JP2619474B2 - High-speed hot-dip galvanizing method - Google Patents

High-speed hot-dip galvanizing method

Info

Publication number
JP2619474B2
JP2619474B2 JP11344488A JP11344488A JP2619474B2 JP 2619474 B2 JP2619474 B2 JP 2619474B2 JP 11344488 A JP11344488 A JP 11344488A JP 11344488 A JP11344488 A JP 11344488A JP 2619474 B2 JP2619474 B2 JP 2619474B2
Authority
JP
Japan
Prior art keywords
hot
dip
steel strip
metal
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11344488A
Other languages
Japanese (ja)
Other versions
JPH01287261A (en
Inventor
克彦 新蔵
和範 永井
誠司 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11344488A priority Critical patent/JP2619474B2/en
Publication of JPH01287261A publication Critical patent/JPH01287261A/en
Application granted granted Critical
Publication of JP2619474B2 publication Critical patent/JP2619474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、連続メッキ法において走行する鋼ストリッ
プのメッキ目付量を制御する高速薄目付溶融メッキ法に
関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed thinning hot-dip galvanizing method for controlling a coating weight of a steel strip running in a continuous plating method.

[従来の技術] 一般に、鋼ストリップの連続溶融メッキ装置におい
て、鋼ストリップのメッキ目付量の制御は、主としてガ
スワイピング(気体噴射ノズル払拭)法で行なわれてい
る。この方法は、溶融メッキ金属浴中を連続的に通過し
て浮上する鋼ストリップに付着した溶融状態のメッキ金
属に空気、窒素、ガス、水蒸気などの高温、高圧の気体
を吹き付けて、余剰のメッキを払拭し、所定のメッキ目
付量に制御するものである。しかし、この方法でメッキ
金属の薄目付化あるいは鋼ストリップの高速メッキ化を
行なわんとすると、かなりの高圧ガスを吹き付ける必要
があるため、溶融メッキ金属のスプラッシュを増加し
て、得られたメッキ鋼板の外観性が著しく悪化する問題
があった。
[Prior Art] In general, in a continuous hot-dip plating apparatus for steel strip, the control of the basis weight of plating of the steel strip is mainly performed by a gas wiping (gas injection nozzle wiping) method. In this method, air, nitrogen, gas, steam or other high-temperature, high-pressure gas is blown onto the molten plating metal adhering to the steel strip that floats by continuously passing through the hot-dip plating metal bath to generate excess plating. Is wiped off to control the plating weight per unit area. However, if thinning of the plated metal or high-speed plating of the steel strip is performed by this method, it is necessary to spray a considerably high pressure gas. There was a problem that the appearance of the product deteriorated remarkably.

このような問題を解消するものとして特開昭61−2271
58号公報、特開昭61−266560号公報等がある。これらの
公報に記載された発明は、溶融メッキ金属に電磁力が作
用する範囲の溶融メッキ金属に気体を吹き付けて余剰の
溶融メッキ金属を払拭するもので、溶融メッキ金属のス
プラッシュが効率良く抑制でき、溶融金属付着量の薄目
付化や鋼ストリップ通板速度の高速化を可能とする。
Japanese Patent Application Laid-Open No. 61-2271 discloses a solution to such a problem.
No. 58, JP-A-61-266560 and the like. The invention described in these publications wipes off excess hot-dip metal by blowing gas to the hot-dip metal in a range where the electromagnetic force acts on the hot-dip metal, and the splash of hot-dip metal can be efficiently suppressed. In addition, it is possible to reduce the amount of molten metal attached and to increase the speed at which steel strip is passed.

