JPH0551719A - Method for controlling plating amount of hot-dip metal coated steel sheet - Google Patents

Method for controlling plating amount of hot-dip metal coated steel sheet

Info

Publication number
JPH0551719A
JPH0551719A JP3238762A JP23876291A JPH0551719A JP H0551719 A JPH0551719 A JP H0551719A JP 3238762 A JP3238762 A JP 3238762A JP 23876291 A JP23876291 A JP 23876291A JP H0551719 A JPH0551719 A JP H0551719A
Authority
JP
Japan
Prior art keywords
steel sheet
frequency current
sheet
current conducting
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3238762A
Other languages
Japanese (ja)
Other versions
JP2556220B2 (en
Inventor
Toshio Ishii
俊夫 石井
Toshio Sato
俊雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3238762A priority Critical patent/JP2556220B2/en
Priority to KR1019920011048A priority patent/KR950000007B1/en
Priority to CA002072210A priority patent/CA2072210A1/en
Priority to CA002072200A priority patent/CA2072200C/en
Priority to DE69201466T priority patent/DE69201466T2/en
Priority to EP92110677A priority patent/EP0525387B1/en
Publication of JPH0551719A publication Critical patent/JPH0551719A/en
Priority to US08/150,759 priority patent/US5384166A/en
Application granted granted Critical
Publication of JP2556220B2 publication Critical patent/JP2556220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a uniform plating film at a high speed by preventing a steel sheet from being cambered or vibrated by a magnetic pressure, wiping the molten metal deposited on the sheet in cooperation with a blowing gas and controlling the plating amt. of the sheet. CONSTITUTION:High-frequency current conducting paths 1a and 1b are provided to a gas wiping nozzle 2 on both sides of a steel sheet S in the longitudinal direction of the nozzle. A high-frequency current sufficient to magnetically saturate the sheet S is applied to the paths to induce an antiphase high-frequency current in the sheet S. A magnetic pressure acting on the surface of the sheet S is generated by the interaction between the induced current and the high-frequency current of the paths 1a and 1b. The sheet S is not cambered or vibrated in its width direction because of the magnetic pressure acting on the sheet S from both sides, the molten metal deposited on the sheet S is wiped in cooperation with the blowing gas, and the plating amt. of the sheet is controlled. Consequently, any trouble is not caused around the gas wiping nozzle when continuous hot-dip metal coating is carried out at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続溶融亜鉛めっき等の
溶融金属めっきにおいて、鋼板に付着した溶融金属をワ
イピングし、めっき鋼板の目付を行うための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for wiping molten metal adhering to a steel sheet and performing coating weight of the plated steel sheet in hot metal galvanizing such as continuous hot dip galvanizing.

【0002】[0002]

【従来技術】連続溶融めっき処理では、図14に示すよ
うに溶融めっき浴3中のシンクロール4に巻付搬送され
る鋼板Sが、押えおよび板反り矯正用のピンチロ−ル5
を経て上方に引き上げられた後、通常、めっき浴面上で
ガスワイピングノズル6により余剰めっき分を絞り取ら
れ、均一なめっき厚を得るようにしている。
2. Description of the Related Art In continuous hot dip plating, as shown in FIG. 14, a steel plate S wound and conveyed around a sink roll 4 in a hot dip bath 3 has a pinch roll 5 for pressing and plate straightening.
After being pulled up, the excess wiping amount is usually squeezed out by the gas wiping nozzle 6 on the surface of the plating bath to obtain a uniform plating thickness.

【0003】このようなめっき処理において、生産性を
上げるために板の通板速度を上げようとすると、鋼板S
に付随して上方に持ち上げられる溶融金属量が必然的に
多くなるため、ガスワイピングノズル6のガス圧を高め
る必要がある。しかし、このようにガスワイピングノズ
ル6のガス圧を高めると、高速で板に衝突したガスジェ
ットは余分な溶融金属を下方に掻き落すだけでなく、随
伴ガス流を発生させ、この随伴ガス流により溶融金属の
一部がスプラッシュとなり、これがガスワイピングノズ
ルに付着してノズル詰りを生じさせ、この結果ガス流の
均一性が阻害され、めっき目付量を均一にすることがで
きなくなる。このようにめっき目付量が不均一である
と、美観上の問題のみならず、めっき後の合金化の不均
一化や巻取時の荷崩れの原因となる。また、スプラッシ
ュの一部は鋼板に再付着し、鋼板傷の原因となる等の問
題もある。また、ガスワイピングノズルのガス流量を増
大させることは、コストアップや騒音発生の要因ともな
る。
In such a plating process, if an attempt is made to increase the plate passing speed in order to increase productivity, the steel plate S
As a result, the amount of molten metal that is lifted upward is necessarily increased, and therefore the gas pressure of the gas wiping nozzle 6 needs to be increased. However, when the gas pressure of the gas wiping nozzle 6 is increased in this way, the gas jet that collides with the plate at a high speed not only scrapes off the excess molten metal downward, but also generates an associated gas flow, and this associated gas flow A part of the molten metal becomes splash, which adheres to the gas wiping nozzle to cause nozzle clogging, and as a result, the uniformity of the gas flow is impaired and the coating weight cannot be made uniform. Such a non-uniform coating weight causes not only aesthetic problems, but also non-uniform alloying after plating and load collapse during winding. There is also a problem that part of the splash redeposits on the steel plate, causing damage to the steel plate. Further, increasing the gas flow rate of the gas wiping nozzle also causes a cost increase and noise generation.

【0004】従来、高速化に対応するために余剰な溶融
金属を絞り取る方法に関し、以下のような提案がなされ
ている。 特公昭44−7444号に示されるように、鋼板に高
周波磁場を印加し、鋼板に発生する渦電流に伴うロ−レ
ンツ力を利用して溶融金属を絞り、且つガスワイピング
を併用する方法 特開昭61−227158号に示されるように、鋼板
に定常電流を流し、静磁場とのローレンツ力により余剰
溶融金属を下方に絞った後、ガスワイピングノズルに到
らしめる方法 特開昭61−204363号に示されるように、鋼板
の面外方向に静磁場を発生させ、鋼板の移動により発生
する溶融金属中の誘導電流と静磁場とのローレンツ力に
より、余剰の溶融金属を下方に絞った後、ガスワイピン
グノズルに到らしめる方法 特開昭61−266560号や特開昭62−1033
33号に示されるように、鋼板下方向に移動磁界を発生
させ余剰溶融金属を下方に絞った後、ガスワイピングノ
ズルに到らしめる方法
Conventionally, the following proposals have been made regarding a method of squeezing out excess molten metal in order to cope with speeding up. As disclosed in Japanese Examined Patent Publication No. 44-7444, a method of applying a high frequency magnetic field to a steel sheet, squeezing the molten metal by utilizing Lorentz force associated with an eddy current generated in the steel sheet, and using gas wiping together As disclosed in Japanese Patent Laid-Open No. 61-227158, a method in which a steady current is passed through a steel sheet, the excess molten metal is squeezed downward by a Lorentz force with a static magnetic field, and then the molten metal is delivered to a gas wiping nozzle. As shown in, by generating a static magnetic field in the out-of-plane direction of the steel sheet, Lorentz force of the induced current and static magnetic field in the molten metal generated by the movement of the steel sheet, after squeezing the excess molten metal downward, Method for reaching gas wiping nozzles JP-A-61-266560 and JP-A-62-10303
No. 33, a method of generating a moving magnetic field in the downward direction of a steel sheet and squeezing surplus molten metal downward, and then arriving at a gas wiping nozzle.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの方法
の最大の欠点は、特に鋼板などの強磁性体に磁場を作用
させる際、鋼板は磁場の強い方に引き付けられるために
不安定な系となり、目的とするような適正な制御を行う
ことが難しいという点にある。このような制御上の問題
を回避するためには、磁場発生装置と鋼板との間隔を広
く取る必要があり、この結果、磁場の効果が極めて限定
されてしまい、本来目的としているような効果は十分に
得られない。
However, the biggest drawback of these methods is that, when a magnetic field is applied to a ferromagnetic material such as a steel sheet, the steel sheet is attracted to a strong magnetic field, resulting in an unstable system. However, it is difficult to perform proper control as intended. In order to avoid such a control problem, it is necessary to widen the gap between the magnetic field generator and the steel sheet. As a result, the effect of the magnetic field is extremely limited, and the effect originally intended is not achieved. I can't get enough.

【0006】また、溶融金属の目付量の均一化を阻害す
る要因として、鋼板の振動や幅方向での板反り(所謂C
反り)があるが、上述したいずれの提案も鋼板の制振や
板反り矯正には全く効果がない。上記の特公昭44−
7444号には、コイル間を通過する鋼板は磁気的な反
発力でコイル間中心にセンタリングされるという、鋼板
の振動抑制効果が期待し得るような内容が示されている
が、上述したように単に鋼板に高周波磁場を印加した場
合には、強磁性体である鋼板に磁気的吸引力が強く作用
するため、通板する鋼板がコイル方向に吸引される等、
却って不安定な状態が引き起こされ、振動の抑制等は全
く期待できない。
Further, as factors that hinder the uniformity of the basis weight of the molten metal, vibration of the steel sheet and plate warpage in the width direction (so-called C
There is a warp), but none of the above-mentioned proposals has any effect on the damping of the steel plate and the correction of the plate warp. The above Japanese Patent Publication 44-
No. 7444 describes that a steel sheet passing between coils is centered between the coils by a magnetic repulsive force, which is expected to have a vibration suppressing effect on the steel sheet. When a high-frequency magnetic field is simply applied to the steel sheet, the magnetic attraction force strongly acts on the steel sheet that is a ferromagnetic body, so that the steel sheet to be passed is attracted in the coil direction, etc.
On the contrary, an unstable state is caused, and vibration suppression etc. cannot be expected at all.

【0007】このように従来の方法では、強磁性の鋼板
が磁場により吸引され、不安定な系となるという根本的
な問題があり、このため本来目的とするような十分な作
用が期待できないという欠点があった。
As described above, the conventional method has a fundamental problem that the ferromagnetic steel sheet is attracted by the magnetic field and becomes an unstable system. Therefore, it is impossible to expect a sufficient effect as originally intended. There was a flaw.

【0008】本発明はこのような従来の問題に鑑みなさ
れたもので、溶融めっき鋼板の板反りや振動を防止しつ
つ、ガスワイピングにより本来得られる平滑な仕上げ表
面を維持しつつ、高速かつ均一な目付を可能とする目付
方法を提供しようとするものである。
The present invention has been made in view of such a conventional problem, and prevents the warpage and vibration of the hot-dip plated steel sheet, while maintaining a smooth finished surface originally obtained by gas wiping, at a high speed and uniformly. The present invention aims to provide a fabric weighting method that enables easy fabric weighting.

【0009】[0009]

【課題を解決するための手段】鋼板のような強磁性体に
単に磁場を印加し、鋼板の制振やめっき目付を行おうと
しても、鋼板に磁気吸引力が作用し、鋼板がより不安定
な状態におかれることは、上述した通りである。このよ
うな問題に対し本発明者らは、図1のB〜H曲線に示さ
れるように鋼板の強磁性を示す領域が非飽和域に限ら
れ、飽和域では強磁性でなくなることに着目し、鋼板に
十分な飽和域に達するような高周波磁場を印加すれば、
磁気吸引力よりも高周波電流路を流れる電流と鋼板中の
誘導電流間に生じる反発力の方が強くなり、上記磁気吸
引力に伴う不安定性が解消されること、さらには、この
ような高周波磁場の印加をガスワイピング箇所の極く近
傍に対して行うことにより、ガスワイプと協働した溶融
金属の適切且つ効果的な絞りが可能となることを見出
し、本発明を完成させたものである。
[Means for Solving the Problems] Even if a magnetic field is simply applied to a ferromagnetic material such as a steel sheet to suppress the vibration of the steel sheet or coat the coating weight, the magnetic attraction force acts on the steel sheet, making the steel sheet more unstable. It is as described above that it is put in such a state. With respect to such a problem, the present inventors have noticed that the region showing the ferromagnetism of the steel sheet is limited to the non-saturation region as shown by the curves B to H in FIG. , If a high frequency magnetic field is applied to the steel plate to reach a sufficient saturation range,
The repulsive force generated between the current flowing through the high-frequency current path and the induced current in the steel sheet is stronger than the magnetic attraction force, and the instability associated with the magnetic attraction force is eliminated. The present invention has been completed by finding that it is possible to appropriately and effectively squeeze the molten metal in cooperation with the gas wipe by applying the voltage to a portion very close to the gas wiping location.

【0010】すなわち本発明は、溶融めっき浴の浴面上
方において、溶融めっき浴から引き出される鋼板の両面
に付着した溶融金属にガスワイピングノズルからガスを
吹き付けてめっき目付量を制御する方法において、鋼板
両側の各ガスワイピングノズルのノズル部にその長手方
向に沿った高周波電流導通路を設け、各高周波電流導通
路に鋼板を十分に磁気的に飽和させ得るに十分な大きさ
の高周波電流を通電して鋼板に逆位相の高周波電流を誘
導させ、この誘導電流と前記各電流導通路の高周波電流
との相互作用により鋼板面に働く磁気圧力を発生させ、
鋼板にその両面側から作用する前記磁気圧力により、鋼
板の幅方向での板反りと振動を防止するとともに、鋼板
に付着した溶融金属を前記吹き付けガスと協働させてワ
イピングし、鋼板のめっき目付を行うようにしたもので
ある。
That is, the present invention provides a method for controlling the coating weight of a steel sheet by spraying a gas from a gas wiping nozzle onto the molten metal adhering to both sides of the steel sheet drawn from the hot dip bath above the bath surface of the hot dip bath. A high-frequency current conducting path is provided along the longitudinal direction of the nozzle portion of each gas wiping nozzle on both sides, and a high-frequency current of a sufficient magnitude to sufficiently saturate the steel plate is supplied to each high-frequency current conducting path. To induce an antiphase high-frequency current in the steel sheet, and generate a magnetic pressure acting on the steel sheet surface by the interaction between the induced current and the high-frequency current in each of the current conducting paths,
The magnetic pressure acting on both sides of the steel plate prevents warpage and vibration in the width direction of the steel plate, and wipes the molten metal adhering to the steel plate in cooperation with the above-mentioned blowing gas to provide a coating weight for the steel plate. It was designed to do.

【0011】このような本発明において、高周波電流導
通路は鋼板通板方向で間隔をおいて2以上設けることが
できる。すなわち、1つのノズル部内に鋼板通板方向で
間隔をおいて、例えば2つの高周波電流導通路を組み込
むことができる。また、ノズル部内とは別に、ノズル部
の上方または下方若しくはその両方に別の高周波電流導
通路を設けることも可能である。また、高周波電流導通
路が組み込まれたガスワイピングノズルは、一般には鋼
板を挟んで略対向した位置に配置されており、この場合
には、対向する両高周波電流導通路に同位相の高周波電
流が流される。但し、例えば、上述したように鋼板の両
側にそれぞれ複数の高周波電流導通路を配置する場合に
は、高周波電流導通路が組み込まれたガスワイピングノ
ズルは必ずしも鋼板を挟んで対向する必要はなく、鋼板
通板方向で位置をずらして配置してもよい。そしてこの
場合には、上記高周波電流導通路を組み込んだガスワイ
ピングノズルが鋼板を挾んで対向する場合のような電流
の位相に関する制約はない。
In the present invention as described above, two or more high frequency current conducting paths can be provided at intervals in the steel sheet passing direction. That is, for example, two high-frequency current conducting paths can be incorporated in one nozzle portion at intervals in the steel plate passing direction. In addition to the inside of the nozzle portion, it is possible to provide another high-frequency current conducting path above or below the nozzle portion, or both. Further, the gas wiping nozzle incorporating the high-frequency current conducting path is generally arranged at a position substantially opposite to each other with the steel plate sandwiched therebetween, and in this case, high-frequency currents of the same phase are applied to both of the opposing high-frequency current conducting paths. Shed However, for example, when a plurality of high-frequency current conducting paths are arranged on both sides of the steel sheet as described above, the gas wiping nozzles in which the high-frequency current conducting paths are incorporated do not necessarily have to face each other with the steel sheet interposed therebetween, The positions may be shifted in the sheet passing direction. Further, in this case, there is no restriction on the phase of the current unlike the case where the gas wiping nozzle incorporating the high frequency current conducting path faces the steel plate across it.

【0012】ノズル内に組み込まれる高周波電流導通路
は、鋼板幅方向に亘って設ける必要があるが、必ずしも
板幅方向と平行に設ける必要はなく、高周波電流導通路
全長に板幅方向に対して傾きをもたせ、或いは高周波電
流導通路の一部に板幅方向に対して傾きをもたせるよう
な構成とすることができる。鋼板エッジ部では、高周波
電流導通路を流れる電流に対して鋼板中を流れる電流の
方向が90°の関係になるため、このエッジ部近傍で磁
気圧力が弱まる傾向があり、このような問題に対して
は、上記のように高周波電流導通路全長に板幅方向に対
して傾きをもたせ、或いは電流導通路の鋼板エッジ部近
傍に面した部分に板幅方向に対して傾きをもたせた構成
とするのが有効である。なお、このように高周波電流導
通路の一部または全部に傾きをもたせる場合、ノズル自
体に傾きをもたせてもよいし、また、ノズル部内の電流
導通路のみに傾きをもたせるようにしてもよい。
The high-frequency current conducting path to be incorporated in the nozzle needs to be provided in the width direction of the steel plate, but it is not always necessary to provide it in parallel with the plate width direction. It is possible to provide an inclination, or a part of the high-frequency current conducting path may be inclined with respect to the plate width direction. At the edge of the steel sheet, the direction of the current flowing through the steel sheet is 90 ° with respect to the current flowing through the high-frequency current conducting path, so the magnetic pressure tends to weaken near this edge. As described above, the entire length of the high-frequency current conducting path is inclined with respect to the plate width direction, or the portion facing the vicinity of the steel plate edge portion of the current conducting path is inclined with respect to the plate width direction. Is effective. When a part or all of the high-frequency current conducting path is tilted in this way, the nozzle itself may be tilted, or only the current conducting path in the nozzle portion may be tilted.

【0013】[0013]

【作用】本発明法の作用を、強磁性体である鋼板の磁気
特性を示す図1(磁束密度と磁界の強さとの関係図)と
本発明の一実施例である図2および図3に基づき説明す
る。図2は実施状況を示す側面図、図3は同じく正面図
である。
The operation of the method of the present invention is shown in FIG. 1 (relationship diagram between magnetic flux density and magnetic field strength) showing the magnetic characteristics of a steel sheet which is a ferromagnetic material, and FIGS. 2 and 3 showing one embodiment of the present invention. It will be explained based on. 2 is a side view showing an implementation state, and FIG. 3 is a front view of the same.

【0014】本発明法では、溶融めっき浴3の浴面上方
において、溶融めっき浴3から引き出され連続通板する
鋼板Sの前面側と後面側に、それぞれ鋼板面に平行な高
周波電流導通路1a、1bを先端ノズル部に有するガス
ワイピングノズル2を鋼板Sに近接して配置する。この
実施例では、各ノズルのノズルスリットの上下に2つの
高周波電流導通路が設けられている。高周波電流導通路
1a、1bに同位相の高周波電流を流すと、鋼板Sには
これと逆位相の電流が流れる。この鋼板を流れる電流は
前記高周波電流導通路の電流とは方向が逆となるため、
磁気的な反発作用すなわち磁気圧力が鋼板表面に作用す
る。しかしながら、鋼板のような強磁性体では透磁率が
高いため、上述したように単に電流が流れただけでは、
磁気吸引力が反発力を上回り、不安定系となってしま
う。ここで、高周波電流導通路1a、1bの電流を大き
くしていくと、図1に示す鋼板中の磁界の振幅が大きく
なり、全体的には飽和域に鋼板が滞留する時間が長くな
り、この結果、ある磁界の振幅以上では磁気反発力が磁
気吸引力よりはるかに支配的となる。本発明では、この
ように鋼板Sを磁気的に十分に飽和させ得るに十分な大
きさの高周波電流を高周波電流導通路1a、1bに通電
し、必要な磁気反発力を得る。この磁気反発力は鋼板S
に対してその両側から非接触のバネが作用するのと同じ
であり、鋼板Sの振動を抑制し、また、C反りを矯正す
る。そして、このように鋼板Sの制振および板反りの矯
正がなされた状況下で、鋼板両面側から作用する溶融金
属への磁気圧力と吹き付けガスが協働することで、鋼板
に付着している余剰の溶融金属30が絞り落され、極め
て均一な目付が可能となる。すなわち、磁気圧力がガス
ワイピング位置に作用し、板の振動や反りを抑制、矯正
しつつガス圧力と協働してワイピングを行うため、ワイ
ピングガス圧力が低くても溶融金属を適切且つ効率的に
絞ることができる。また、めっき表面の平滑性はガスワ
イプにより適切に維持される。
In the method of the present invention, above the bath surface of the hot dip plating bath 3, a high-frequency current conducting path 1a parallel to the steel plate surface is formed on the front surface side and the rear surface side of the steel plate S drawn from the hot dip plating bath 3 and continuously threaded. The gas wiping nozzle 2 having the tip nozzle portion 1b is arranged close to the steel plate S. In this embodiment, two high-frequency current conducting paths are provided above and below the nozzle slit of each nozzle. When high-frequency currents of the same phase are passed through the high-frequency current conducting paths 1a, 1b, currents of opposite phases flow through the steel plate S. Since the current flowing through this steel plate has a direction opposite to that of the high-frequency current conducting path,
Magnetic repulsion, that is, magnetic pressure, acts on the surface of the steel sheet. However, since a ferromagnetic material such as a steel plate has a high magnetic permeability, if a current simply flows as described above,
The magnetic attraction force exceeds the repulsive force, resulting in an unstable system. Here, as the current in the high-frequency current conducting paths 1a, 1b is increased, the amplitude of the magnetic field in the steel sheet shown in FIG. 1 increases, and the time the steel sheet stays in the saturated region generally increases. As a result, the magnetic repulsive force becomes much more dominant than the magnetic attractive force above a certain magnetic field amplitude. In the present invention, a high-frequency current of a sufficient magnitude to magnetically saturate the steel sheet S in this manner is passed through the high-frequency current conducting paths 1a, 1b to obtain the necessary magnetic repulsion force. This magnetic repulsive force is due to the steel plate S
On the other hand, it is the same as the non-contact springs acting from both sides of the steel plate S, thereby suppressing the vibration of the steel plate S and correcting the C warp. Then, under such a situation that the steel plate S is damped and the plate warp is corrected, the magnetic pressure to the molten metal acting from both sides of the steel plate and the blowing gas cooperate to adhere to the steel plate. The surplus molten metal 30 is squeezed out, and an extremely uniform basis weight is possible. That is, since the magnetic pressure acts on the gas wiping position to suppress and correct the vibration and warpage of the plate and perform wiping in cooperation with the gas pressure, the molten metal can be appropriately and efficiently used even when the wiping gas pressure is low. It can be squeezed. Further, the smoothness of the plating surface is properly maintained by the gas wipe.

