重合した。このようにして得られたポ
リピロールの膜厚分布も均一性が良好であった。
Example 2 to Example 4 Example 2 is an example in which polypyrrole is electrodeposited.
As an electrolyte solution 1, an acetonitrile solution containing mol / l of pyrrole (C 4 H 4 N) and 0.1 mol / l of silver perchlorate (AgClO 4 ) was used as a transparent working electrode, as in Example 1. A glass substrate 5 on which a conductive film 3 and a low resistance conductive band 4 are formed,
Along with the reference electrode 7, a platinum plate as a counter electrode (conductive plate-shaped body 6) having a similarity ratio of 0.55 to 0.80 to the transparent conductive film excluding the low-resistance conductive band was immersed, and 160
3200Å when electrodeposition is performed for 800 seconds at a constant current of μA / cm 2.
Of polypyrrole was polymerized. The film thickness distribution of the polypyrrole thus obtained was also good in uniformity.

【0031】実施例3はプルシアンブル−を電着する例
であり、0.01モル/lのフェリシアン化カリウム
(K3Fe(CN)6)溶液と0.01モル/lの塩化第二鉄(FeC
l3)を混合したものを電解液1として、透明導電膜3と
してのITO膜を全面に被覆し、さらにより低抵抗の導
電性帯4として銀ペーストを幅20mmで周辺部分全周
にわたりスクリーン印刷、焼成したた100cm角の正
方形状のガラス基板5、導電性板状体6としての70c
m角の正方形状の白金板および飽和カロメル電極をそれ
ぞれ作用極、対極、参照電極7として浸漬し、直流電源
8に接続、5μA/cm2 の定電流で50分電着したと
ころ、4000Åの均一厚さのプルシアンブル−を電着
することができた。
Example 3 is an example in which Prussian blue is electrodeposited. A 0.01 mol / l potassium ferricyanide (K 3 Fe (CN) 6 ) solution and 0.01 mol / l ferric chloride ( FeC
l 3 ) is mixed as an electrolyte solution 1 and the entire surface is covered with an ITO film as a transparent conductive film 3, and a silver paste with a width of 20 mm is screen-printed as a conductive band 4 having a lower resistance over the entire periphery. , Fired 100 cm square glass substrate 5, 70 c as conductive plate-like body 6.
A square m-square platinum plate and a saturated calomel electrode were dipped as the working electrode, counter electrode, and reference electrode 7, respectively, and connected to a DC power source 8 and electrodeposited at a constant current of 5 μA / cm 2 for 50 minutes to obtain a uniform surface of 4000 Å A thick Prussian blue could be electrodeposited.

【0032】実施例4は五酸化バナジウムを電着する例
であり、31%の過酸化水素(H2O2) 溶液に1モル/l
の五酸化バナジウム(V2O5) を溶解させ、これに水を加
え合成した0.1モル/lの五酸化バナジウム(V2O5)
溶液を電解液1として、実施例1と同じ構成の作用極、
対極、参照極を浸漬し、スキャンスピ─ドを50mV/
secで−1.2Vから+1.5Vまで、掃引を200
回繰り返すことにより、膜厚2500Åの均一な酸化バ
ナジウウム膜を電着することができた。
Example 4 is an example in which vanadium pentoxide was electrodeposited, and 1 mol / l was added to a 31% hydrogen peroxide (H 2 O 2 ) solution.
Vanadium pentoxide (V 2 O 5 ) was dissolved, and water was added to this to synthesize 0.1 mol / l vanadium pentoxide (V 2 O 5 ).
Using the solution as the electrolytic solution 1, a working electrode having the same configuration as in Example 1,
Immerse the counter electrode and the reference electrode and set the scan speed to 50 mV /
Sweep from -1.2V to + 1.5V in 200 sec
By repeating this process, a uniform vanadium oxide film having a thickness of 2500 Å could be electrodeposited.

