JPH0551663A - Manufacture of alumium base particle composite alloy - Google Patents

Manufacture of alumium base particle composite alloy

Info

Publication number
JPH0551663A
JPH0551663A JP21071291A JP21071291A JPH0551663A JP H0551663 A JPH0551663 A JP H0551663A JP 21071291 A JP21071291 A JP 21071291A JP 21071291 A JP21071291 A JP 21071291A JP H0551663 A JPH0551663 A JP H0551663A
Authority
JP
Japan
Prior art keywords
powder
ceramic particles
aluminum
composite alloy
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21071291A
Other languages
Japanese (ja)
Other versions
JP3363459B2 (en
Inventor
Tetsuya Hayashi
林  哲也
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21071291A priority Critical patent/JP3363459B2/en
Priority to US07/930,187 priority patent/US5372775A/en
Priority to DE69223194T priority patent/DE69223194T2/en
Priority to EP92114255A priority patent/EP0529520B1/en
Publication of JPH0551663A publication Critical patent/JPH0551663A/en
Application granted granted Critical
Publication of JP3363459B2 publication Critical patent/JP3363459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an aluminum base particle composite alloy in which extremely fine ceramics particles are uniformly dispersed. CONSTITUTION:At first, molten metal essentially consisting of aluminum and contg. ceramics particles is powdered by an atomizing method to manufacture atomizing powder. This atomizing powder is subjected to mechanical pulverizing and reaggregating treatment by a ball mill or the like to manufacture mechanically pulverized and reaggregated powder contg. ceramics particles having <=8mum maximum diameter and <=3mum average particle size. This mechanically pulverized and reggregated powder is subjected to warm compacting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はMMC(金属基複合材
料)の製造方法に関するものであり、特に、セラミック
ス粒子を含有するアルミニウム基粒子複合合金の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing MMC (metal matrix composite material), and more particularly to a method for producing an aluminum matrix particle composite alloy containing ceramic particles.

【0002】[0002]

【従来の技術】MMCは鉄やチタン等と同等の機械的強
度や物理的特性(ヤング率等)を備え、さらに軽量とい
う性質を有するので、家電・事務機・ロボット等の部品
の材料として鉄やチタンに代わるものとして有望であ
る。
2. Description of the Related Art MMC has the same mechanical strength and physical characteristics (Young's modulus, etc.) as iron and titanium, and has the property of being lightweight, so it is used as a material for parts of home appliances, office machines, robots, etc. Is a promising alternative to titanium and titanium.

【0003】[0003]

【発明が解決しようとする課題】MMCの製造方法に
は、鋳造法と粉末冶金法の2種がある。鋳造法には、長
繊維強化法、短繊維強化法、粒子強化法がある。粉末冶
金法には短繊維強化法、粒子強化法がある。粉末冶金法
は鋳造法と比べ、マトリックスの合金の自由度が高くよ
り強度の高いものが得ることができ、まだ鋳造欠陥の巣
などがなく信頼性の高い部品が得られる。しかし、粉末
冶金法では混合した強化粒子が旧粉末粒界偏析したり、
また偏析がなくても粒子そのものの大きさが大きいとい
う問題があった。また、鋳造法でも同様に凝固時の重力
偏析や粒子の大きさに問題があった。
There are two types of methods for manufacturing MMC, a casting method and a powder metallurgy method. The casting method includes a long fiber reinforced method, a short fiber reinforced method, and a particle reinforced method. The powder metallurgy method includes a short fiber reinforcement method and a particle reinforcement method. Compared to the casting method, the powder metallurgy method can provide a matrix alloy having a higher degree of freedom and higher strength, and a highly reliable component having no cavities of casting defects can be obtained. However, in the powder metallurgy method, the strengthening particles mixed may segregate the old powder grain boundaries,
Further, there is a problem that the size of the particles themselves is large even without segregation. Further, in the casting method as well, there were problems in gravity segregation and particle size during solidification.

【0004】したがって、いずれの方法でも特性と経済
性の十分なMMCが得られず、ほとんど実用に供せられ
ていないのが実情であった。強化粒子を極微細にしかつ
均一に偏析なく分布させることはMMCの最大の課題で
ある。NEAR NET SHAPE(最終製品に近い
形状)成形することは経済的に部品形状に加工する上で
重要な課題であるが、これは従来の粉末冶金プロセスな
どが利用できる程度に粉末特性を整えることが課題であ
る。
Therefore, in any of the methods, an MMC having sufficient characteristics and economical efficiency cannot be obtained, and it has been practically practically not used. It is the greatest challenge of MMC to make the reinforcing particles extremely fine and to distribute them uniformly without segregation. NEAR NET SHAPE molding (a shape close to the final product) is an important issue in economically processing the shape of the part, but it is necessary to adjust the powder characteristics to the extent that conventional powder metallurgy processes can be used. It is an issue.

【0005】この発明はかかる従来の問題点を解決する
ためになされたものである。この発明の目的は、強化粒
子を極微細にしかつ均一に偏析なく分布させることがで
きるアルミニウム基粒子複合合金の製造方法を提供する
ことである。
The present invention has been made to solve the above conventional problems. An object of the present invention is to provide a method for producing an aluminum-based particle composite alloy in which reinforcing particles can be made extremely fine and can be uniformly distributed without segregation.

【0006】[0006]

【課題を解決するための手段】この発明に従ったアルミ
ニウム基粒子複合合金の製造方法は、まずセラミックス
粒子を含有するアルミニウムを主成分とする溶湯をアト
マイズ法によって粉末化し、アトマイズ粉末を作製す
る。次にアトマイズ粉末を機械的粉砕再凝集処理して、
最大粒径8μm以下で平均粒径が3μm以下の前記セラ
ミックス粒子を含有する機械的粉砕再凝集処理粉末を作
製する。そしてこの機械的粉砕再凝集処理粉末を温間で
成形固化する。
In the method for producing an aluminum-based particle composite alloy according to the present invention, first, a melt containing ceramic particles containing aluminum as a main component is pulverized by an atomizing method to produce atomized powder. Next, the atomized powder is mechanically pulverized and reaggregated,
A mechanically pulverized and reaggregated powder containing the ceramic particles having a maximum particle size of 8 μm or less and an average particle size of 3 μm or less is prepared. Then, the mechanically pulverized and reaggregated powder is compacted and solidified in a warm state.

【0007】[0007]

【作用】機械的粉砕再凝集処理を行なう粉末中に予めセ
ラミックス粒子を含有させておくと機械的粉砕再凝集処
理によりセラミックス粒子を均一に分散させるためのエ
ネルギ量が少なくてすみ、さらに分散物の凝集や偏析が
なく分散状態の均一度が高い粉末を得ることが可能とな
る。機械的粉砕再凝集処理をする粉末にセラミックス粒
子を含有させる方法としては、セラミックス粒子を分散
させた溶湯をアトマイズ法で粉末化する方法がある。ア
トマイズ法には、噴霧媒としてエアまたはヘリウム、窒
素等の不活性ガスを用いるガスアトマイズ法や回転円盤
アトマイズ法等があるが、エアアトマイズ法が一般的で
ある。
When the powder to be mechanically pulverized and re-aggregated contains ceramic particles in advance, the amount of energy for uniformly dispersing the ceramic particles by the mechanical pulverized and re-aggregated treatment is small, and further, the dispersion is It is possible to obtain a powder having a high degree of uniformity in the dispersed state without aggregation or segregation. As a method of incorporating ceramic particles into the powder subjected to mechanical pulverization and re-agglomeration treatment, there is a method of atomizing a molten metal in which ceramic particles are dispersed by an atomizing method. The atomizing method includes a gas atomizing method that uses air or an inert gas such as helium and nitrogen as a spraying medium, a rotary disk atomizing method, and the like, but the air atomizing method is common.

【0008】エアアトマイズ法の場合、溶湯の粘度が高
く(セラミックス粒子を含有するため)また溶湯流れを
絞るとセラミックス粒子の滞留などを生じるので、太い
ノズルから流出させ比較的粗粉末にアトマイズすること
が必要である。このような複合アトマイズ粉末の製法
は、特公昭63−12927号公報などに記載されてい
る方法で可能であり、公知の技術である。
In the case of the air atomization method, the viscosity of the molten metal is high (because it contains ceramic particles), and when the molten metal flow is narrowed, the ceramic particles are retained. is necessary. Such a composite atomized powder can be produced by a method described in Japanese Patent Publication No. 63-12927 and is a known technique.

【0009】セラミックス粒子を均一に含有する溶湯の
偏析を防止する方法として、DURALCAN(商品
名)などの溶解鋳造法による粗大粒子分散強化インゴッ
トを溶解したりする方法や、溶湯を誘導溶解法などで攪
拌する方法がある。
As a method for preventing segregation of a molten metal containing ceramic particles uniformly, a method of melting a coarse particle dispersion strengthened ingot by a melt casting method such as DURALCAN (trade name) or an induction melting method of the molten metal is used. There is a method of stirring.

【0010】溶湯中に添加するセラミックス粒子は、微
細粒子では添加量が多いと凝集が生じる場合があるた
め、溶湯中の分散状態が良好となるようにある程度粗粒
子がよい。機械的粉砕再凝集処理は、処理時間が長くな
るほどセラミックス粒子が微細化するので、10μmを
越えるような粗粒のセラミックス粒子を溶湯中に添加し
ても、機械的粉砕再凝集処理時間を長くすれば所望の寸
法のセラミックス粒子にすることができる。ただし、機
械的粉砕再凝集処理雰囲気中の酸素等の影響や処理コス
トの観点から処理時間が短い方が望ましいため、溶湯中
に添加するセラミックス粒子の大きさはできるだけ細か
いことが望ましい。
The fine ceramic particles added to the molten metal may agglomerate when added in a large amount. Therefore, coarse particles are preferable to some extent so that the dispersed state in the molten metal becomes good. In the mechanical pulverization / re-agglomeration treatment, the ceramic particles become finer as the treatment time becomes longer. For example, ceramic particles having a desired size can be obtained. However, since it is desirable that the treatment time is short in view of the influence of oxygen and the like in the atmosphere of mechanical pulverization and reaggregation treatment and the treatment cost, it is desirable that the size of the ceramic particles added to the molten metal be as small as possible.

【0011】得られたアトマイズ粉末はボールミルやア
トライターなどで機械的粉砕再凝集処理をする。機械的
粉砕再凝集処理を異種の粉末に対して行なう場合には、
従来のボールミル粉砕や混合のような湿式法ではなく、
メカニカルアロイング(MA)と称される乾式で行な
う。PCA(Process Control Age
nt)としてステアリン酸やアルコールなどを少量添加
することで過度の凝集を防ぐことができるが、処理温度
条件などを制御すれば、これらの液体の添加はかならず
しも必要ではない。なお、アトライター処理は高速処理
には適しているが大量処理には適していない。ボールミ
ル処理は長時間処理が必要であるが、雰囲気制御が容易
であり投入エネルギの設計さえ適切に行なえば最も優れ
た経済性を有している。
The obtained atomized powder is mechanically pulverized and reaggregated by a ball mill or an attritor. When performing mechanical pulverization and re-agglomeration treatment on different powders,
Instead of the conventional wet method such as ball milling and mixing,
The dry method is called mechanical alloying (MA). PCA (Process Control Age)
Although excessive aggregation can be prevented by adding a small amount of stearic acid, alcohol, etc. as nt), addition of these liquids is not always necessary if the processing temperature conditions are controlled. Attritor processing is suitable for high-speed processing but not for large-scale processing. The ball mill treatment requires a long time treatment, but the atmosphere is easy to control and has the best economic efficiency if the input energy is properly designed.

【0012】アトマイズ粉末を機械的粉砕再凝集処理を
すると、セラミックス粒子は繰返し粉砕されて微細化
し、マトリックスは粉砕されて微細化したセラミックス
粒子を取込んだ状態で結合造粒し、ある粒度分布を持つ
機械的粉砕再凝集処理粉末(以下「MG処理粉末」とい
う)となる。
When the atomized powder is mechanically pulverized and re-aggregated, the ceramic particles are repeatedly pulverized to be finer, and the matrix is pulverized and combined with the finely-divided ceramic particles to be bonded and granulated to obtain a certain particle size distribution. It becomes a mechanically pulverized and reaggregated powder (hereinafter referred to as “MG-processed powder”).

【0013】MG処理粉末中のセラミックス粒子の最大
径を8μm以下としたのは、これより大きくなると成形
固化時の加圧によりセラミックス粒子が割れて欠陥とな
ったり、固化体において応力負荷時に欠陥として働き低
靭性や低延性の原因となるからである。セラミックス粒
子の最大径は望ましくは5μm以下がよい。
The maximum diameter of the ceramic particles in the MG-treated powder is set to 8 μm or less. When the maximum diameter is larger than this, the ceramic particles are cracked due to pressure during molding and solidification to become defects, or as defects when stress is applied to the solidified body. This is because it causes work toughness and low ductility. The maximum diameter of the ceramic particles is preferably 5 μm or less.

【0014】また、MG処理粉末中のセラミックス粒子
の平均粒径を3μm以下としたが、これを越えると十分
な粒子分散強化を図れず、靭性や延性を低下させるため
である。溶湯に添加したセラミックス粒子の量が30v
ol.%以下であればMG処理粉末中のセラミックス粒
子の平均粒径は1μm以下が望ましいが、多量にセラミ
ックス粒子を添加する場合は、平均自由工程をある程度
に保ち破壊靭性値の低下を防ぐためセラミックス粒子の
平均粒径を1〜2μm程度にする場合もある。
Further, the average particle diameter of the ceramic particles in the MG-treated powder is set to 3 μm or less, but if it exceeds this value, sufficient particle dispersion strengthening cannot be achieved and toughness and ductility are reduced. The amount of ceramic particles added to the molten metal is 30v
ol. %, The average particle size of the ceramic particles in the MG-treated powder is preferably 1 μm or less, but when a large amount of ceramic particles is added, the average free process is kept to a certain degree to prevent the decrease of the fracture toughness value. In some cases, the average particle size of 1 to 2 μm may be set.

【0015】このようにして得られたMG処理粉末は含
有されていたセラミックス粒子が微粉砕され粉末中に均
一に分散している。MG処理粉末は、粉末のままあるい
は粉末成形体として固化するのに必要な温度条件域に加
熱し、その後加圧固化しアルミニウム基粒子複合合金と
する。以上の工程により、極微細なセラミックス粒子を
均一に偏析なく分布させたアルミニウム基粒子複合合金
を製造することができる。なお加熱条件は、マトリック
ス合金組成により異なるが、固化時に粉末どうしが十分
に拡散結合する温度領域であることが必要で一般に30
0℃以上である。高温度域においてもセラミックス粒子
は粗大化しないため温度上限はマトリックス金属の固相
線であるが、アトマイズ粉末の持つ急冷の効果や機械的
合金化により生成された金属間化合物を損なうことなく
固化するにはおよそ550℃以下であることが望まし
い。
In the MG-treated powder thus obtained, the contained ceramic particles are finely pulverized and uniformly dispersed in the powder. The MG-treated powder is heated to a temperature condition range necessary for solidification as a powder or as a powder compact, and then solidified under pressure to obtain an aluminum-based particle composite alloy. Through the above steps, an aluminum-based particle composite alloy in which ultrafine ceramic particles are uniformly distributed without segregation can be manufactured. The heating conditions differ depending on the composition of the matrix alloy, but it is necessary that the heating temperature is in a temperature range in which the powders are sufficiently diffusion-bonded to each other during solidification.
It is 0 ° C or higher. Since the ceramic particles do not coarsen even in the high temperature range, the upper temperature limit is the solidus line of the matrix metal, but solidifies without damaging the effect of quenching of atomized powder and the intermetallic compound generated by mechanical alloying. It is desirable that the temperature is approximately 550 ° C. or lower.

【0016】[0016]

【実施例】【Example】

(実施例1)表1に示すような組合せで、平均粒径か1
〜20μmのAl23 、Si3 4 、SiC、ZrO
2 のセラミックス粒子を0〜40vol%含んだ合金組
成が2024、6061、7075、Al−20Si−
3Cu−1Mgの溶湯をガスアトマイズにより−42m
eshの粉末に加工した後、ボールミルで4〜60Hr
あるいはアトライターで4〜30Hr処理し、セラミッ
クス分散アルミ合金粉末を製造した。この粉末を350
〜550℃に加熱した後に押出法あるいは鍛造法で成形
固化しヤング率および抗折力を測定した。結果を表1に
示す。
 (Example 1) With the combinations shown in Table 1, the average particle size was 1 or less.
~ 20μm Al2O3, Si3N Four, SiC, ZrO
2Alloy group containing 0 to 40 vol% ceramic particles
Composition 2024, 6061, 7075, Al-20Si-
Molten 3Cu-1Mg is -42m by gas atomization
After processing to powder of esh, 4 ~ 60Hr by ball mill
Alternatively, treat with an attritor for 4 to 30 hours and then
Cus dispersion aluminum alloy powder was produced. 350 this powder
Molded by extrusion or forging after heating to ~ 550 ° C
It solidified and Young's modulus and transverse rupture strength were measured. The results are shown in Table 1.
Show.

【0017】[0017]

【表1】 [Table 1]

【0018】No2〜6、10、1113、1416、
17、19、20が本発明である。延性や靭性に関係す
るヤング率の値は小さい法が望ましく、機械的強度に関
係する抗折力は大きい方が好ましい。表1を見ればわか
るように、本発明によれば優れた固化体特性のアルミニ
ウム基粒子複合合金を製造することができる。
No. 2 to 6, 10, 1113, 1416,
17, 19 and 20 are the present invention. The Young's modulus value related to ductility and toughness is preferably small, and the transverse rupture strength related to mechanical strength is preferably large. As can be seen from Table 1, according to the present invention, it is possible to produce an aluminum-based particle composite alloy having excellent solidified body characteristics.

【0019】(実施例2)体積比で20%分散している
セラミックス粒子(Al2 3 粒子あるいはSiC粒
子)の平均粒径が1〜2μmのセラミックス分散202
4合金を溶解鋳造による製造法セラミックス粒子を
MG処理時に添加し、これにより得られたMG処理粉末
を用いて粉末鍛造法で固化する製造法セラミックス粒
子を含有するアトマイズ粉末をMG処理粉末とし、粉末
鍛造法で固化する本発明である製造法の3方法で製造し
た。およびで使用した2024合金粉末は−42m
eshで、MG処理条件はボールミルで20Hrとし、
490℃に加熱した後に鍛造法で成形固化し抗折強度を
測定した。ただし、溶解鍛造法では微細セラミックス粒
子を分散させることが難しいため、平均粒径が10μm
程度の場合も製造した。結果を表2に示す。
(Embodiment 2) Ceramic dispersion 202 in which ceramic particles (Al 2 O 3 particles or SiC particles) dispersed in a volume ratio of 20% have an average particle diameter of 1 to 2 μm.
Manufacturing method by melting and casting 4 alloys Ceramic particles are added at the time of MG treatment, and the MG-treated powder obtained by this is solidified by the powder forging method. Atomized powder containing the ceramic particles as a MG-treated powder is used as a powder. It was manufactured by 3 methods of the manufacturing method of the present invention in which it is solidified by a forging method. The 2024 alloy powder used in and is -42 m.
esh, MG treatment condition is 20Hr in a ball mill,
After being heated to 490 ° C., it was molded and solidified by a forging method and the bending strength was measured. However, since it is difficult to disperse fine ceramic particles by the melt forging method, the average particle size is 10 μm.
Also manufactured to some extent. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2を見ればわかるように、本発明によれ
ば凝集の発生を防ぐことができ、抗折力も他の方法で製
造した場合に比べ大きな値となる。
As can be seen from Table 2, according to the present invention, the occurrence of agglomeration can be prevented, and the transverse rupture strength becomes a large value as compared with the case of manufacturing by another method.

【0022】[0022]

【発明の効果】以上説明したようにこの発明によれば、
セラミックス粒子を均一に偏析なく分布したアルミニウ
ム基粒子複合合金を製造することができる。セラミック
ス粒子が均一に偏析なく分布していると機械的強度や物
理的特性が優れたものになるので、この発明によれば機
械的強度や物理的特性の優れたアルミニウム基粒子複合
合金を製造することができる。
As described above, according to the present invention,
It is possible to manufacture an aluminum-based particle composite alloy in which ceramic particles are uniformly distributed without segregation. Since the mechanical strength and physical properties are excellent when the ceramic particles are uniformly distributed without segregation, the present invention produces an aluminum-based particle composite alloy having excellent mechanical strength and physical properties. be able to.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粒子を含有するアルミニウ
ム基粒子複合合金の製造方法であって、 前記セラミックス粒子を含有するアルミニウムを主成分
とする溶湯をアトマイズ法によって粉末化し、アトマイ
ズ粉末を作製する工程と、 前記アトマイズ粉末を機械的粉砕再凝集処理して、最大
径が8μm以下で平均粒径が3μm以下の前記セラミッ
クス粒子を含有する機械的粉砕再凝集処理粉末を作製す
る工程と、 前記機械的粉砕再凝集処理粉末を温間で成形固化する工
程とを備えたアルミニウム基粒子複合合金の製造方法。
1. A method for producing an aluminum-based particle composite alloy containing ceramic particles, comprising: pulverizing a molten metal containing ceramic particles containing aluminum as a main component by an atomizing method to produce atomized powder; A step of mechanically pulverizing and reaggregating the atomized powder to produce a mechanical pulverizing and reaggregating powder containing the ceramic particles having a maximum diameter of 8 μm or less and an average particle diameter of 3 μm or less; A method for producing an aluminum-based particle composite alloy, comprising the step of compacting and solidifying the agglomerated powder at a warm temperature.
JP21071291A 1991-08-22 1991-08-22 Method for producing aluminum-based particle composite alloy Expired - Fee Related JP3363459B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21071291A JP3363459B2 (en) 1991-08-22 1991-08-22 Method for producing aluminum-based particle composite alloy
US07/930,187 US5372775A (en) 1991-08-22 1992-08-17 Method of preparing particle composite alloy having an aluminum matrix
DE69223194T DE69223194T2 (en) 1991-08-22 1992-08-20 Process for the production of composite alloy powder with aluminum matrix
EP92114255A EP0529520B1 (en) 1991-08-22 1992-08-20 Method of preparing particle composited alloy of aluminum matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21071291A JP3363459B2 (en) 1991-08-22 1991-08-22 Method for producing aluminum-based particle composite alloy

Publications (2)

Publication Number Publication Date
JPH0551663A true JPH0551663A (en) 1993-03-02
JP3363459B2 JP3363459B2 (en) 2003-01-08

Family

ID=16593857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21071291A Expired - Fee Related JP3363459B2 (en) 1991-08-22 1991-08-22 Method for producing aluminum-based particle composite alloy

Country Status (1)

Country Link
JP (1) JP3363459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129316A (en) * 1998-10-29 2000-05-09 Toyota Motor Corp Production of alloy powder
US7028139B1 (en) 2003-07-03 2006-04-11 Veritas Operating Corporation Application-assisted recovery from data corruption in parity RAID storage using successive re-reads

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129316A (en) * 1998-10-29 2000-05-09 Toyota Motor Corp Production of alloy powder
US7028139B1 (en) 2003-07-03 2006-04-11 Veritas Operating Corporation Application-assisted recovery from data corruption in parity RAID storage using successive re-reads
US7234024B1 (en) 2003-07-03 2007-06-19 Veritas Operating Corporation Application-assisted recovery from data corruption in parity RAID storage using successive re-reads

Also Published As

Publication number Publication date
JP3363459B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
EP0529520B1 (en) Method of preparing particle composited alloy of aluminum matrix
US4923532A (en) Heat treatment for aluminum-lithium based metal matrix composites
US4946500A (en) Aluminum based metal matrix composites
EP0990054B1 (en) Method of manufacturing a dispersion-strengthened aluminium alloy
TW493010B (en) Beryllium-containing alloys of aluminum and semi-solid processing of such alloys
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
JP5881188B2 (en) Method for producing powder alloy of aluminum powder metal
JPH0217601B2 (en)
US5045278A (en) Dual processing of aluminum base metal matrix composites
US7297310B1 (en) Manufacturing method for aluminum matrix nanocomposite
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
US10058917B2 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
CN112662918A (en) Al2O3-TiC particle reinforced aluminum matrix composite material and preparation method thereof
US4891059A (en) Phase redistribution processing
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JPH10219312A (en) Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
JP3363459B2 (en) Method for producing aluminum-based particle composite alloy
US5149496A (en) Method of making high strength, high stiffness, magnesium base metal alloy composites
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
CN112593161B (en) High-strength Sc composite nano oxide dispersion strengthening Fe-based alloy and preparation method thereof
JP2646212B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JPH05195130A (en) Aluminum alloy containing fine crystallized matter
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
JPH0543775B2 (en)
JPH07207302A (en) Production of aln dispersion type aluminum alloy composite material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010109

LAPS Cancellation because of no payment of annual fees