【0015】[0015]

【実施例】図2ないし図8に本発明の実施例を示す。こ
のうち図2および図3は、上述したように鋼板Sを挾ん
で対向するようにして配置された1対のガスワイピング
ノズル2の各先端ノズル部内に、鋼板面に平行な高周波
電流導通路1a、1b(この実施例では、ノズル内部に
上下2対の高周波電流導通路1a,1bを設けている)
を鋼板に近接して配し、これら高周波電流導通路1a、
1bに同位相の高周波電流を流すようにしたものであ
る。
2 to 8 show an embodiment of the present invention. Of these, FIGS. 2 and 3 show the high-frequency current conducting path 1a parallel to the steel plate surface in each tip nozzle portion of the pair of gas wiping nozzles 2 arranged so as to face each other across the steel plate S as described above. 1b (in this embodiment, two pairs of upper and lower high frequency current conducting paths 1a and 1b are provided inside the nozzle)
Is placed close to the steel plate, and these high-frequency current conducting paths 1a,
A high frequency current of the same phase is made to flow through 1b.

【0016】また、図4および図5は、対向するガスワ
イピングノズル2の各先端ノズル部内に高周波電流導通
路1a、1bを組み込むとともに、各ノズル下方位置
に、別の高周波電流導通路1a´、1b´を鋼板Sに近
接して配した例である。この例では、上下の高周波電流
導通路の電流の位相が反対となっているが、同位相でも
よい。
4 and 5, the high-frequency current conducting paths 1a and 1b are incorporated in the respective tip nozzle portions of the gas wiping nozzle 2 facing each other, and another high-frequency current conducting path 1a 'is provided below each nozzle. In this example, 1b 'is arranged close to the steel plate S. In this example, the phases of the currents in the upper and lower high frequency current conducting paths are opposite to each other, but they may have the same phase.

【0017】図6は、鋼板両側の高周波電流導通路1
a,1bが組み込まれたワイピングノズル2を鋼板を挾
んで対向させることなく、上下にずらして配置するとと
もに、その各上下に別の高周波電流導通路1a´,1b
´を配置し、全体として高周波電流導通路を千鳥状に配
置した場合の例である。この場合には、各個別の高周波
電流導通路の高周波電流に対応して、鋼板内にこれと逆
位相の電流が流れ、鋼板Sには鋼板通板方向で交互に反
対方向からの磁気圧力が作用することになる。なお、こ
の例では鋼板の前面側と後面側で高周波電流導通路を流
れる電流の位相が逆となっているが、位相が同一であっ
てもよい。すなわち、高周波電流導通路を流れる電流の
位相は任意である。
FIG. 6 shows a high-frequency current conducting path 1 on both sides of the steel plate.
The wiping nozzles 2 in which a and 1b are incorporated are vertically arranged without sandwiching the steel plates to face each other, and separate high-frequency current conducting paths 1a ′ and 1b are provided above and below each of them.
This is an example of the case where the high frequency current conducting paths are arranged in a zigzag pattern as a whole. In this case, a current having a phase opposite to that of the high-frequency current flowing in each individual high-frequency current conducting path flows in the steel sheet, and the magnetic pressure from the opposite direction is alternately applied to the steel sheet S in the steel sheet passing direction. Will work. In this example, the phases of the currents flowing through the high-frequency current conducting path are opposite between the front surface side and the rear surface side of the steel sheet, but the phases may be the same. That is, the phase of the current flowing through the high frequency current conducting path is arbitrary.

【0018】また、鋼板エッジ部では、高周波電流導通
路を流れる電流に対して鋼板中を流れる電流の方向が9
0°の関係になるため、このエッジ部近傍で磁気圧力が
弱まる傾向があり、このような問題に対しては、高周波
電流導通路全長を板幅方向に対して傾け、或いは電流導
通路の鋼板エッジ部近傍と対向する部分に板幅方向に対
し傾きをもたせる方法が有効である。図7は前者の例を
示すもので、鋼板両側のワイピングノズル2に組み込ま
れる高周波電流導通路1a,1bの全長に板幅方向に対
して適当な傾きをもたせたものである。また、図8は鋼
板エッジ部近傍に面した高周波電流導通路1a,1bの
部分11に板幅方向に対する傾きをもたせたものであ
る。以上のような構成は上記各実施例に適用可能であ
る。
At the edge of the steel sheet, the direction of the current flowing through the steel sheet is 9 with respect to the current flowing through the high frequency current conducting path.
Since the relationship is 0 °, the magnetic pressure tends to weaken in the vicinity of this edge portion. To solve such a problem, the high frequency current conducting path is inclined with respect to the plate width direction, or the steel sheet of the current conducting path is inclined. It is effective to provide a portion facing the vicinity of the edge with an inclination in the plate width direction. FIG. 7 shows the former example, in which the entire lengths of the high-frequency current conducting paths 1a and 1b incorporated in the wiping nozzles 2 on both sides of the steel plate have an appropriate inclination with respect to the plate width direction. Further, FIG. 8 shows a portion 11 of the high-frequency current conducting paths 1a and 1b facing the vicinity of the edge of the steel plate, which is inclined with respect to the plate width direction. The configuration as described above is applicable to each of the above embodiments.

【0019】本発明者等は、本発明の効果を検証するた
め以下のようなシュミレーション解析を行った。この解
析は、図4に示す高周波電流導通路の配置例のものにつ
いて、以下の解析条件に基づき、 コイル断面寸法:30×50mm コイル電流 :3×104A 周波数 :3000Hz 鋼板厚さ :2.3mm 鋼板比透磁率 :1 鋼板が両高周波電流導通路からそれぞれ15mmずつ離
れたセンタ位置にある場合、鋼板が上記センタ位置から
片側の高周波電流導通路側にそれぞれ5mm、10mm
ずつずれた場合の3水準について行った。この解析モデ
ルを図9に示す。この解析の結果、本条件における磁界
の強さの片振幅は160000A/mであり、図1およ
び表1に示すような代表的B〜H曲線を持つ鋼板では、
鋼板は完全に飽和域にあることが判った。図10はこの
場合における最大磁気圧力の1サイクルの解析例であ
り、これによれば磁気的吸引力が磁気圧力を上回る時間
は6%以下となり、且つ磁気圧力の最大値は磁気吸引力
の5倍以上であること、このため鋼板が強磁性体である
にもかかわらず、磁気圧力を極めて安定して鋼板に印加
できることが判明した。
The present inventors conducted the following simulation analysis in order to verify the effect of the present invention. This analysis is based on the following analysis conditions for the arrangement example of the high-frequency current conducting path shown in FIG. 4, based on the following analysis conditions: Coil cross-sectional dimension: 30 × 50 mm Coil current: 3 × 10 4 A Frequency: 3000 Hz Steel plate thickness: 2. 3 mm Steel plate relative permeability: 1 When the steel plates are located at the center positions 15 mm apart from both high-frequency current conducting paths, the steel plates are 5 mm and 10 mm from the center position on one side of the high-frequency current conducting paths, respectively.
It carried out about three levels when it shifted each time. This analytical model is shown in FIG. As a result of this analysis, the one-sided amplitude of the magnetic field strength under these conditions is 160000 A / m, and in the steel sheet having typical B to H curves as shown in FIG. 1 and Table 1,
It was found that the steel sheet was completely in the saturated region. FIG. 10 shows an analysis example of one cycle of the maximum magnetic pressure in this case. According to this, the time when the magnetic attraction force exceeds the magnetic pressure is 6% or less, and the maximum value of the magnetic pressure is 5 times the magnetic attraction force. It is found that the magnetic pressure can be applied to the steel sheet extremely stably even though the steel sheet is a ferromagnetic material.

【0020】次に、鋼板面上の時間平均した磁気圧力平
均値の分布を解析した例を示す。図11は鋼板が両電流
導通路のセンタ位置にある場合、また図12、図13は
鋼板が上記センタ位置よりも片側の電流導通路側にそれ
ぞれ5mm、10mmずれた場合の各磁気圧力の分布を
示している。これによれば、鋼板がセンタ位置からずれ
た場合、全体として中心へ押しやろうとする力が働くこ
とが示されている。この磁気圧力は高周波電流導通路に
鋼板が近づくにしたがって大きくなるため、鋼板のセン
タリング作用に有効に働き、振動防止に効果がある。ま
た、C反りの矯正力としても有効であり、トータルのC
反り量を0.5mm以内に押えられることが判る。
Next, an example of analyzing the distribution of time-averaged magnetic pressure average values on the steel plate surface will be shown. FIG. 11 shows the distribution of magnetic pressure when the steel sheet is at the center position of both current conducting paths, and FIGS. 12 and 13 show the distribution of each magnetic pressure when the steel sheet is deviated by 5 mm and 10 mm to the current conducting path side on one side from the center position. Shows. According to this, when the steel plate deviates from the center position, a force to push the steel plate toward the center as a whole works. This magnetic pressure increases as the steel sheet approaches the high-frequency current conducting path, so that it effectively acts on the centering action of the steel sheet and is effective in preventing vibration. It is also effective as a correction force for C warpage, and the total C
It can be seen that the warp amount can be suppressed within 0.5 mm.

【0021】これらの結果を踏まえ、図14に示すよう
な従来のめっき設備において、従来のガスワイピングノ
ズル6に代えて図4および図5に相当する装置をめっき
浴面上400mmの位置に設置し、溶融亜鉛めっき鋼板
の目付を実施した。この実験では、鋼板の板幅、電流条
件は上記のシュミレーション解析と同様とし、ラインス
ピード:150m/min、ガス流速:190m/sに
設定して行った。
Based on these results, in the conventional plating equipment as shown in FIG. 14, the conventional gas wiping nozzle 6 is replaced with an apparatus corresponding to FIGS. 4 and 5 at a position 400 mm above the plating bath surface. The unit weight of the hot-dip galvanized steel sheet was implemented. In this experiment, the plate width of the steel plate and the current conditions were the same as in the above simulation analysis, and the line speed was 150 m / min and the gas flow rate was 190 m / s.

【0022】この結果、本発明法によるワイピング箇所
における鋼板のC反りは完全に矯正され、振動も1mm
以内の振幅に押えることができ、また、従来のように高
圧のガスワイピングを行った場合のようなスプラッシュ
や騒音の発生もなく、低いガス吹き付け圧力で極めて均
一なめっき目付を行うことができた。また、従来のガス
ワイピング方式において150m/minのラインスピ
−ドでは困難であった35g/m2の目付の亜鉛めっき
も容易に実施可能であることが確認できた。
As a result, the C-warp of the steel sheet at the wiping point according to the method of the present invention was completely corrected and the vibration was 1 mm.
It was possible to suppress the amplitude within the range, and there was no generation of splash or noise as in the case of performing high pressure gas wiping as in the past, and it was possible to perform extremely uniform plating basis weight with a low gas spraying pressure. .. It was also confirmed that galvanization with a basis weight of 35 g / m 2 , which was difficult with a conventional gas wiping method at a line speed of 150 m / min, could be easily performed.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】以上述べた本発明によれば、従来連続溶
融めっきの高速化でネックとなっていたガスワイピング
ノズル回りの問題を解消し、均一な膜厚の高速めっきを
可能とするものである。
According to the present invention described above, the problem around the gas wiping nozzle, which has been a bottleneck in the speedup of continuous hot-dip plating in the past, is solved, and high-speed plating with a uniform film thickness is made possible. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼板の磁束密度と磁界の強さとの関係図[Fig. 1] Relationship diagram between magnetic flux density of steel sheet and magnetic field strength

【図2】本発明の一実施例を示す側面図FIG. 2 is a side view showing an embodiment of the present invention.

【図3】図2に示す実施例の正面図FIG. 3 is a front view of the embodiment shown in FIG.

【図4】本発明の他の実施例を示す側面図FIG. 4 is a side view showing another embodiment of the present invention.

【図5】図4に示す実施例の正面図5 is a front view of the embodiment shown in FIG.

【図6】本発明の他の実施例を示す側面図FIG. 6 is a side view showing another embodiment of the present invention.

【図7】本発明の他の実施例を示す正面図FIG. 7 is a front view showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す正面図FIG. 8 is a front view showing another embodiment of the present invention.

【図9】高周波電流導通路によって鋼板に及ぼされる磁
気圧力を算定するためのシュミレーションにおける解析
モデルを示す説明図
FIG. 9 is an explanatory diagram showing an analytical model in a simulation for calculating a magnetic pressure exerted on a steel sheet by a high frequency current conducting path.

【図10】図9の解析において、最大磁気圧力の1サイ
クルの解析例を示すグラフ
10 is a graph showing an example of analysis of one cycle of maximum magnetic pressure in the analysis of FIG.

【図11】図9の解析において、鋼板がセンタ位置にあ
る場合の磁気圧力の分布を示すグラフ
11 is a graph showing the distribution of magnetic pressure when the steel sheet is in the center position in the analysis of FIG.

【図12】図9の解析において、鋼板がセンタ位置より
5mmずれた場合の磁気圧力の分布を示すグラフ
FIG. 12 is a graph showing the distribution of magnetic pressure when the steel sheet is displaced from the center position by 5 mm in the analysis of FIG. 9.

【図13】図9の解析において、鋼板がセンタ位置より
10mmずれた場合の磁気圧力の分布を示すグラフ
FIG. 13 is a graph showing the distribution of magnetic pressure when the steel sheet is displaced 10 mm from the center position in the analysis of FIG. 9.

【図14】従来の溶融めっきおよび目付方法を示す説明
FIG. 14 is an explanatory view showing a conventional hot dip plating and basis weight method.

【符号の説明】[Explanation of symbols]

1、1a、1b…高周波電流導通路、2…ガスワイピン
グノズル、3…溶融めっき浴、11…部分、30…溶融
金属、S…鋼板
1, 1a, 1b ... High-frequency current conducting path, 2 ... Gas wiping nozzle, 3 ... Hot dip plating bath, 11 ... Part, 30 ... Molten metal, S ... Steel plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融めっき浴の浴面上方において、溶融
めっき浴から引き出される鋼板の両面に付着した溶融金
属にガスワイピングノズルからガスを吹き付けてめっき
目付量を制御する方法において、鋼板両側の各ガスワイ
ピングノズルのノズル部にその長手方向に沿った高周波
電流導通路を設け、各高周波電流導通路に鋼板を十分に
磁気的に飽和させ得るに十分な大きさの高周波電流を通
電して鋼板に逆位相の高周波電流を誘導させ、この誘導
電流と前記各電流導通路の高周波電流との相互作用によ
り鋼板面に働く磁気圧力を発生させ、鋼板にその両面側
から作用する前記磁気圧力により、鋼板の幅方向での板
反りと振動を防止するとともに、鋼板に付着した溶融金
属を前記吹き付けガスと協働させてワイピングし、鋼板
のめっき目付を行うことを特徴とする溶融めっき鋼板の
目付方法。
1. A method for controlling the coating weight of a steel sheet by spraying gas from a gas wiping nozzle onto molten metal adhering to both sides of a steel sheet drawn from the hot dip bath above the bath surface of the hot dip bath. A high-frequency current conducting path along the longitudinal direction of the nozzle portion of the gas wiping nozzle is provided, and a high-frequency current of a sufficient magnitude to sufficiently magnetically saturate the steel sheet is passed through each high-frequency current conducting path to the steel sheet. Induction of high-frequency current of opposite phase, magnetic force acting on the steel sheet surface is generated by the interaction of this induction current and the high-frequency current of each current conducting path, the steel sheet by the magnetic pressure acting from both sides of the steel sheet, The plate width and the vibration in the width direction, and the molten metal adhering to the steel plate is wiped in cooperation with the blowing gas to plate the steel plate. A coating method for hot dip plated steel sheet, which is characterized in that
【請求項2】 鋼板両側のガスワイピングノズルのノズ
ル部に鋼板を挟んで略対向するようにして高周波電流導
通路を設け、両高周波電流導通路に鋼板を十分に磁気的
に飽和させ得るに十分な大きさの同位相の高周波電流を
通電することを特徴とする請求項1に記載の溶融めっき
鋼板の目付方法。
2. A high-frequency current conducting path is provided in the nozzle portions of the gas wiping nozzles on both sides of the steel sheet so as to face each other with the steel sheet interposed therebetween, and the high-frequency current conducting paths are sufficient to sufficiently saturate the steel sheet. 2. A hot-dip galvanized steel sheet basis weight method according to claim 1, wherein high-frequency currents of different magnitude and having the same phase are applied.
JP3238762A 1991-06-25 1991-08-26 Hot-dip galvanized steel sheet Expired - Lifetime JP2556220B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3238762A JP2556220B2 (en) 1991-08-26 1991-08-26 Hot-dip galvanized steel sheet
CA002072210A CA2072210A1 (en) 1991-06-25 1992-06-24 Method for continuously moving a steel strip
CA002072200A CA2072200C (en) 1991-06-25 1992-06-24 Method for controlling coating weight on a hot-dipping steel strip
KR1019920011048A KR950000007B1 (en) 1991-06-25 1992-06-24 Method of controlling coating weight on a hot-dipping steel strip
DE69201466T DE69201466T2 (en) 1991-06-25 1992-06-25 Method for checking the coating weight of a hot-metallized steel strip.
EP92110677A EP0525387B1 (en) 1991-06-25 1992-06-25 Method for controlling the coating weight on a hot-dip coated steel strip
US08/150,759 US5384166A (en) 1991-06-25 1993-11-10 Method for controlling coating weight on a hot-dipped steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238762A JP2556220B2 (en) 1991-08-26 1991-08-26 Hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPH0551719A true JPH0551719A (en) 1993-03-02
JP2556220B2 JP2556220B2 (en) 1996-11-20

Family

ID=17034891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238762A Expired - Lifetime JP2556220B2 (en) 1991-06-25 1991-08-26 Hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2556220B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027315A (en) * 2002-06-27 2004-01-29 Jfe Steel Kk Method and apparatus for manufacturing hot dip metal-coated steel plate
JP2008542542A (en) * 2005-06-03 2008-11-27 アーベーベー・アーベー Device and method for coating elongated metal elements with a layer of metal
JP2009500520A (en) * 2005-06-30 2009-01-08 アーベーベー・アーベー Device and method for controlling thickness
JP2009167473A (en) * 2008-01-16 2009-07-30 Jfe Steel Corp Hot-dip metal plating apparatus, and manufacturing method of hot-dip plated steel strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181808A (en) * 1984-09-09 1986-04-25 Kayaba Ind Co Ltd Vehicle height control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181808A (en) * 1984-09-09 1986-04-25 Kayaba Ind Co Ltd Vehicle height control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027315A (en) * 2002-06-27 2004-01-29 Jfe Steel Kk Method and apparatus for manufacturing hot dip metal-coated steel plate
JP2008542542A (en) * 2005-06-03 2008-11-27 アーベーベー・アーベー Device and method for coating elongated metal elements with a layer of metal
JP2009500520A (en) * 2005-06-30 2009-01-08 アーベーベー・アーベー Device and method for controlling thickness
JP2009167473A (en) * 2008-01-16 2009-07-30 Jfe Steel Corp Hot-dip metal plating apparatus, and manufacturing method of hot-dip plated steel strip

Also Published As

Publication number Publication date
JP2556220B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JP2848208B2 (en) Hot-dip metal plating equipment
JP2601067B2 (en) Hot-dip galvanized steel sheet
JP2556220B2 (en) Hot-dip galvanized steel sheet
US5384166A (en) Method for controlling coating weight on a hot-dipped steel strip
KR950000007B1 (en) Method of controlling coating weight on a hot-dipping steel strip
JPH06136502A (en) Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force
JPH06179956A (en) Method and device for coating hot-dip coated steel sheet
JPH06108220A (en) Method for controlling coating weight of hot-dip metal-coated steel strip by electromagnetic force
JP2601068B2 (en) Hot-dip galvanized steel sheet
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JPH06179957A (en) Method and device for coating hot-dip coated steel sheet
JP4547818B2 (en) Method for controlling the coating amount of hot dip galvanized steel sheet
JP2014201798A (en) Method for manufacturing galvanized steel strip
JP2004124191A (en) Device for damping vibration of metal strip, and method for manufacturing metal strip
JP2619474B2 (en) High-speed hot-dip galvanizing method
JPH09184056A (en) Method for preventing vibration of galvanizing steel strip
JPH02254147A (en) Method for controlling coating weight on hot dip metal coated steel sheet
JP4487603B2 (en) Continuous molten metal plating method and apparatus
JP2005256055A (en) Consecutive hot dip metal coating method and its apparatus
EP2165000B1 (en) Method and device for controlling the thickness of a coating on a flat metal product
RU2296179C2 (en) Vertically moving steel strip position stabilizing method and apparatus for performing the same
JPH1046309A (en) Method for controlling plating weight and device therefor
JP2570924B2 (en) Method for preventing vibration and warpage of steel sheet passing continuously
JP2712335B2 (en) Method and apparatus for preventing overcoating of hot-dip plating
JPH051361A (en) Method for preventing vibration and warp of steel sheet continuously passing through