[発明が解決しようとする課題] ところがその反面溶融メッキを払拭した場合、第1図
に鋼ストリップの巾断面で示すように、気体ワイピング
位置より下方近傍での鋼ストリップ3に付着している溶
接メッキ金属の膜厚の鋼板巾方向分布は、第1図のa線
で示すように非常に厚くなり、気体ワイピング時にスプ
ラッシュが発生する原因となる。これに対し電磁力範囲
内での気体噴射ワイピング法では、第1図b線で示すよ
うに板巾全領域でa線に比べ膜厚が薄くなっているので
スプラッシュが抑制される。しかしながら後者の場合、
膜厚が鋼ストリップ端部から50〜150mm内側付近(第1
図b線のA部分)で中央部(第1図b線のB部分)より
若干厚くなっており、この点がスプラッシュ発生の律速
となり、作用させている電磁力の効果を最大限に利用し
ていないという問題点があった。
[Problems to be Solved by the Invention] On the other hand, when the hot-dip plating is wiped off, as shown in the width cross section of the steel strip in FIG. 1, the welding adhered to the steel strip 3 near the position below the gas wiping position. The distribution of the thickness of the plated metal in the width direction of the steel sheet becomes extremely thick as shown by the line a in FIG. 1 and causes splash during gas wiping. On the other hand, in the gas injection wiping method within the electromagnetic force range, as shown by the line b in FIG. 1, the film thickness is smaller than the line a in the entire width of the plate, so that the splash is suppressed. However, in the latter case,
The film thickness is around 50-150mm inside from the steel strip end (No.1
The thickness is slightly thicker at the central portion (portion B in FIG. B line) than at the center portion (portion B in FIG. 1b), and this point determines the rate of splash generation and maximizes the effect of the electromagnetic force applied. There was a problem that not.

[課題を解決するための手段] 本発明者らは電磁力範囲内の気体噴射ワイピングノズ
ル法の気体ワイピング位置下方近傍の鋼板端部より少し
内側で溶融メッキ金属の膜厚が若干厚くなる原因を解明
するため、種々の実験より電磁界の有限要素法による解
析を行った結果、第2図で示すように移動磁界発生装置
4によって誘起される鋼ストリップ3の表面溶融メッキ
金属上の誘導電流及び電磁力分布は、第2図(a)で示
すように、鋼ストリップ3の両端部のメッキ金属に誘導
電流が集中し、第2図(b)で示すように該誘導電流と
移動磁界との間に働く電磁力が大きく内側を向くことと
なり、この力によって鋼板端部のメッキ金属が内側に移
動し、鋼板中央部の下向きの電磁力によるメッキ金属流
れとつりあう位置、即ち鋼板端部より少し内側で溶融メ
ッキ金属の膜厚が若干厚くなることを究明した。本発明
はこのような原因の究明に基くものである。
Means for Solving the Problems The present inventors consider the cause of the reason that the thickness of the hot-dip metal is slightly increased slightly inside the steel plate end near the lower portion of the gas wiping position of the gas injection wiping nozzle method within the electromagnetic force range. In order to clarify the results, the electromagnetic field was analyzed by the finite element method from various experiments. As a result, as shown in FIG. In the electromagnetic force distribution, as shown in FIG. 2 (a), the induced current concentrates on the plating metal at both ends of the steel strip 3, and as shown in FIG. 2 (b), the induced current and the moving magnetic field are different. The electromagnetic force acting between them will be largely directed inward, and this force causes the plated metal at the end of the steel sheet to move inward and balance the plating metal flow due to the downward electromagnetic force at the center of the steel sheet, that is, slightly less than the end of the steel sheet. Inside It was determined that the thickness of the hot-dip metal was slightly increased on the side. The present invention is based on the investigation of such causes.

即ち電磁力の及ぶ範囲内に設けた気体ワイピングノズ
ルの直下位置の溶融メッキ金属相対位置の鋼ストリップ
巾方向端部から50〜150mmを含む範囲に磁性体又は導電
体を設置し、気体ワイピング位置下方の溶融メッキ金属
に付加する電磁力分布を制御し、気体ワイピング位置下
方の膜厚分布を鋼板中央部の薄さに均一にすることによ
り、このような電磁力分布制御を行わない方法に比べス
プラッシュの発生を更に抑制し一層の薄目付化、高速化
を可能とする溶融メッキ法を提供するものである。
That is, a magnetic substance or a conductor is installed in a range including 50 to 150 mm from the end in the width direction of the steel strip relative to the hot-dip plating metal located immediately below the gas wiping nozzle provided within a range where the electromagnetic force is provided, and is disposed below the gas wiping position. By controlling the electromagnetic force distribution applied to the hot-dip coated metal and making the film thickness distribution below the gas wiping position uniform at the center of the steel sheet, the splash compared to methods that do not perform such electromagnetic force distribution control It is intended to provide a hot-dip plating method capable of further suppressing the occurrence of thinning and further increasing the thickness and speed.