【0033】以上、好適な実施例により説明したが、本
発明はこれに限定されるものではなく種々の応用が可能
である。透明導電膜はITO膜以外にもNESA膜など
も使用することができ、その形状も基板の形状に応じて
形成されるが、基板の形状とは無関係に形成してもよ
く、具合的には正方形状に限らず、長方形状、台形状等
の四角形状あるいは三角形状、五角形以上の多角形状な
どの直線から構成される形状、円形、楕円形などの曲線
から構成される構成、直線と曲線を組み合わせた形状な
ど面積が800cm 2 以上の各種形状の透明導電膜に電
着することができる。
As described above, the preferred embodiment has been described.
The invention is not limited to this, and various applications are possible.
Is. The transparent conductive film is not only ITO film but also NESA film etc.
Can also be used and its shape depends on the shape of the substrate.
It is formed, but it may be formed regardless of the shape of the substrate.
However, the shape is not limited to square, but rectangular, trapezoidal, etc.
Quadrangular or triangular shape, pentagonal or more polygonal shape
A shape consisting of any straight line, a curve such as a circle or an ellipse
Composed of a straight line and a curved line
The area is 800 cm 2The transparent conductive film with various shapes
You can wear it.

【0034】対極としての導電性板状体は白金板以外に
も、耐酸性を有するにステンレス鋼、アルミニウム等の
金属板は勿論カーボンなどの板状体も使用することがで
き、その形状はほぼ透明導電膜の形状に相似になるよう
な形状とし、相似比は0.55〜0.80の範囲で適宜
選択すればよい。
In addition to the platinum plate, the conductive plate-like body as the counter electrode may be a metal plate such as stainless steel or aluminum having acid resistance, and of course, a plate-like body such as carbon may be used. The shape may be similar to the shape of the transparent conductive film, and the similarity ratio may be appropriately selected within the range of 0.55 to 0.80.

【0035】[0035]

【発明の効果】本発明によれば、電着しようとする透明
導電膜を作用極としてこの形状にほぼ相似で、相似比が
0.55〜0.80である導電性板状体を対向させて電
着することにより、面積が800cm2 以上の比較的大
面積の透明導電膜に導電性高分子あるいは金属錯体など
の膜を均一厚さに電着することができ、エレクトロクロ
ミズムを応用した調光体、表示体などに好適に応用する
ことができる。
According to the present invention, a transparent conductive film to be electrodeposited is used as a working electrode, and conductive plate-like bodies having a similar shape and a similarity ratio of 0.55 to 0.80 are opposed to each other. By electro-deposition, it is possible to electro-deposit a film of a conductive polymer or metal complex on a transparent conductive film having a relatively large area of 800 cm 2 or more to a uniform thickness. It can be suitably applied to optical bodies and display bodies.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導電性高分子などを電着する方法を実
施するための装置の1例を示す概略図である。
FIG. 1 is a schematic view showing an example of an apparatus for carrying out a method for electrodepositing a conductive polymer or the like of the present invention.

【符号の説明】[Explanation of symbols]

1 電解液 2 電解槽 3 透明導電膜 4 導電帯 5 基板 6 導電性板状体 8 直流電源 DESCRIPTION OF SYMBOLS 1 Electrolyte 2 Electrolyzer 3 Transparent conductive film 4 Conductive band 5 Substrate 6 Conductive plate 8 DC power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 面積が800cm2 以上の透明導電膜が
形成された基板と導電性板状体を対向するように電解液
に浸漬し、該基板を作用極、導電性板状体を対極とし
て、透明導電膜上に導電性高分子、金属錯体あるいは金
属酸化物を電着する方法において、前記透明導電膜の周
辺部には該導電膜より低抵抗の導電帯を設けるととも
に、前記導電性板状体は前記透明導電膜とほぼ相似形と
し、相似比を低抵抗導電帯を除いた透明導電膜に対して
0.55〜0.80とするようにしたことを特徴とする
導電性高分子などの電着方法。
1. A substrate on which a transparent conductive film having an area of 800 cm 2 or more and a conductive plate-shaped body are immersed in an electrolytic solution so as to face each other, and the substrate is used as a working electrode and the conductive plate-shaped body as a counter electrode. In the method of electrodepositing a conductive polymer, a metal complex or a metal oxide on a transparent conductive film, a conductive band having a resistance lower than that of the conductive film is provided in the peripheral portion of the transparent conductive film, and the conductive plate is provided. A conductive polymer having a shape substantially similar to that of the transparent conductive film and having a similarity ratio of 0.55 to 0.80 with respect to the transparent conductive film excluding the low resistance conductive band. Electrodeposition method such as.
JP3209314A 1991-08-21 1991-08-21 Electrodeposition method for conductive polymer etc. Expired - Lifetime JP2935917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209314A JP2935917B2 (en) 1991-08-21 1991-08-21 Electrodeposition method for conductive polymer etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209314A JP2935917B2 (en) 1991-08-21 1991-08-21 Electrodeposition method for conductive polymer etc.

Publications (2)

Publication Number Publication Date
JPH0551793A true JPH0551793A (en) 1993-03-02
JP2935917B2 JP2935917B2 (en) 1999-08-16

Family

ID=16570906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209314A Expired - Lifetime JP2935917B2 (en) 1991-08-21 1991-08-21 Electrodeposition method for conductive polymer etc.

Country Status (1)

Country Link
JP (1) JP2935917B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122106B2 (en) * 2002-05-23 2006-10-17 Battelle Memorial Institute Electrosynthesis of nanofibers and nano-composite films
CN1331914C (en) * 2005-10-18 2007-08-15 武汉大学 Method for synthesizing polymer of poly-triphenylamine
CN105297113A (en) * 2015-11-24 2016-02-03 陕西科技大学 Method for preparing morphology-controllable electric conducting polyaniline film through electrophoretic deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122106B2 (en) * 2002-05-23 2006-10-17 Battelle Memorial Institute Electrosynthesis of nanofibers and nano-composite films
CN1331914C (en) * 2005-10-18 2007-08-15 武汉大学 Method for synthesizing polymer of poly-triphenylamine
CN105297113A (en) * 2015-11-24 2016-02-03 陕西科技大学 Method for preparing morphology-controllable electric conducting polyaniline film through electrophoretic deposition

Also Published As

Publication number Publication date
JP2935917B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
Itaya et al. Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device
CN105388660B (en) The preparation method of COA type array base paltes
Itaya et al. Electrochemistry of Prussian blue modified electrodes: an electrochemical preparation method
JP3461354B2 (en) Electrochromic materials and displays
JPH021A (en) Color filter
US5209980A (en) Transparent counterelectrodes
US4818352A (en) Electrodeposition of functional film on electrode plate relatively high in surface resistivity
Dong et al. Preparation and properties of polypyrrole film doped with a Dawson-type heteropolyanion
JPH0551793A (en) Method for electrodeposition of electroconductive polymer or the like
EP0017977B1 (en) Electrochromic display device
JP2935918B2 (en) Electrodeposition method for conductive polymer etc.
JPH0477889B2 (en)
JP2650777B2 (en) Method for producing polyaniline
Yano et al. Novel color change of electrochromic iridium oxide in a matrix aramid resin film
JPH11506843A (en) Light modulation device and method
JPS62164730A (en) Production of polyaniline film
JP4506171B2 (en) Electrochemical light control device and method for manufacturing the same
US4526659A (en) Method of electrodepositing hexacyano-cobalt iron complex
Yamada et al. Electrochemical redox behavior of nickel-iron cyanide film deposited onto indium tin oxide substrate
EP0112037B1 (en) A method of driving an electrochromic display device
JPS6039629A (en) Electrochromic display element
DE3910314A1 (en) POWER CONDUCTOR COATED WITH POLYMER GEL, METHOD FOR THE PRODUCTION THEREOF AND ELECTROLYTIC CELL USING IT
JPH087351B2 (en) Transparent removable color plate
JPS60195523A (en) Electrochromic display element for level meter and its manufacture
JPS61213831A (en) Electrochromic display element