JPH06136502A - Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force - Google Patents

Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force

Info

Publication number
JPH06136502A
JPH06136502A JP31095992A JP31095992A JPH06136502A JP H06136502 A JPH06136502 A JP H06136502A JP 31095992 A JP31095992 A JP 31095992A JP 31095992 A JP31095992 A JP 31095992A JP H06136502 A JPH06136502 A JP H06136502A
Authority
JP
Japan
Prior art keywords
steel strip
magnetic field
field generating
distance
moving magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31095992A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Den
達博 傳
Shigeo Matsubara
茂雄 松原
Kazunari Nakamoto
一成 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP31095992A priority Critical patent/JPH06136502A/en
Publication of JPH06136502A publication Critical patent/JPH06136502A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amplitude by vibration and the torsion in the longitudinal direction in a steel strip by regulating the set value in primary and secondary distance sensors into the position at which the steel strip is perpendicularly spread in a state it is stopped and separately regulating the power sources of moving field generating coils and auxiliary electromagnets. CONSTITUTION:Moving field generating coils 3 are oppositely arranged on both sides of a steel strip 2 perpendicularly rising from a plating bath 1 of a continuous hot-dip plating line. A primary distance sensor 4 is arranged to control the moving field generating coils 3, a secondary distance sensor 6 is arranged to control the auxiliary electromagnets 5, and double side plating is applied. The sensors 4 and 6 set the distance with the steel strip 2 in a stopped state. The steel strip 2 is passed through, electric current is changed in accordance with the distance measurement by the distance sensors 4 and 6 and the electromagnetic force operating on the steel strip 2 is controlled so that it will be made equal with that in the case it is off from the moving field generating coils 3 and auxiliary electromagnets 5 by a prescribed distance. In this way, the dispersion of the coating weight in the longitudinal direction can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【001】[001]

【産業上の利用分野】本発明は、連続溶融金属めっきラ
インで鋼帯をめっきする際のめっき付着量を電磁力で制
御する方法において、鋼帯の振動振幅を抑制する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the vibration amplitude of a steel strip in a method of controlling the amount of plating adhered when a steel strip is plated in a continuous molten metal plating line by an electromagnetic force.

【002】[002]

【従来技術】連続溶融金属めっきラインにおける鋼帯の
めっき付着量制御は、めっき浴から垂直に上昇する鋼帯
の両面側にガスワイピングノズルを対向配置して、その
ノズルよりの吐出ガスで余剰付着めっき金属を吹拭する
ガスワイピング法により一般に行われているが、この方
法でめっき付着量を少なくしたり、高速でめっきしたり
する場合はガス圧力を高めなければならない。しかし、
ガス圧力を高めると、めっき金属のスプラッシュが多く
なり、それが鋼帯に付着して外観を損なう。このスプラ
ッシュは、ノズル先端の角度を小さくして、吐出ガスの
乱れを抑制すれば、ある程度改善できるが、ノズルから
のガス吐出音が大きくなり、作業環境を悪化させる。
2. Description of the Related Art The coating amount control of steel strip in a continuous molten metal plating line is performed by arranging gas wiping nozzles on both sides of a steel strip rising vertically from a plating bath so that the gas discharged from the nozzle causes excess deposit. The gas wiping method of wiping the plating metal is generally used. However, when this method is used to reduce the adhesion amount of plating or to perform high-speed plating, the gas pressure must be increased. But,
Increasing the gas pressure increases the splash of plated metal, which adheres to the strip and impairs the appearance. This splash can be improved to some extent by reducing the angle of the nozzle tip and suppressing the turbulence of the discharge gas, but the sound of gas discharge from the nozzle becomes loud and the working environment deteriorates.

【003】このような問題の少ないめっき付着量制御方
法として、鋼帯の両面側に移動磁場発生コイルをガスワ
イピングノズルのように対向設置して、該コイルの移動
磁場により鋼帯にめっき浴方向への電磁力を作用させ、
鋼帯に付着した余剰のめっき金属を払拭する方法が提案
されている(特公昭42−762号)。この方法での払
拭力は、移動磁場発生コイルと鋼帯との距離が小さい程
大きくなるので、めっき付着量を少なくしたい場合には
その距離を縮めればよい。
As a method for controlling the amount of coating deposits with less problems as described above, moving magnetic field generating coils are installed opposite to each other like gas wiping nozzles on both sides of the steel strip, and the moving magnetic field of the coils causes the direction of the plating bath on the steel strip. Electromagnetic force to
A method of wiping off the excess plated metal adhered to the steel strip has been proposed (Japanese Patent Publication No. 42-762). Since the wiping force in this method becomes larger as the distance between the moving magnetic field generating coil and the steel strip becomes smaller, the distance may be shortened when it is desired to reduce the coating adhesion amount.

【004】[004]

【発明が解決しようとする課題】しかしながら、移動磁
場発生コイルを鋼帯にあまり接近させると、めっき浴か
ら立ち上がった鋼帯は常に表裏方向に振動したり、幅方
向にねじれが生じたりするので、コイルの磁力で引き寄
せられ、鋼帯の振動やねじれは、ガスワイピング法の場
合より大きくなり、長手方向や幅方向のめっき付着量が
不均一になってしまう。このため、鋼帯に接近させるに
は限界があり、50mm程度までしか接近できなかっ
た。そこで、めっき付着量を少なくしたい場合にはガス
ワイピング法を併用しなければならなかった(特開昭6
1−266560号)。
However, when the moving magnetic field generating coil is brought too close to the steel strip, the steel strip rising from the plating bath always vibrates in the front-back direction and twists in the width direction. The vibration and twist of the steel strip, which are attracted by the magnetic force of the coil, are larger than in the case of the gas wiping method, and the amount of plating adhered in the longitudinal direction and the width direction becomes uneven. For this reason, there is a limit to how close the steel strip can be approached, and the steel strip can only be approached up to about 50 mm. Therefore, when it is desired to reduce the amount of plating deposit, it is necessary to use the gas wiping method together (Japanese Patent Laid-Open No. Sho 6-62).
1-266560).

【005】[0095]

【課題を解決するための手段】本発明は、かかる点に鑑
み、めっき付着量を少なくしても移動磁場発生コイル単
独で長手方向や幅方向のめっき付着量を均一にできる制
御方法を提供するものである。すなわち、本発明では、
鋼帯近傍に鋼帯面と移動磁場発生コイルとの距離を計測
できる第1距離センサ−を配置するとともに、移動磁場
発生コイルの移動磁場範囲外の鋼帯両端部側両面には相
対向した補助電磁石を、また、該補助電磁石の近傍には
鋼帯面と補助電磁石との距離を計測できる第2距離セン
サ−をそれぞれ配置して、第1距離センサ−または第2
距離センサ−での鋼帯計測距離が設定値より変動したと
き、移動磁場発生コイルまたは補助電磁石に対する鋼帯
の接近側の磁場を弱く、かつ、離反側の磁場を同時に強
くして、鋼帯両面に作用する電磁力が各距離センサ−の
設定値における鋼帯への電磁力と等しくなるように各移
動磁場発生コイルまたは補助電磁石を制御するのであ
る。
In view of the above problems, the present invention provides a control method capable of uniformizing the amount of plating applied in the longitudinal direction and the width direction by using the moving magnetic field generating coil alone even if the amount of applied plating is reduced. It is a thing. That is, in the present invention,
A first distance sensor that can measure the distance between the surface of the steel strip and the moving magnetic field generating coil is arranged near the steel strip, and the both ends of the steel strip outside the moving magnetic field range of the moving magnetic field generating coil are facing each other. An electromagnet and a second distance sensor capable of measuring the distance between the steel strip surface and the auxiliary electromagnet are respectively arranged near the auxiliary electromagnet, and the first distance sensor or the second distance sensor is arranged.
When the distance measured by the steel strip with the distance sensor fluctuates from the set value, the magnetic field on the approach side of the steel strip to the moving magnetic field generating coil or the auxiliary electromagnet is weakened, and the magnetic field on the detached side is strengthened at the same time. The moving magnetic field generating coils or the auxiliary electromagnets are controlled so that the electromagnetic force acting on is equal to the electromagnetic force on the steel strip at the set value of each distance sensor.

【006】[0096]

【作用】本発明では、第1、2距離センサ−の距離設定
値を鋼帯が停止した状態で垂直に張設された位置にし、
かつ、両側の移動磁場発生コイルや補助電磁石の電源
は、個別に調整できるようにする。また、電源には交流
を使用するので、位相は一致するようにしておく。さら
に、移動磁場発生コイルおよび補助電磁石の磁場は、鋼
帯がそれぞれ第1距離センサ−および第2距離センサ−
の距離設定値にあるときを設定値にしておく。
In the present invention, the distance set values of the first and second distance sensors are set to the vertically stretched position with the steel strip stopped.
Moreover, the power supplies of the moving magnetic field generating coils and the auxiliary electromagnets on both sides can be individually adjusted. Since alternating current is used as the power source, the phases should be matched. Further, the magnetic fields of the moving magnetic field generating coil and the auxiliary electromagnet are such that the steel strip has a first distance sensor and a second distance sensor, respectively.
When the distance is set to, the set value is set.

【007】この状態でめっきを開始すると、鋼帯は、表
裏方向に振動して、片側移動磁場発生コイルに接近し、
かつ、反対側移動磁場発生コイルからは離反して、設定
値よりずれる。しかし、そのずれを第1距離センサ−で
計測して、各移動磁場発生コイルの磁場を鋼帯の接近側
のものが弱く、離反側のものが強くなるように同時に変
化させて、鋼帯両面に作用する電磁力を第1距離センサ
−の設定値における鋼帯への電磁力と等しくすれば、従
来のように、接近側の移動磁場発生コイルに引き寄せら
れず、その方向への振動振幅は小さくなる。このため、
従来より移動磁場発生コイルを鋼帯に接近させることが
できる。鋼帯が振動の都度このように抑制されると、長
手方向のめっき付着量ばらつきも少なくなる。
When plating is started in this state, the steel strip vibrates in the front and back directions and approaches the one-sided moving magnetic field generating coil,
Moreover, it is separated from the opposite side moving magnetic field generating coil and deviates from the set value. However, the deviation is measured by the first distance sensor, and the magnetic fields of the respective moving magnetic field generating coils are simultaneously changed so that the magnetic field on the approaching side of the steel strip is weaker and the magnetic field on the detaching side is stronger. If the electromagnetic force acting on is equal to the electromagnetic force applied to the steel strip at the set value of the first distance sensor, it is not attracted to the moving magnetic field generating coil on the approach side as in the conventional case, and the vibration amplitude in that direction is Get smaller. For this reason,
Conventionally, the moving magnetic field generating coil can be brought closer to the steel strip. When the steel strip is suppressed in this way each time it vibrates, variations in the amount of plating deposited in the longitudinal direction also decrease.

【008】また、鋼帯には、振動とともに幅方向のねじ
れが生じるが、このねじれは鋼帯両端部側両面に相対向
して配置した補助電磁石も鋼帯との距離を第2距離セン
サ−で測定して、上記移動磁場発生コイルのように制御
すれば、小さくできるので、従来より移動磁場発生コイ
ルを鋼帯に接近させることができ、幅方向のめっき付着
量ばらつきも少なくなる。なお、鋼帯の距離を測定する
第1距離センサ−や第2距離センサ−として種々のもの
があるが、鋼帯への投射レ−ザ−光の反射光角度を三角
法の原理により測定して、鋼帯までの距離を測定するレ
−ザ−方式のもの、あるいは渦電流方式のものなどを用
いればよい。
Further, the steel strip is twisted in the width direction due to the vibration, and this twist is also detected by the auxiliary electromagnets arranged on both sides of the steel strip so as to face each other. By measuring in accordance with the above-mentioned moving magnetic field generating coil, the moving magnetic field generating coil can be made smaller, so that the moving magnetic field generating coil can be brought closer to the steel strip than in the prior art, and the variation in the amount of plating adhered in the width direction can be reduced. There are various types of first distance sensor and second distance sensor that measure the distance of the steel strip. The angle of light reflected by the projection laser on the steel strip is measured by the trigonometric principle. Then, a laser method for measuring the distance to the steel strip or an eddy current method may be used.

【009】[0109]

【実施例】図1、図2に示すように、連続溶融金属めっ
きラインのめっき浴1から垂直に上昇する鋼帯2の両面
側に移動磁場発生コイル3を対向配置して、この移動磁
場発生コイル3を制御する第1距離センサ−4を片面側
中央部に配置した。また、移動磁場発生コイル3の上下
で、その磁場の及ばない部分の鋼帯2の両端側に鋼帯2
を挟むように対向した補助電磁石5を4対配置して、各
補助電磁石5を制御する第2距離センサ−6を鋼帯2片
面の補助電磁石5の下側または上側に配置し、両面等め
っき付着量のめっきを施した。
EXAMPLE As shown in FIGS. 1 and 2, a moving magnetic field generating coil 3 is arranged oppositely on both sides of a steel strip 2 which vertically rises from a plating bath 1 of a continuous molten metal plating line to generate this moving magnetic field. The first distance sensor-4 that controls the coil 3 is arranged in the central portion on one side. In addition, the steel strips 2 are provided above and below the moving magnetic field generating coil 3 and on both ends of the steel strip 2 in a portion not covered by the magnetic field.
4 pairs of opposing electromagnets 5 are arranged so as to sandwich each other, and a second distance sensor-6 for controlling each of the auxiliary electromagnets 5 is placed below or above the auxiliary electromagnet 5 on one side of the steel strip 2, and both sides are plated. The amount of plating was applied.

【010】鋼帯2は厚さ0.8mm、幅1200mmの
ものを通板し、各移動磁場発生コイル3は、それぞれ高
さ1000mm、幅1500mmの寸法のものを配置し
た。また、移動磁場発生コイル3に流す電流には100
0Hzの3相交流を用い、鋼帯2に振動がない場合、す
なわち、停止状態にあるとき1相あたり1500Aでめ
っき金属を払拭できるようにした。さらに、補助電磁石
5は直径100mmで2000タ−ンのものを使用し、
200Aの直流電流を用いて、鋼帯2のねじれを抑制で
きるようにした。第1距離センサ−4および第2距離セ
ンサ−6にはレ−ザ−方式センサ−(キ−エンス製、L
B−300)を用い、各センサ−とも停止状態の鋼帯2
との距離を300mmに設定した。なお、7はめっき浴
1に浸漬されたシンクロ−ル、8はシンクロ−ル7の垂
直上方に配置されたトップロ−ルおよび9はめっき浴1
の中で鋼帯2を押さえる補助ロ−ルである。
The steel strip 2 has a thickness of 0.8 mm and a width of 1200 mm, and each moving magnetic field generating coil 3 has a height of 1000 mm and a width of 1500 mm. In addition, the current supplied to the moving magnetic field generating coil 3 is 100
When the steel strip 2 has no vibration, that is, when the steel strip 2 is in a stopped state, the plated metal can be wiped off at 1500 A per phase by using a three-phase alternating current of 0 Hz. Furthermore, the auxiliary electromagnet 5 has a diameter of 100 mm and a 2,000 turn,
The DC current of 200 A was used to suppress the twist of the steel strip 2. The first distance sensor-4 and the second distance sensor-6 are laser-type sensors (made by Keyence, L
B-300) and each sensor is in the stopped steel strip 2
And the distance between and was set to 300 mm. In addition, 7 is a synchro immersed in the plating bath 1, 8 is a top roll arranged vertically above the synchro 7, and 9 is a plating bath 1.
It is an auxiliary roll for pressing the steel strip 2 in the inside.

【011】この状態で鋼帯2を100m/minの速度
で通板して、第1距離センサ−4、第2距離センサ−6
での距離測定に対応して電流を1000〜2500Aの
範囲で変化させ、鋼帯2に作用する電磁力が移動磁場発
生コイル3および補助電磁石5からともに10mm離れ
た場合と等しくなるように制御した。移動地場発生コイ
ル3と補助電磁石5の制御回路の1例を図3に示す。移
動磁場発生コイル3と補助電磁石5はそれぞれの第1距
離センサ−4、第2距離センサ−6によって独立の制御
回路で制御する。
In this state, the steel strip 2 is threaded at a speed of 100 m / min to make the first distance sensor-4 and the second distance sensor-6.
The electric current was changed in the range of 1000 to 2500 A in accordance with the distance measurement at 1, and the electromagnetic force acting on the steel strip 2 was controlled to be equal to that when the moving magnetic field generating coil 3 and the auxiliary electromagnet 5 were both separated by 10 mm. . An example of the control circuit for the moving field generating coil 3 and the auxiliary electromagnet 5 is shown in FIG. The moving magnetic field generating coil 3 and the auxiliary electromagnet 5 are controlled by their respective first distance sensor-4 and second distance sensor-6 by independent control circuits.

【012】鋼帯2の振動の制御は、対向する移動磁場発
生コイル3の中心線を基準位置に設定して、第1距離セ
ンサ−4で測定した鋼帯2の位置と基準位置の差に応じ
て常に追従しながら移動磁場発生コイル3に流す電流値
を変化させていくようにした。また、補助電磁石5によ
る鋼帯2のねじれ修正は、基準位置を同様に設定して、
鋼帯2がその基準位置にあるとき電流を流さず、基準位
置から離れた場合、離れた側の補助電磁石5にのみ電流
を流して制御した。図4に鋼帯2の振動振幅を、図5に
鋼帯長手方向のめっき付着量変化を、さらに、図6に鋼
帯幅方向のめっき付着量変化を示す。
The vibration of the steel strip 2 is controlled by setting the center line of the opposing moving magnetic field generating coil 3 at the reference position and determining the difference between the position of the steel strip 2 measured by the first distance sensor-4 and the reference position. Accordingly, the value of the current flowing through the moving magnetic field generating coil 3 is changed while always following it. In addition, for the twist correction of the steel strip 2 by the auxiliary electromagnet 5, the reference position is set in the same manner,
When the steel strip 2 was at the reference position, no current was passed, and when the steel strip 2 was separated from the reference position, the current was passed only through the auxiliary electromagnet 5 on the remote side for control. FIG. 4 shows the vibration amplitude of the steel strip 2, FIG. 5 shows the change in the coating weight in the longitudinal direction of the steel strip, and FIG. 6 shows the change in the coating weight in the width direction of the steel strip.

【013】[0113]

【比較例】実施例で鋼帯2と移動磁場発生コイル3の間
隔を50mmに拡大するとともに、補助電磁石5を取り
外し、他の条件は同一にして、溶融めっきを実施した。
図7に鋼帯1の振動振幅を、図8に鋼帯長手方向のめっ
き付着量変化を、図9に鋼帯幅方向のめっき付着量変化
を示す。
Comparative Example In the example, the distance between the steel strip 2 and the moving magnetic field generating coil 3 was increased to 50 mm, the auxiliary electromagnet 5 was removed, and the other conditions were the same, and hot dipping was performed.
FIG. 7 shows the vibration amplitude of the steel strip 1, FIG. 8 shows the change in the coating amount in the longitudinal direction of the steel strip, and FIG. 9 shows the change in the coating amount in the steel strip width direction.

【014】[0142]

【発明の効果】以上のように、本発明によれば、鋼帯の
振動振幅や幅方向のねじれを小さくできるので、移動磁
場発生コイルを鋼帯に接近させることができる。このた
め、めっき付着量は、従来両面側の移動磁場発生コイル
を鋼帯振動に合わせて個々に制御しなかった場合、65
g/m2が限界であったが、35g/m2まで絞ることが
でき、長手方向のめっき付着量ばらつきも小さくでき
た。また、幅方向のめっき付着量ばらつきも補助電磁石
を配置しない場合、±20g/m2であったが、±10
g/m2にまで小さくできた。
As described above, according to the present invention, since the vibration amplitude of the steel strip and the twist in the width direction can be reduced, the moving magnetic field generating coil can be brought close to the steel strip. For this reason, the coating weight is 65 when the moving magnetic field generating coils on both sides are not individually controlled according to the steel strip vibration.
g / m 2 was limited, but can be narrowed up to 35 g / m 2, was also reduced coating weight variation in the longitudinal direction. Further, the variation in the amount of plating applied in the width direction was ± 20 g / m 2 when the auxiliary electromagnet was not arranged, but it was ± 10 g / m 2.
It could be reduced to g / m 2 .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の1実施法を示すめっき浴付近の側面
図である。
FIG. 1 is a side view near a plating bath showing a method of carrying out the method of the present invention.

【図2】本発明法の1実施法における移動磁場発生コイ
ル、補助電磁石、第1距離センサ−および第2距離セン
サ−の配置を示す正面図である。
FIG. 2 is a front view showing an arrangement of a moving magnetic field generating coil, an auxiliary electromagnet, a first distance sensor and a second distance sensor in one implementation method of the method of the present invention.

【図3】第1距離センサ−または第2距離センサ−の鋼
帯測定距離によりそれぞれ移動磁場発生コイルまたは補
助電磁石に流す電流値の制御回路である。
FIG. 3 is a control circuit of a current value to be passed through a moving magnetic field generating coil or an auxiliary electromagnet depending on a steel strip measurement distance of a first distance sensor or a second distance sensor.

【図4】実施例での鋼帯振動振幅を示す図である。FIG. 4 is a diagram showing a vibration amplitude of a steel strip in an example.

【図5】実施例での鋼帯長手方向のめっき付着量変化を
示す図である。
FIG. 5 is a diagram showing changes in the amount of plating adhered in the longitudinal direction of the steel strip in the example.

【図6】実施例での鋼帯幅方向のめっき付着量変化を示
す図である。
FIG. 6 is a diagram showing changes in the amount of plating adhered in the width direction of the steel strip in the example.

【図7】比較例での鋼帯振動振幅を示す図である。FIG. 7 is a diagram showing a vibration amplitude of a steel strip in a comparative example.

【図8】比較例での鋼帯長手方向のめっき付着量変化を
示す図である。
FIG. 8 is a diagram showing a change in the amount of plating adhered in the longitudinal direction of a steel strip in a comparative example.

【図9】比較例での鋼帯幅方向のめっき付着量変化を示
す図である。
FIG. 9 is a diagram showing a change in the amount of plating adhered in the width direction of a steel strip in a comparative example.

【符号の説明】[Explanation of symbols]

1…めっき浴、2…鋼帯、3…移動磁場発生コイル、4
…第1距離センサ−、5…補助電磁石、6…第2距離セ
ンサ−、7…シンクロ−ル、8…トップロ−ル、9…補
助ロ−ル、
1 ... Plating bath, 2 ... Steel strip, 3 ... Moving magnetic field generating coil, 4
... first distance sensor-5, auxiliary electromagnet, 6 second distance sensor, 7 ... synchronous, 8 ... top roll, 9 ... auxiliary roll,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続溶融金属めっきラインのめっき浴か
ら垂直に上昇する鋼帯の両面側に移動磁場発生コイルを
対向設置して、該コイルの移動磁場により鋼帯にめっき
浴方向への電磁力を作用させ、鋼帯に付着した余剰のめ
っき金属を払拭する方法において、鋼帯近傍に鋼帯面と
移動磁場発生コイルとの距離を計測できる第1距離セン
サ−を配置するとともに、移動磁場発生コイルの移動磁
場範囲外の鋼帯両端部側両面には相対向した補助電磁石
を、また、該補助電磁石の近傍には鋼帯面と補助電磁石
との距離を計測できる第2距離センサ−をそれぞれ配置
して、第1距離センサ−または第2距離センサ−での鋼
帯計測距離が設定値より変動したとき、移動磁場発生コ
イルまたは補助電磁石に対する鋼帯の接近側の磁場を弱
く、かつ、離反側の磁場を同時に強くして、鋼帯両面に
作用する電磁力が各距離センサ−の設定値における鋼帯
への電磁力と等しくなるように各移動磁場発生コイルま
たは補助電磁石を制御することを特徴とする溶融金属め
っき鋼帯の電磁力によるめっき付着量制御方法。
1. A moving magnetic field generating coil is installed opposite to both sides of a steel strip rising vertically from a plating bath of a continuous molten metal plating line, and the moving magnetic field of the coil causes an electromagnetic force in the direction of the plating bath on the steel strip. In the method of wiping off the excess plating metal adhered to the steel strip, a first distance sensor capable of measuring the distance between the steel strip surface and the moving magnetic field generating coil is arranged in the vicinity of the steel strip, and the moving magnetic field is generated. Auxiliary electromagnets facing each other on both sides of the steel strip outside the moving magnetic field range of the coil, and a second distance sensor capable of measuring the distance between the steel strip surface and the auxiliary electromagnet, in the vicinity of the auxiliary electromagnet, respectively. When the steel strip measurement distance in the first distance sensor or the second distance sensor is changed from the set value, the magnetic field on the approaching side of the steel strip to the moving magnetic field generating coil or the auxiliary electromagnet is weakened and separated. On the side The magnetic field is simultaneously strengthened, and each moving magnetic field generating coil or auxiliary electromagnet is controlled so that the electromagnetic force acting on both sides of the steel strip becomes equal to the electromagnetic force on the steel strip at the set value of each distance sensor. Method for controlling coating weight by electromagnetic force of hot-dip galvanized steel strip.
JP31095992A 1992-10-26 1992-10-26 Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force Withdrawn JPH06136502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31095992A JPH06136502A (en) 1992-10-26 1992-10-26 Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31095992A JPH06136502A (en) 1992-10-26 1992-10-26 Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force

Publications (1)

Publication Number Publication Date
JPH06136502A true JPH06136502A (en) 1994-05-17

Family

ID=18011466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31095992A Withdrawn JPH06136502A (en) 1992-10-26 1992-10-26 Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force

Country Status (1)

Country Link
JP (1) JPH06136502A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011206A1 (en) * 1995-09-18 1997-03-27 Mannesmann Ag Process for stabilising strip in a plant for coating strip material
KR100293228B1 (en) * 1996-12-12 2001-09-17 이구택 Apparatus for uniforming adhesion amount of continuous hot dip coating and method therefor
KR100293236B1 (en) * 1996-12-20 2001-09-17 이구택 Apparatus for controlling plating adhesion amount for continuous hot dip coating process increasing performance of magnetic knives and method for increasing performance thereof
WO2002014572A1 (en) * 2000-08-11 2002-02-21 Pohang Iron And Steel Company Ltd A method for controlling the thickness of a galvanising coating on a metallic object
WO2002014574A1 (en) * 2000-08-11 2002-02-21 Abb Ab A device and a method for controlling the thickness of a coating on a metallic object
KR20020052114A (en) * 2000-12-23 2002-07-02 이구택 A method for controlling the thickness of a galvanizing coating on a metallic object
WO2004050941A1 (en) * 2002-11-30 2004-06-17 Sms Demag Aktiengesellschaft Device and method for hot-dip coating a metal strand
KR100470656B1 (en) * 2000-08-28 2005-03-07 주식회사 포스코 Apparatus for preventing vibration of iron plate
JP2005290520A (en) * 2004-04-05 2005-10-20 Mitsubishi-Hitachi Metals Machinery Inc Damping apparatus for steel sheet
JP2006519306A (en) * 2003-02-27 2006-08-24 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for hot dip coating of metal plate, especially steel plate
JP2007284775A (en) * 2006-04-20 2007-11-01 Jfe Steel Kk Coating weight controller for continuous hot dip metal plating

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011206A1 (en) * 1995-09-18 1997-03-27 Mannesmann Ag Process for stabilising strip in a plant for coating strip material
AU711871B2 (en) * 1995-09-18 1999-10-21 Mannesmann Aktiengesellschaft Process for stabilising strip in a plant for coating strip material
US6194022B1 (en) * 1995-09-18 2001-02-27 Mannesmann Aktiengesellschaft Process for stabilizing strip in a plant for coating strip material
KR100415069B1 (en) * 1995-09-18 2004-03-26 에스엠에스 데마그 아게 METHODS AND APPARATUS FOR STABILIZING STRIP IN INSTALLATIONS FOR COATING STRIPPED MATERIAL
KR100293228B1 (en) * 1996-12-12 2001-09-17 이구택 Apparatus for uniforming adhesion amount of continuous hot dip coating and method therefor
KR100293236B1 (en) * 1996-12-20 2001-09-17 이구택 Apparatus for controlling plating adhesion amount for continuous hot dip coating process increasing performance of magnetic knives and method for increasing performance thereof
WO2002014574A1 (en) * 2000-08-11 2002-02-21 Abb Ab A device and a method for controlling the thickness of a coating on a metallic object
WO2002014572A1 (en) * 2000-08-11 2002-02-21 Pohang Iron And Steel Company Ltd A method for controlling the thickness of a galvanising coating on a metallic object
KR100470656B1 (en) * 2000-08-28 2005-03-07 주식회사 포스코 Apparatus for preventing vibration of iron plate
KR20020052114A (en) * 2000-12-23 2002-07-02 이구택 A method for controlling the thickness of a galvanizing coating on a metallic object
WO2004050941A1 (en) * 2002-11-30 2004-06-17 Sms Demag Aktiengesellschaft Device and method for hot-dip coating a metal strand
US8304029B2 (en) 2002-11-30 2012-11-06 Sms Siemag Aktiengesellschaft Method and device for hot-dip coating a metal strand
JP2006519306A (en) * 2003-02-27 2006-08-24 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for hot dip coating of metal plate, especially steel plate
JP2005290520A (en) * 2004-04-05 2005-10-20 Mitsubishi-Hitachi Metals Machinery Inc Damping apparatus for steel sheet
JP2007284775A (en) * 2006-04-20 2007-11-01 Jfe Steel Kk Coating weight controller for continuous hot dip metal plating

Similar Documents

Publication Publication Date Title
JPH06136502A (en) Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force
US20100112238A1 (en) Method and device for hot dip coating a metal strand
JPH06108220A (en) Method for controlling coating weight of hot-dip metal-coated steel strip by electromagnetic force
WO2010058837A1 (en) Electromagnetic vibration control device
JP2000053295A (en) Vibration suppressing device for steel strip
WO2004003249A1 (en) Molten metal plated steel sheet production method and apparatus
JP3530514B2 (en) Steel plate shape correction device and method
JP3025404B2 (en) Non-contact strip straightening apparatus and straightening method
JPH07113157A (en) Method for preventing attraction of steel strip to electromagnet in plating adhesion control by electromagnetic force
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JPH11100651A (en) Continuous hot dip metal coating device
JPH1046310A (en) Hot dip coating method without using sinkroll and coating device
JPH1053849A (en) Method for preventing meandering of hot dipped steel strip
JP5636708B2 (en) Electromagnetic damping device, electromagnetic damping control program
JPH08199323A (en) Control of coating weight of hot dip metal steel sheet and device therefor
JP5811554B2 (en) Electromagnetic damping device, electromagnetic damping control program
JP3876810B2 (en) Metal band damping device and metal band manufacturing method
JP2556220B2 (en) Hot-dip galvanized steel sheet
JP2991922B2 (en) Metal strip support device
JP2002275614A (en) Method for controlling plating deposition on hot-dip metal coated steel plate
JP2011183438A (en) Device for vibration damping and position straightening of metallic strip and method of manufacturing hot-dipped metallic strip using the same device
JP2014201798A (en) Method for manufacturing galvanized steel strip
KR20040091109A (en) Device for hot dip coating metal strands
JP2619474B2 (en) High-speed hot-dip galvanizing method
JPH1046309A (en) Method for controlling plating weight and device therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104