[作用] 以下、本発明について図面を参照しながら詳細に説明
する。
[Operation] Hereinafter, the present invention will be described in detail with reference to the drawings.

第3図は本発明法を説明するために提示した図であっ
て、1は溶融メッキ金属浴でAl,Zn,Snなどの耐食性金属
が溶解されている。2はイグジットロールで溶融メッキ
金属浴1中に設けられている。3は連続的に走行する鋼
ストリップである。即ち鋼ストリップ3は溶融メッキ金
属浴1中を通過して浮上する。4は移動磁界発生装置で
磁性体コア5と多相交流電流を流すコイル6とで構成さ
れる。7は気体ワイピングノズルで移動磁界発生装置4
の移動磁界内に設けられている。即ち溶融メッキ金属浴
1を通過浮上する鋼ストリップ2に付着した余剰の溶融
メッキ金属8を移動磁界発生装置4と気体ワイピングノ
ズル7で払拭しながら、所定のメッキ目付量に制御する
ように構成されている。9は磁性体又は導電体で第4
図,第5図及び第6図で示すように、気体ワイピングノ
ズル7の直下の溶融メッキ金属相対位置で、鋼ストリッ
プ3と移動磁界発生装置4との間又は鋼ストリップ3の
端部空間あるいは特に、本発明においては、磁性体又は
導電体9は膜厚が厚くなりやすい鋼ストリップ巾方向端
部から50〜150mm(第1図A部分)を含む範囲に設置す
ることが好ましい。
FIG. 3 is a view presented for explaining the method of the present invention, in which 1 is a hot-dip plating metal bath in which corrosion-resistant metals such as Al, Zn, and Sn are dissolved. Reference numeral 2 denotes an exit roll provided in the hot-dip metal bath 1. 3 is a continuously running steel strip. That is, the steel strip 3 floats through the hot-dip metal bath 1. Reference numeral 4 denotes a moving magnetic field generator, which includes a magnetic core 5 and a coil 6 through which a polyphase alternating current flows. 7 is a gas wiping nozzle and a moving magnetic field generator 4
Are provided in the moving magnetic field. In other words, the excess plating metal 8 adhering to the steel strip 2 which floats through the molten plating metal bath 1 is wiped off by the moving magnetic field generator 4 and the gas wiping nozzle 7 while controlling the plating weight per unit area. ing. 9 is a magnetic or conductive material,
As shown in FIG. 5, FIG. 5 and FIG. 6, the space between the steel strip 3 and the moving magnetic field generator 4 or the end space of the steel strip 3 or especially at the position of the hot-dip metal relative to the molten metal immediately below the gas wiping nozzle 7. In the present invention, it is preferable that the magnetic material or the conductor 9 is provided in a range including 50 to 150 mm (the portion A in FIG. 1) from the end in the width direction of the steel strip in which the film thickness tends to increase.

磁性体又は導電体9は以下のような特長を有するもの
で、まず第4図のように鋼ストリップ3の両端部を通過
する磁束を減少させるために、移動磁界発生装置4,4の
磁極間の鋼板両端部で磁束を短絡するもので、たとえば
電磁鋼板を矩形状に積層した磁性体であり、或は導電体
に発生する誘導電流の磁気しゃ閉効果により鋼ストリッ
プ両端部を通過する磁束を減少させるもので、Cu,Alな
どを矩形、ひし形などの形状に加工した導電体が使用さ
れる。
The magnetic or conductor 9 has the following features. First, as shown in FIG. 4, in order to reduce the magnetic flux passing through both ends of the steel strip 3, the distance between the magnetic poles of the moving magnetic field generators 4, 4 is reduced. The magnetic flux is short-circuited at both ends of the steel strip, for example, a magnetic material in which electromagnetic steel sheets are laminated in a rectangular shape, or a magnetic flux passing through both ends of the steel strip due to a magnetically blocking effect of an induced current generated in a conductor. A conductor that is formed by processing Cu, Al, or the like into a rectangular shape, a diamond shape, or the like is used.

さらに磁性体又は導電体9は第5図で示すように電磁
鋼板をコの字形に積層したもの、若しくは第6図で示す
ように電磁鋼板などを矩形に積層した磁性体を移動磁界
発生装置4と鋼ストリップ3の間の鋼ストリップ長手方
向に複数個配列してもよい。さらにまた制御したい電磁
力の位置や大きさによって磁性体の個数や大きさ、設置
する場所を任意に決め、又可動式にすることも可能であ
る。
Further, the magnetic material or the conductor 9 is formed by laminating electromagnetic steel sheets in a U-shape as shown in FIG. 5 or a magnetic material in which electromagnetic steel sheets are laminated in a rectangular shape as shown in FIG. And a plurality of steel strips 3 may be arranged in the longitudinal direction of the steel strip. Furthermore, the number and size of the magnetic body and the place where the magnetic body is installed can be arbitrarily determined according to the position and magnitude of the electromagnetic force to be controlled, and the magnetic body can be made movable.

しかるに第3図に示すような電磁力範囲内気体噴射ワ
イピングノズル法において、気体ワイピング位置下方に
おける溶融メッキ金属巾方向膜厚分布は、移動磁界発生
装置により溶融メッキ金属に誘起される電磁力の向き及
び大きさの分布に左右される。電磁力は溶融メッキ金属
に誘起される誘導電流及び溶融メッキ金属を通過する磁
束密度のベクルト積で発生し、その向きは第2図(b)
で示すように、鋼板中央付近では磁界の移動方向に平行
であるが、両端部に近い程内側を向く。従って誘導電流
及び磁束密度を任意の位置で制御することにより電磁力
の向きや大きさを部分的に制御し、鋼ストリップ上の溶
融メッキ金属の流れを変え、巾方向の膜厚分布を均一に
することができる。
However, in the gas injection wiping nozzle method within the electromagnetic force range as shown in FIG. 3, the thickness distribution in the width direction of the molten metal under the gas wiping position is determined by the direction of the electromagnetic force induced in the molten metal by the moving magnetic field generator. And size distribution. The electromagnetic force is generated by the vector product of the induced current induced in the hot-dip metal and the magnetic flux density passing through the hot-dip metal, the direction of which is shown in FIG. 2 (b).
As shown by the arrow, near the center of the steel sheet, the direction is parallel to the moving direction of the magnetic field, but the closer to both ends, the more inward. Therefore, by controlling the induced current and magnetic flux density at arbitrary positions, the direction and magnitude of the electromagnetic force are partially controlled, the flow of the hot-dip metal on the steel strip is changed, and the film thickness distribution in the width direction is made uniform. can do.

本発明では磁性体又は導電体9により鋼ストリップ端
部の溶融メッキ金属を通過する磁束を減少させることに
より、第2図(b)のA部分の内向き電磁力を抑制し、
溶融メッキ金属の内向きの流れを減少させることにより
第1図のc線のように巾方向に均一で薄い膜厚分布を得
ることができる。
In the present invention, the magnetic material or the conductor 9 reduces the magnetic flux passing through the hot-dip plated metal at the end of the steel strip, thereby suppressing the inward electromagnetic force of the portion A in FIG.
By reducing the inward flow of the hot-dip plating metal, it is possible to obtain a uniform and thin film thickness distribution in the width direction as shown by the line c in FIG.

一方第6図の場合に、第2図(c)のA部分の下向き
電磁力が強められ、鋼板端部から内向きに流れる溶融メ
ッキ金属が該部分に溜まってスプラッシュを起すことも
なく下向きに払拭し、第1図のc線のように巾方向に均
一で薄い膜厚分布を得ることができる。
On the other hand, in the case of FIG. 6, the downward electromagnetic force of the portion A in FIG. 2 (c) is strengthened, and the molten plated metal flowing inward from the end of the steel plate is accumulated in the portion and does not splash, so that the downward direction is generated. By wiping, a uniform and thin film thickness distribution can be obtained in the width direction as shown by the line c in FIG.

[実施例] 第3図の溶融メッキ装置に磁性体として第5図の装置
を設置して、溶融亜鉛連続メッキラインにてワイピング
を行った。移動磁界発生装置は周波数1000Hz,ストリッ
プ上での磁束密度は400ガウス、対向する間隔は200mmで
ある。磁性体は高さ100mm、厚さ25mmのコの字形となる
ように電磁鋼板を積層したものをワイピングノズルの下
の鋼ストリップ両端部に設置した。
[Example] The apparatus shown in FIG. 5 was installed as a magnetic material in the hot-dip plating apparatus shown in FIG. 3, and wiping was performed on a continuous hot-dip zinc plating line. The moving magnetic field generator has a frequency of 1000 Hz, a magnetic flux density on the strip of 400 gauss, and a facing distance of 200 mm. The magnetic body was formed by laminating electromagnetic steel sheets so as to have a U-shape having a height of 100 mm and a thickness of 25 mm, and was installed at both ends of a steel strip below a wiping nozzle.

従来の電磁力範囲内気体噴射ワイピング法では平均目
付量が43g/m2片面であったが、本発明によればストリッ
プの通板速度を90m/minでメッキした結果、平均目付量3
5g/m2片面の亜鉛メッキ鋼板を安定して得ることができ
た。又導電体を設置した場合も同様の効果を得ることが
できた。
In the conventional electromagnetic force range in the gas jet wiping method the average basis weight was 43 g / m 2 single-sided, the result according to the present invention the sheet passage rate of the strip was plated with 90m / min, an average basis weight of 3
5 g / m 2 single-sided galvanized steel sheet was obtained stably. The same effect was obtained when a conductor was provided.

更に第6図の装置を鋼板両端部から少し内側に計4セ
ット設置して同じ条件でワイピングした結果、38g/m2
面の亜鉛メッキ鋼板を得ることができた。
Further, four sets of the apparatus shown in FIG. 6 were installed a little inside from both ends of the steel sheet, and wiping was performed under the same conditions. As a result, a galvanized steel sheet having 38 g / m 2 on one side was obtained.

[発明の効果] 以上説明したように本発明法によれば、気体ワイピン
グ位置下方のメッキ膜厚分布を均一すると共に、スプラ
ッシュの発生を効果的に抑制できることから、一層の薄
目付化と高速化を可能とし、その産業上の効果は極めて
大である。
[Effects of the Invention] As described above, according to the method of the present invention, it is possible to make the plating film thickness distribution below the gas wiping position uniform and to effectively suppress the occurrence of splash. And the industrial effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は種々のメッキ法による気体ワイピング位置下方
の鋼板巾方向溶融メッキ金属膜厚分布である。第2図は
移動磁界発生装置によって誘起される(a)は渦電流分
布図及び(b)(c)は電磁力分布図である。第3図は
本発明の溶融メッキの概略図である。第4図,第5図,
第6図は第3図の磁性体又は導電体9の具体例を示す。 1…溶融メッキ金属浴、2…イグジットロール、3…鋼
ストリップ、4…移動磁界発生装置、5…磁性体コア、
6…コイル、7…気体ワイピングノズル、8…余剰の溶
融メッキ金属、9…磁性体又は導電体。
FIG. 1 shows the thickness distribution of a hot-dip coated metal film below a gas wiping position by various plating methods. 2A is an eddy current distribution diagram induced by the moving magnetic field generator, and FIGS. 2B and 2C are electromagnetic force distribution diagrams. FIG. 3 is a schematic view of the hot-dip plating of the present invention. FIG. 4, FIG. 5,
FIG. 6 shows a specific example of the magnetic material or conductor 9 of FIG. DESCRIPTION OF SYMBOLS 1 ... Hot-dip plating metal bath, 2 ... Exit roll, 3 ... Steel strip, 4 ... Moving magnetic field generator, 5 ... Magnetic core,
6: coil, 7: gas wiping nozzle, 8: surplus hot-dip metal, 9: magnetic material or conductor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−136954(JP,A) 特開 平1−147049(JP,A) 特開 昭64−7261(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-136954 (JP, A) JP-A-1-147049 (JP, A) JP-A-64-7261 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融メッキ金属中を通過して浮上する鋼ス
トリップに付着した溶融メッキ金属に、移動磁界を付加
して該メッキ浴面側へ電磁力を作用させ、該電磁力の及
ぶ範囲内に気体ワイピングノズルを設け、さらに該気体
ワイピングノズル直下の溶融メッキ金属相対位置の鋼ス
トリップ巾方向端部から50〜150mmを含む範囲に磁性体
又は導電体を設け、鋼ストリップに付着する余剰の溶融
メッキ金属を払拭することを特徴とする高速薄目付溶融
メッキ法。
1. A moving magnetic field is applied to a hot-dip plated metal adhered to a steel strip that floats through a hot-dip plated metal to cause an electromagnetic force to act on the plating bath surface side. A magnetic material or a conductor is provided in a range including 50 to 150 mm from the end in the width direction of the steel strip at a position relative to the hot-dip metal immediately below the gas wiping nozzle, and the excess molten metal adhering to the steel strip is provided. A high-speed thinning hot-dip plating method characterized by wiping plated metal.
JP11344488A 1988-05-12 1988-05-12 High-speed hot-dip galvanizing method Expired - Fee Related JP2619474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11344488A JP2619474B2 (en) 1988-05-12 1988-05-12 High-speed hot-dip galvanizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11344488A JP2619474B2 (en) 1988-05-12 1988-05-12 High-speed hot-dip galvanizing method

Publications (2)

Publication Number Publication Date
JPH01287261A JPH01287261A (en) 1989-11-17
JP2619474B2 true JP2619474B2 (en) 1997-06-11

Family

ID=14612383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11344488A Expired - Fee Related JP2619474B2 (en) 1988-05-12 1988-05-12 High-speed hot-dip galvanizing method

Country Status (1)

Country Link
JP (1) JP2619474B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887707B1 (en) * 2005-06-24 2007-09-07 Celes Sa DEVICE AND METHOD FOR GUIDING A METAL STRIP IN CONTINUOUS PROCESS EQUIPMENT
WO2014199194A1 (en) * 2013-06-10 2014-12-18 Arcelormittal Investigacion Y Desarrollo, S.L. Installation for hot dip coating a metal strip comprising an adjustable confinement box

Also Published As

Publication number Publication date
JPH01287261A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
KR101372765B1 (en) Electro-magnetic wiping device and Apparatus for wiping coated steel sheet having The same
JPH06207263A (en) Hot-dip metal coating device
JP2619474B2 (en) High-speed hot-dip galvanizing method
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JP2602757B2 (en) Continuous hot-dip galvanizing method
JP4734081B2 (en) Method for producing hot-dip galvanized steel sheet
KR950000007B1 (en) Method of controlling coating weight on a hot-dipping steel strip
EP2165000B1 (en) Method and device for controlling the thickness of a coating on a flat metal product
JP2712335B2 (en) Method and apparatus for preventing overcoating of hot-dip plating
JP2601067B2 (en) Hot-dip galvanized steel sheet
JP4547818B2 (en) Method for controlling the coating amount of hot dip galvanized steel sheet
JPH0721567Y2 (en) Hot dip plating equipment
JPH02254147A (en) Method for controlling coating weight on hot dip metal coated steel sheet
JP2556220B2 (en) Hot-dip galvanized steel sheet
JPH01136954A (en) Hot dip metal coating apparatus which gives thin thickness
JPH10273764A (en) Method for controlling coating weight of continuous hot dip metal coating line and device therefor
JP2530909Y2 (en) Edge overcoat prevention equipment for hot-dip plating
JPH08333661A (en) Apparatus for production of hot dip metal coated steel sheet and method therefor
JPH02217454A (en) Method for preventing edge overcoating and surface flaw of hot dipping steel sheet
JPS62103353A (en) Hot dipping method for giving thin layer
JP2757381B2 (en) Method for preventing edge overcoat of hot-dip plating
JPH06179956A (en) Method and device for coating hot-dip coated steel sheet
JPH08127854A (en) Method and device for controlling coating thickness of metallic sheet in hot-dipping bath
JPH0586446A (en) Hot dip coating method for metallic strip
JPH06179957A (en) Method and device for coating hot-dip coated steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees