JPH0551704A - Ultra-magnetostrictive alloy - Google Patents

Ultra-magnetostrictive alloy

Info

Publication number
JPH0551704A
JPH0551704A JP4013065A JP1306592A JPH0551704A JP H0551704 A JPH0551704 A JP H0551704A JP 4013065 A JP4013065 A JP 4013065A JP 1306592 A JP1306592 A JP 1306592A JP H0551704 A JPH0551704 A JP H0551704A
Authority
JP
Japan
Prior art keywords
alloy
magnetostrictive
rare earth
gas
earth elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4013065A
Other languages
Japanese (ja)
Other versions
JP3313386B2 (en
Inventor
Tomoki Funayama
知己 船山
Isao Sakai
勲 酒井
Tadahiko Kobayashi
忠彦 小林
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26348786&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0551704(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01306592A priority Critical patent/JP3313386B2/en
Publication of JPH0551704A publication Critical patent/JPH0551704A/en
Application granted granted Critical
Publication of JP3313386B2 publication Critical patent/JP3313386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an ultra-magnetostrictive alloy having high Curie temp. and superior magnetostrictive properties by incorporating rare earth elements, Fe and/or Co, and at least one element among B, C, and N in specific proportions. CONSTITUTION:An alloy having a composition represented by a general formula RXT100-X-YMY [where R means at least one kind among rare earth elements including Y, T means Fe and/or Co, M means at least one element among B, C, and N, and the symbols (X) and (Y) stand for, by atom, 20-60% and 0-30%, respectively] is used and rare earth elements and Fe or Co are melted in the above proportion and an ingot of the resulting molten metal is machined and subjected to crystal control melting in an atmosphere containing N gas, such as N gas, NH3 gas, and CN gas, to incorporate N, or, an alloy containing rare earth elements and Fe or Co and further containing specific amounts of B, C, etc., is refined and an ingot of the resulting molten alloy is subjected to homogenizing heat treatment. By this method, the ultra-magnetostrictive alloy where coercive force is reduced without deteriorating magnetostrictive properties and other magnetic properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気−機械変位変換デ
バイス等に用いられる超磁歪合金に係わり、特にキュリ
ー温度の向上を図った超磁歪合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a giant magnetostrictive alloy used for a magnetic-mechanical displacement conversion device or the like, and more particularly to a giant magnetostrictive alloy having an improved Curie temperature.

【0002】[0002]

【従来の技術】磁性体に外部磁場を印加した際、磁性体
が変形する磁歪の応用として変位制御アクチュエータ、
磁歪振動子、磁歪センサー、磁歪フィルタ、超音波遅延
線等がある。従来はNi基合金、Fe−Co合金、フェ
ライト等が用いられている。
2. Description of the Related Art A displacement control actuator is applied as an application of magnetostriction in which a magnetic body is deformed when an external magnetic field is applied to the magnetic body.
Magnetostrictive oscillators, magnetostrictive sensors, magnetostrictive filters, ultrasonic delay lines, etc. Conventionally, Ni-based alloys, Fe-Co alloys, ferrites, etc. have been used.

【0003】近年、計測工学の進歩および精密機械分野
の発展にともない、ミクロンオーダーの微小変位制御に
不可欠の変位駆動部の開発が必要とされている。この変
位駆動部の駆動機構の一つとして磁歪合金を用いた磁気
−機械変換デバイスが有力である。しかしながら従来の
磁歪合金では、変位の絶対量が充分でなく、ミクロンオ
ーダーの精密変位制御駆動部材料としては絶対駆動変位
量のみならず精密制御の点からも満足し得るものではな
かった。
In recent years, along with the progress of measurement engineering and the development of precision machinery field, it is necessary to develop a displacement drive unit which is indispensable for micro displacement control of micron order. A magnetic-mechanical conversion device using a magnetostrictive alloy is promising as one of the driving mechanisms of this displacement driving unit. However, the conventional magnetostrictive alloy does not have a sufficient absolute amount of displacement, and as a micron-order precision displacement control drive unit material, it is not satisfactory not only in terms of absolute drive displacement but also in precision control.

【0004】このような要求に対し、希土類−遷移金属
系の磁歪合金が高磁歪材料として注目され、研究されて
いる。(特公昭61−33892号公報、米国特許第4
378258号明細書など)
In response to such demands, a rare earth-transition metal based magnetostrictive alloy has been attracting attention and studied as a high magnetostrictive material. (Japanese Patent Publication No. 61-33892, U.S. Pat. No. 4)
378258 specification etc.)

【0005】しかしながら、このような磁歪合金ではキ
ュリー温度が十分高くなく、例えば希土類−鉄合金は低
温域では磁歪特性が低下してしまい、また希土類−コバ
ルト合金では高温環境下での使用が困難で、広範囲の温
度領域で優れた磁歪特性を有する磁歪材料は得られてい
なかった。
However, such a magnetostrictive alloy does not have a sufficiently high Curie temperature. For example, a rare earth-iron alloy has a low magnetostrictive characteristic in a low temperature range, and a rare earth-cobalt alloy is difficult to use in a high temperature environment. However, a magnetostrictive material having excellent magnetostrictive properties in a wide temperature range has not been obtained.

【0006】[0006]

【発明が解決しようとする課題】このように従来の希土
類−遷移金属系の磁歪合金では、キュリー温度が十分高
くなく、広範囲の温度領域で良好な磁歪特性が得られな
いという問題があった。本発明は以上の点を考慮してな
されたものであり、キュリー温度が高く、優れた磁歪特
性を持つ超磁歪合金を提供することを目的とする。
As described above, the conventional rare earth-transition metal-based magnetostrictive alloy has a problem that the Curie temperature is not sufficiently high and good magnetostrictive characteristics cannot be obtained in a wide temperature range. The present invention has been made in view of the above points, and an object thereof is to provide a giant magnetostrictive alloy having a high Curie temperature and excellent magnetostrictive properties.

【0007】[0007]

【課題を解決するための手段】本発明は、原子%で表し
た一般式:Rx 100-x-y y (RはYを含む希土類元
素のうち少なくとも1種、TはFe,Coのうち少なく
とも1種の元素、MはB、C、Nのうち少なくとも1種
の元素、20≦x≦60、0<y≦30)で示されるこ
とを特徴とする超磁歪合金である。
The present invention provides a general formula expressed in atomic%: R x T 100-xy M y (R is at least one rare earth element containing Y, T is Fe or Co) At least one kind of element, M is at least one kind of element among B, C, and N, 20 ≦ x ≦ 60, 0 <y ≦ 30), and is a giant magnetostrictive alloy.

【0008】前記Yは含む希土類元素(R)としては、
Y,La,Ce,Pr,Nb,Pm,Sm,Eu,C
d,Tb,Dy,Ho,Er,Tm,Yb,Luが用い
られ、これらのうち少なくとも1種としては、Pr,N
d,Sm,Tb,Dy,Ho,Er,TbDy,TbH
o,TbPr,SmYb,TbDyHo,TbDyP
r,TbPrHoが好ましい。
As the rare earth element (R) containing Y,
Y, La, Ce, Pr, Nb, Pm, Sm, Eu, C
d, Tb, Dy, Ho, Er, Tm, Yb and Lu are used, and at least one of them is Pr, N
d, Sm, Tb, Dy, Ho, Er, TbDy, TbH
o, TbPr, SmYb, TbDyHo, TbDyP
r, TbPrHo are preferred.

【0009】Fe、Coのうち少なくとも1種の元素
(T)としては、Fe及び又は、Coが用いられる。こ
の一部をNi,Mn等他の遷移元素で置換することも可
能であるが、過剰に置換するとキュリー温度が低下して
しまうため、Fe,Coに対し原子%で50%以下であ
る必要がある。前記一般式におけるxは、20未満か6
0を越えると、主相が減少し、磁歪特性が低下する。よ
り好ましいxは、25〜40の範囲である。
Fe and / or Co is used as at least one element (T) of Fe and Co. It is possible to replace a part of this with other transition elements such as Ni and Mn. However, if it is replaced excessively, the Curie temperature is lowered, so that it is necessary to be 50% or less in atomic% with respect to Fe and Co. is there. X in the above general formula is less than 20 or 6
When it exceeds 0, the main phase is decreased and the magnetostrictive characteristic is deteriorated. More preferable x is in the range of 25-40.

【0010】前記超磁歪合金は、一般に磁歪特性を担う
主相であるラーベス相及び粒界から構成されているがM
元素は主相の格子中に侵入するいわゆる浸入型元素で、
遷移元素のバンド構造に変調を与え、特にd電子の磁気
分極の増加及びd電子スピン間の交換相互作用を強化
し、ひいては超磁歪合金のキュリー温度を向上させる。
この効果は極少量のM元素の添加で得られるが、特に、
上記一般式におけるyが3以上で顕著となる。一方、含
有量を増してゆくと、主相中での固溶が困難となり粒界
に析出してくるが、粒界に存在した際は、抵抗率が増加
し、周波数特性を向上させる。しかし、30を超えると
粒界において過剰に存在することにより磁歪特性を劣化
させる。より好ましいyは、10〜25の範囲である。
なお、水素、酸素、リンなども同様の侵入型元素であ
り、同程度の量までの含有が許容される。前記一般式に
おけるMがNである超磁歪合金の製造方法を以下に説明
する。
The giant magnetostrictive alloy is generally composed of a Laves phase and a grain boundary, which are the main phases responsible for the magnetostrictive characteristics.
The element is a so-called infiltration type element that penetrates into the lattice of the main phase,
Modulates the band structure of the transition element, in particular, increases the magnetic polarization of d-electrons and enhances the exchange interaction between d-electron spins, and thus improves the Curie temperature of the giant magnetostrictive alloy.
This effect can be obtained by adding a very small amount of M element,
It becomes significant when y in the above general formula is 3 or more. On the other hand, if the content is increased, it becomes difficult to form a solid solution in the main phase, and it precipitates at the grain boundaries, but when it is present at the grain boundaries, the resistivity increases and the frequency characteristics are improved. However, when it exceeds 30, it is excessively present in the grain boundary and deteriorates the magnetostrictive property. More preferable y is in the range of 10 to 25.
Note that hydrogen, oxygen, phosphorus, and the like are similar interstitial elements, and the inclusion of up to the same amount is allowable. A method for producing a giant magnetostrictive alloy in which M in the general formula is N will be described below.

【0011】まず、所定原子比のR元素およびFe、C
oの少なくとも1種の元素を調合し、高周波誘導溶解な
どにより溶解する。つづいて、このインゴットを切削加
工等を施すことにより所望の形状の試料とした後、窒素
または窒素を含む気体化合物中において結晶制御溶解、
例えば浮遊帯域溶解、ブリッジマン溶解を行なう。前記
窒素または窒素を含む気体の圧力としては、0.01a
tm〜10atmで行えどよく、結晶の育成速度として
は0.1mm/hr〜300mm/hrにすることが望
ましい。前記窒素または窒素を含む気体としては、例え
ば窒素、アンモニアガス、シアン系ガスが望ましい。
First, a predetermined atomic ratio of R element and Fe, C
At least one element of o is prepared and dissolved by high frequency induction melting or the like. Subsequently, after subjecting this ingot to a sample having a desired shape by cutting or the like, crystal controlled dissolution in nitrogen or a gas compound containing nitrogen,
For example, floating zone dissolution and Bridgman dissolution are performed. The pressure of the nitrogen or the gas containing nitrogen is 0.01a.
The growth rate of the crystal is preferably 0.1 mm / hr to 300 mm / hr. As the nitrogen or a gas containing nitrogen, for example, nitrogen, ammonia gas, or cyan gas is desirable.

【0012】このような方法により得られた単結晶また
は一方向凝固材はその結晶格子中に侵入しているもので
ある。かかる窒素化合物は、通常、粉末状の試料を窒素
雰囲気中で熱処理することにより得られるが、その場合
バルク状の試料、特に一方向凝固材や単結晶を作製する
ことは非常に困難である。これに対し、前述した方法は
結晶制御溶解、例えば浮遊帯域溶解、ブリッジマン溶解
中に、溶湯が雰囲気中に含まれる窒素を巻き込むため、
合金中に窒素が均質に取り込まれ、前記一方向凝固材や
単結晶においても窒素を均質に含む合金が得られる。
The single crystal or unidirectionally solidified material obtained by such a method penetrates into the crystal lattice. Such a nitrogen compound is usually obtained by heat-treating a powdery sample in a nitrogen atmosphere, but in that case, it is very difficult to produce a bulky sample, especially a unidirectionally solidified material or a single crystal. On the other hand, the above-described method involves crystal controlled melting, for example, floating zone melting and Bridgman melting, because the molten metal involves nitrogen contained in the atmosphere,
Nitrogen is homogeneously incorporated into the alloy, and the unidirectionally solidified material and the single crystal can also obtain an alloy containing nitrogen uniformly.

【0013】[0013]

【作用】本発明に係わる超磁歪合金は、原子%で表した
一般式:Rx 100-x-y y (RはYを含む希土類元素
のうち少なくとも1種、TはFe,Coのうち少なくと
も1種の元素、MはB、C、Nのうち少なくとも1種の
元素、20≦x≦60、0<y≦30)で示されるもの
であるため、キュリー温度が高く、優れた磁歪特性を有
する。
The giant magnetostrictive alloy according to the present invention has a general formula expressed in atomic%: R x T 100-xy M y (R is at least one rare earth element containing Y, and T is at least Fe or Co. One kind of element, M is at least one kind of element among B, C, and N, and 20 ≦ x ≦ 60, 0 <y ≦ 30), and therefore has a high Curie temperature and excellent magnetostrictive characteristics. Have.

【0014】特に、前記一般式におけるMが窒素(N)
である超磁歪合金は前記窒素により希土類−鉄系ラーベ
ス型化合物の磁気異方性に作用し、しかもその結晶組織
に作用するため、磁歪特性その他の磁気特性を劣化させ
ることなく保磁力を低減することができる。
In particular, M in the above general formula is nitrogen (N).
The above-mentioned giant magnetostrictive alloy acts on the magnetic anisotropy of the rare earth-iron-based Laves type compound by the nitrogen and further acts on the crystal structure thereof, so that the coercive force is reduced without deteriorating the magnetostrictive characteristics and other magnetic characteristics. be able to.

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。 実施例1EXAMPLES Examples of the present invention will be described below. Example 1

【0016】表1に示すような組成の合金を、アーク溶
解にて作成した後、900℃、1週間の均質化熱処理を
施した試料を切削加工することにより寸法が10×10
×5mmで、下記表1に示す組成の試験片(No.1〜
7)とした。ここでNo.6,7は従来のBもしくはC
を含まないもので、比較例として作製している。
Alloys having the compositions shown in Table 1 were prepared by arc melting and then subjected to a homogenizing heat treatment at 900 ° C. for 1 week, and the sample was cut to obtain a size of 10 × 10.
A test piece (No. 1 to 5 mm) having the composition shown in Table 1 below.
7). Here, No. 6 and 7 are conventional B or C
Is not included and is manufactured as a comparative example.

【0017】前記方法により作製した各試験片につい
て、磁歪値およびキュリー温度を測定した。その結果を
下記表1に併記した。なお、前記磁歪値およびキュリー
温度は以下のように評価した。磁歪特性は、抗磁性ゲー
ジを用い、磁界は対向磁極型電磁石により発生させ、2
kOe印加磁界中で評価した。なお、磁歪値はNo.6
の磁歪値を1として規格化して表示してある。キュリー
温度は、磁化の温度特性より求めた。
The magnetostriction value and the Curie temperature of each test piece prepared by the above method were measured. The results are also shown in Table 1 below. The magnetostriction value and the Curie temperature were evaluated as follows. The magnetostriction characteristics are obtained by using an anti-magnetic gauge, and the magnetic field is generated by an opposed magnetic pole type electromagnet.
It was evaluated in a magnetic field applied with kOe. The magnetostriction value is No. 6
The magnetostriction value of 1 is standardized and displayed. The Curie temperature was obtained from the temperature characteristic of magnetization.

【0018】[0018]

【表1】 [Table 1]

【0019】前記表1から明らかなように本発明の超磁
歪合金からなる試験片(No.1〜5)は比較例のそれ
(No.6、7)と比較してキュリー温度が高く、また
磁歪値としても比較例より大きくなることがわかる。
As is clear from Table 1, the test pieces (Nos. 1 to 5) made of the giant magnetostrictive alloy of the present invention have a higher Curie temperature than those of the comparative examples (Nos. 6 and 7), and It can be seen that the magnetostriction value is larger than that of the comparative example.

【0020】さらに、本発明の超磁歪合金であるNo.
1と比較例の超磁歪合金であるNo.6について直径1
0mm、長さ30mmのロッド状試料を作製し、変位量
の周波数特性を評価した。磁界印加手段としては、空心
コイルに正弦波交流を流し、定電流で周波数を可変し
た。変位量は、光式変位計を用い、非接触で計測し、1
0Hz時の変位量で規格化した。その結果、図1に示す。
Further, No. 1 which is the giant magnetostrictive alloy of the present invention is used.
No. 1 which is a giant magnetostrictive alloy of Comparative Example 1 and Comparative Example. 6 about diameter 1
A rod-shaped sample having a length of 0 mm and a length of 30 mm was prepared and the frequency characteristic of the displacement amount was evaluated. As the magnetic field applying means, a sinusoidal alternating current was passed through the air-core coil, and the frequency was varied with a constant current. The amount of displacement is measured using an optical displacement meter without contact, and
Normalized by the amount of displacement at 0 Hz. As a result, it is shown in FIG.

【0021】図1から明らかなように、本発明の超磁歪
合金は比較例のそれに比較して周波数に対する変位量の
変化が小さく、高周波領域においても良好な変位量が得
られることがわかる。 実施例2
As is apparent from FIG. 1, the giant magnetostrictive alloy of the present invention has a smaller change in displacement amount with respect to frequency as compared with that of the comparative example, and it is understood that a good displacement amount can be obtained even in a high frequency region. Example 2

【0022】下記表2に示した組成の合金をアーク溶解
にて作成した後、粒径100μm以下まで粉砕し1気圧
窒素雰囲気中にて500℃×1時間の熱処理を行い、プ
レス成形後に1気圧の窒素雰囲気中にて1200℃×2
時間で焼結し、Nを15原子%含有させた片験片(N
o.8〜12)とした。このようにして作製した試験片
(No.8〜12)の磁歪値及びキュリー温度を、実施
例1と同様の方法により求めた。その結果、下記表2に
併記した。
After alloys having the compositions shown in Table 2 below were prepared by arc melting, they were pulverized to a particle size of 100 μm or less, heat-treated at 500 ° C. for 1 hour in a nitrogen atmosphere at 1 atmosphere, and then 1 atmosphere after press molding. 1200 ℃ × 2 in the nitrogen atmosphere of
One test piece (N
o. 8-12). The magnetostriction value and Curie temperature of the test pieces (Nos. 8 to 12) thus produced were determined by the same method as in Example 1. As a result, the results are shown in Table 2 below.

【0023】[0023]

【表2】 前記表2から明らかなように本発明の超磁歪合金からな
る試験片(No.8〜12)は、前述した実施例1と同
様の効果が得られることがわかる。 実施例3
[Table 2] As is clear from Table 2, the test pieces (Nos. 8 to 12) made of the giant magnetostrictive alloy of the present invention have the same effects as those of the above-described Example 1. Example 3

【0024】Tb、Dy、Sm、Ho、Pr、Er、F
e、Co、Mn、Al、Zr、Ni、B、Pの各成分元
素を下記表3に示す組成になるように配合し、アルゴン
雰囲気中でアルミナるつぼを使用して高周波誘導溶解を
行って9種の合金を調製した。つづいて、前記各合金か
ら直径6mm、長さ50mmの試料を切り出した後、1
気圧の窒素雰囲気中にて浮遊帯域溶解を育成速度10μ
m/secの条件で行った。
Tb, Dy, Sm, Ho, Pr, Er, F
e, Co, Mn, Al, Zr, Ni, B, and P were mixed so as to have the compositions shown in Table 3 below, and high-frequency induction melting was performed using an alumina crucible in an argon atmosphere. A seed alloy was prepared. Then, after cutting out a sample having a diameter of 6 mm and a length of 50 mm from each of the above alloys, 1
Floating zone dissolution in nitrogen atmosphere at atmospheric pressure Growth rate 10μ
It was performed under the condition of m / sec.

【0025】得られた試料(No.1〜9)の保磁力
を、振動試料型磁力計を用いてそれぞれ測定した。ま
た、前記試料から実施例1と同様な試験片を取り出し、
磁歪値及びキュリー温度を実施例1と同様の方法により
求めた。これらの結果、下記表3に示した。なお、表3
には窒素雰囲気中にて浮遊帯域溶解を行わない前の各合
金の保磁力を併記した。
The coercive force of the obtained samples (Nos. 1 to 9) was measured using a vibrating sample magnetometer. Also, a test piece similar to that of Example 1 was taken out from the sample,
The magnetostriction value and the Curie temperature were obtained by the same method as in Example 1. The results are shown in Table 3 below. Table 3
Indicates the coercive force of each alloy before dissolution in the floating zone in a nitrogen atmosphere.

【0026】[0026]

【表3】 [Table 3]

【0027】前記表3から明らかなように本発明の超磁
歪合金からなる試験片(No.1〜9)は10〜20
Oeと低い保磁力を有し、かつ高いキュリー温度、大き
い磁歪値を有することがわかる。
As is clear from Table 3, the test pieces (Nos. 1 to 9) made of the giant magnetostrictive alloy of the present invention are 10 to 20.
It can be seen that it has a low coercive force of Oe, a high Curie temperature, and a large magnetostriction value.

【0028】さらに、前記表3のNo.1の組成からな
り窒素雰囲気中で浮遊帯域溶解して得た本発明の合金と
前記表3のNo.1の組成からなり窒素雰囲気中で浮遊
帯域溶解前の合金(比較例)から直径4mm、長さ10
mmのロッド状試料を作製し、磁歪式アクチュエータに
組み込み、微小変位特性を評価した。前記アクチュエー
タは、磁界発生手段としての空心コイルと、直流バイア
ス印加用永久磁石と、温度管理用スパイラル水冷パイプ
と、ヨークと、ステーから構成されている。測定は、前
記空心コイルに制御電流を供給し、その際の微小変位を
測定した。なお、測定中は恒温槽より一定の温度に管理
された冷却水を供給し、温度を一定に保持した。図2に
本発明のロッド状試料による変位量の変化を、図3に比
較例のロッド状試料による変位量の変化をそれぞれ示
す。図2、図3から明らかなように本発明の試料は比較
例の試料に比べてヒステリシスの非常に小さな変位特性
が得られることがわかる。
Further, No. 1 in Table 3 above. The alloy of the present invention having the composition of No. 1 and melted in a floating zone in a nitrogen atmosphere and No. 3 in Table 3 above. 4 mm in diameter and 10 mm in length from an alloy (comparative example) having a composition of No. 1 before melting in a floating zone in a nitrogen atmosphere.
A rod-shaped sample of mm was prepared, incorporated into a magnetostrictive actuator, and evaluated for micro displacement characteristics. The actuator comprises an air-core coil as a magnetic field generating means, a DC bias applying permanent magnet, a temperature control spiral water cooling pipe, a yoke, and a stay. For the measurement, a control current was supplied to the air-core coil, and a minute displacement at that time was measured. During the measurement, cooling water controlled at a constant temperature was supplied from a constant temperature bath to keep the temperature constant. FIG. 2 shows a change in the displacement amount by the rod-shaped sample of the present invention, and FIG. 3 shows a change in the displacement amount by the rod-shaped sample of the comparative example. As is clear from FIGS. 2 and 3, it can be seen that the sample of the present invention has a displacement characteristic with extremely small hysteresis as compared with the sample of the comparative example.

【0029】[0029]

【発明の効果】以上説明したように、本発明によればキ
ュリー温度の高い優れた磁歪特性を有する超磁歪合金を
提供することができる。特に、前記一般式におけるMが
窒素(N)である超磁歪合金によれば前記窒素により希
土類−鉄系ラーベス型化合物の磁気異方性に作用し、し
かもその結晶組織に作用するため、磁歪特性その他の磁
気特性を劣化させることなく保磁力を低減することがで
きる。
As described above, according to the present invention, it is possible to provide a giant magnetostrictive alloy having a high Curie temperature and excellent magnetostrictive properties. Particularly, according to the giant magnetostrictive alloy in which M in the general formula is nitrogen (N), the nitrogen acts on the magnetic anisotropy of the rare earth-iron-based Laves type compound, and further acts on the crystal structure thereof, so that the magnetostrictive characteristic The coercive force can be reduced without deteriorating other magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】表1に示されるNo.1の試料片およびNo.
6(比較例)の試料片の周波数特性を示す線図。
1 is a No. 1 shown in Table 1. No. 1 sample piece and No. 1 sample piece.
6 is a diagram showing frequency characteristics of the sample piece 6 (comparative example). FIG.

【図2】表3に示されるNo.1の組成からなり窒素雰
囲気中で浮遊帯域溶解して得た合金(本発明)のロッド
状試料の微小変位特性を示す線図。
FIG. 2 shows No. 1 shown in Table 3. FIG. 3 is a diagram showing a micro displacement characteristic of a rod-shaped sample of an alloy (invention) having the composition of No. 1 and melted in a floating zone in a nitrogen atmosphere.

【図3】表3に示されるNo.1の組成からなり、窒素
雰囲気中で浮遊帯域溶解前の合金(比較例)のロッド状
試料の微小変位特性を示す線図。
FIG. 3 shows No. FIG. 3 is a diagram showing a minute displacement characteristic of a rod-shaped sample of an alloy (comparative example) having a composition of No. 1 and not dissolved in a floating zone in a nitrogen atmosphere.

フロントページの続き (72)発明者 佐橋 政司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内Front page continuation (72) Inventor Masashi Sahashi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki City, Kanagawa Prefecture Toshiba Research Institute Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%で表した一般式:Rx 100-x-y
y (RはYを含む希土類元素のうち少なくとも1種、
TはFe,Coのうち少なくとも1種の元素、MはB、
C、Nのうち少なくとも1種の元素、20≦x≦60、
0<y≦30)で示されることを特徴とする超磁歪合
金。
1. A general formula expressed in atomic%: R x T 100-xy.
M y (R is at least one of rare earth elements including Y,
T is at least one element of Fe and Co, M is B,
At least one element of C and N, 20 ≦ x ≦ 60,
0 <y ≦ 30), which is a giant magnetostrictive alloy.
JP01306592A 1991-05-08 1992-01-28 Giant magnetostrictive alloy and magneto-mechanical mutation conversion device Expired - Fee Related JP3313386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01306592A JP3313386B2 (en) 1991-05-08 1992-01-28 Giant magnetostrictive alloy and magneto-mechanical mutation conversion device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-102493 1991-05-08
JP10249391 1991-05-08
JP01306592A JP3313386B2 (en) 1991-05-08 1992-01-28 Giant magnetostrictive alloy and magneto-mechanical mutation conversion device

Publications (2)

Publication Number Publication Date
JPH0551704A true JPH0551704A (en) 1993-03-02
JP3313386B2 JP3313386B2 (en) 2002-08-12

Family

ID=26348786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01306592A Expired - Fee Related JP3313386B2 (en) 1991-05-08 1992-01-28 Giant magnetostrictive alloy and magneto-mechanical mutation conversion device

Country Status (1)

Country Link
JP (1) JP3313386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531701A (en) * 1998-12-03 2002-09-24 エトレマ プロダクツ インコーポレイテッド High performance rare earth transition metal magnetostrictive materials with increased impurities

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213601A (en) * 2004-01-30 2005-08-11 Tdk Corp Magnetostriction material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531701A (en) * 1998-12-03 2002-09-24 エトレマ プロダクツ インコーポレイテッド High performance rare earth transition metal magnetostrictive materials with increased impurities

Also Published As

Publication number Publication date
JP3313386B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
US3421889A (en) Magnetic rare earth-cobalt alloys
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
JP2970809B2 (en) Rare earth permanent magnet
JP3452210B2 (en) Manufacturing method of magnetostrictive material
EP0476606B1 (en) Permanent magnet powders
JP2004099928A (en) Magnetic alloy material
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JP2753429B2 (en) Bonded magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JP2753432B2 (en) Sintered permanent magnet
US4473400A (en) Magnetic metallic glass alloy
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
JPH0851007A (en) Permanent magnet and production thereof
JP2791564B2 (en) Magnetostrictive material
US5403407A (en) Permanent magnets made from iron alloys
JP3385667B2 (en) Iron-terbium-based magnetostrictive material and method for producing the same
KR100710613B1 (en) Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
JP2753431B2 (en) Sintered permanent magnet
JPH0845718A (en) Magnetic material and its manufacture
JP2818718B2 (en) Permanent magnet powder
Chen et al. Effects of Cr substitution on the formation, structure and magnetic properties of Sm/sub 2/(Fe, Cr)/sub 17/C/sub x/alloys
JP2753430B2 (en) Bonded magnet
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees