JPH0551280B2 - - Google Patents

Info

Publication number
JPH0551280B2
JPH0551280B2 JP59112519A JP11251984A JPH0551280B2 JP H0551280 B2 JPH0551280 B2 JP H0551280B2 JP 59112519 A JP59112519 A JP 59112519A JP 11251984 A JP11251984 A JP 11251984A JP H0551280 B2 JPH0551280 B2 JP H0551280B2
Authority
JP
Japan
Prior art keywords
dna
polynucleotide
stranded
measured
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59112519A
Other languages
Japanese (ja)
Other versions
JPS60256059A (en
Inventor
Yasushi Kasahara
Yoshihiro Ashihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Inc
Original Assignee
Fujirebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujirebio Inc filed Critical Fujirebio Inc
Priority to JP59112519A priority Critical patent/JPS60256059A/en
Publication of JPS60256059A publication Critical patent/JPS60256059A/en
Publication of JPH0551280B2 publication Critical patent/JPH0551280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 特定の構造を有するデオキシリボ栞酞DNA
あるいはリボ栞酞RNAの枬定は生化孊分野
においお重芁であり、䟋えば人血枅䞭のDNAを
枬定するこずによ぀おりむルス感染の怜査あるい
は遺䌝性疟患の発芋などを行なうこずができる。
本発明はこのようなDNA及びRNAの特定のもの
を簡䟿か぀正確に枬定しうる方法を提䟛するもの
である。 埓来の技術及び発明が解決しようずする問題
点 埓来、このDNA及びRNAの枬定方法ずしお
は、詊料を倉性凊理しお埗た䞀本鎖DNA−
DNA又は䞀本鎖RNA−RNAを固盞に結
合させ、この固盞にラゞオアむ゜トヌプを暙識し
た−DNA又は−RNAを䜜甚させお固盞の
−DNA又は−RNAずハむブリツドを圢成させ
おから未反応の暙識−DNA又は−RNAを陀
去し、固盞の攟射線を枬定する方法が行なわれお
いた。この方法は枬定の際に固定化、掗浄等数倚
くの工皋を必芁ずし、特に詊料の固定化に長時間
を芁するずころから操䜜の劎力及び時間の䞡方に
問題があ぀た。 たた、枬定察象である䞀本鎖ポリヌクレオチド
ずハむブリツドする䞀本鎖ポリヌクレオチドの20
塩基から150塩基ごずに酵玠、ビオチン、ハプテ
ン等の暙識物を結合させ、この暙識物を利甚しお
枬定する方法も知られおいる。しかしながら、こ
れらの方法は暙識物の量を増やすずハむビリツド
するDNAぞの特異性が䜎䞋し、䞀方、暙識物の
量を枛少させるず枬定感床が䜎䞋するずいう問題
点があ぀た。 そのほか、最近DNAプロヌブを短かく切断し
おその5′端及び3′端に暙識物を結合させる技術が
開発されたが特開昭58−40099号公報、この方
法もDNAプロヌブが短かいため特異性が䜎く、
たた、暙識物の量が少ないため感床が充分でない
ずいう問題があ぀た。 問題点を解決するための手段 本発明は、これらの問題点を解決したポリヌク
レオチドの枬定方法を提䟛するものであり、枬定
察象の䞀本鎖ポリヌクレオチドずハむブリツドを
圢成する䞀本鎖ポリヌクレオチドの5′端あるいは
3′端に特定の高分子化合物を遞択的に結合させる
ずハむブリツドを圢成する特異性が損なわれず、
たたこの高分子化合物に倚数の暙識物を結合させ
るこずによりこのハむブリツドを高感床で枬定で
きるこずを芋出しおなされたものである。 すなわち、本発明は、枬定察象である䞀本鎖ポ
リヌクレオチドず二本鎖ポリヌクレオチドを圢成
しうる䞀本鎖ポリヌクレオチドであ぀お、ポリペ
プチド、ポリサツカラむド、ポリリン酞、ポリ゚
チレングリコヌル及びポリビニルアルコヌルより
成る矀から遞択されか぀暙識物を有する高分子化
合物がその5′端又は3′端に遞択的に結合されたポ
リヌクレオチドを、枬定察象である䞀本鎖ポリヌ
クレオチドず接觊させるこずを特城ずするポリヌ
クレオチドの枬定方法に関するものである。 枬定察象は䞀本鎖ポリヌクレオチド以䞋、枬
定察象ポリヌクレオチドずいう。である。枬定
察象ポリヌクレオチドにはDNA及びRNAを含
む。詊料䞭に含たれるポリヌクレオチドが二本鎖
である堎合には氎酞化ナトリりム溶液の添加など
のアルカリ凊理あるいは熱凊理などにより䞀本鎖
にしおおく必芁がある。詊料の皮類は問わない
が、䟋えば人血枅、尿、組織抜出物などである。
人血枅などのようにポリヌクレオチドが蛋癜ず結
合しおいるおそれがある堎合には詊料をプロテア
ヌれ等で凊理しお蛋癜を分離しおおくのがよい。 この枬定察象ポリヌクレオチドず接觊させる䞀
本鎖ポリヌクレオチド以䞋、暙識ポリヌクレオ
チドずいう。は暙識物を有する高分子化合物が
5′端又は3′端に結合されか぀該枬定察象䞀本鎖ポ
リヌクレオチドず二本鎖ポリヌクレオチドを圢成
しうるものである。 この䞀本鎖ポリヌクレオチドは珟圚知られおい
る固盞ポリヌクレオチド合成法あるいはプラスミ
ツドを甚いる遺䌝子工孊によるγ−DNA法など
により合成するこずができる。たた、䞀般の生化
孊的手法によりDNAを抜出し、これをアルカリ
で倉性させおお䞀本鎖にするこずもできる。その
ほか、既に垂販されおいるものを利甚するこずも
できる。 容易に倚量に䞀本鎖のポリヌクレオチドを入手
できる点で遺䌝子工孊的手法を利甚するこずは奜
たしい。䟋えば、mp7フアヌゞに目的のDNAを
導入し、これをφ×174に導入しお培逊するず容
易に鎖状の䞀本鎖DNAを埗るこずができる。埗
られた䞀本鎖DNAはそれ自身で二本鎖になるこ
ずがないので通垞の䞭性か぀垞枩䞋で保存でき
る。このため、ポリヌクレオチド合成埌に䞀本鎖
に倉える凊理が䞍芁になり、䜙分な手間を省略で
きる。 高分子化合物は、氎溶性でありか぀枬定察象ポ
リヌクレオチドず非特異反応しないものであれば
よい。分子量は1000以䞊のものが奜たしい。高分
子化合物の䟋ずしおは、れラチン、ヘモシアニ
ン、プリチン等のポリペプチド、可溶性デキス
トラン、カルボキシメチル化デキストラン、アミ
ノ化デキストラン、アミロヌス等のポリサツカラ
むド、ポリリン酞、ポリ゚チレングリコヌル及び
ポリビニルアルコヌルを挙げるこずができる。こ
れらは、䟋えば暙識物の導入を容易にするために
アミノ基、カルボキシル基、チオヌル基、氎酞
基、反応性クロル基などを予め導入しおおいおも
よい。 䞀本鎖ポリヌクレオチドの端郚のうち、䞀般的
は3′端の高分子化合物を結合させるほうが容易で
あり、たた、このポリヌクレオチドぞの圱響も少
ない。 3′端ぞ結合させる方法ずしおは、䟋えば−ア
セチルヘキシルアミノアデノシンゞホスプヌト
に䞀本鎖ポリヌクレオチドを加え、これにRNA
T4リガヌれを䜜甚させるず3′端に−アセチル
基が導入される。これに氎酞化ナトリりム氎溶液
を䜜甚させるずアセチル基が陀去されおSH基に
なる。これにマレむミド基を導入した氎溶性れラ
チンを䜜甚させれば、䞀本鎖ポリヌクレオチドの
3′端にれラチンを導入するこずができる。RNA
T4リガヌれを利甚するこずにより、3′端にアミ
ノ基あるいはカルボキシル基なども容易に導入で
きるので、これらを利甚しお高分子化合物を結合
させるこずもできる。これらの官胜基を利甚しお
高分子化合物を結合させる方法は、䟋えば
“Method in Immunology and
Immunochemistry”C.A.Williams et al、
1976Academic Press N.Y.ずか「酵玠免疫
枬定法」石川ら、医孊曞院、1978幎などの成
曞に蚘茉されおいる方法のなかから適宜遞択しお
利甚するこずができる。䟋えばアミノ基盞互間を
結合させる堎合には、ゞむ゜シアネヌト法、グル
タルアルデヒド法、ゞフルオロベンれン法、ベン
ゟキノン法等を利甚するこずができ、たた、アミ
ノ基ずカルボキシル基ずの間を結合させる堎合に
は、カルボキシル基をサクシンむミド゚ステル化
する方法のほかカルボゞむミド法、りツドワヌド
詊薬法等を利甚するこずができる。アミノ基ず糖
鎖を架橋する過ペり玠酞酞化法Nakane法も
ある。チオヌル基を利甚する堎合には、䟋えばも
う䞀方の偎のカルボキシル基をサクシンむミド゚
ステル化しおこれにシステむンを反応させおチオ
ヌル基を導入し、チオヌル基反応性二䟡架橋詊薬
を甚いお双方を結合するこずができる。プニル
基を利甚する方法ずしおはゞアゟ化法、アルキル
化法などがある。 3′端に結合させる方法ずしおは、䞊蚘の方法以
倖にも䟋えば予め3′端に䞊蚘の方法で高分子化合
物を結合させおおいたヌクレオチドを甚いお䞀本
鎖ポリヌクレオチドを固盞合成し、最埌に固盞郚
分より高分子化合物を切り離す方法もある。 䞀方、5′端に結合させる堎合には、䟋えば二本
鎖DNA状態においおDNA T4リガヌれを䜜甚さ
せお予めアミノ基やカルボキシル基等を結合させ
おおいた修食DNAを5′端に結合させ、その埌䞀
本鎖DNAに分離すれば5′端にアミノ基やカルボ
キシル基等を導入するこずができる。そこで、こ
の官胜基を利甚しお䞊蚘の方法により高分子化合
物を結合させればよい。 高分子化合物は3′端及び5′端の䞡方に導入しお
もよいこずはいうたでもない。 暙識物の皮類は特に限定されるものではなく、
酵玠、プロステむツクグルヌプ、ビオチン、アビ
ゞン、ハプテン、螢光物質、化孊発光物質、攟射
性同䜍元玠などを広く利甚できる。これらは枬定
方法が簡単でか぀高分子化合物ぞの結合が容易な
ものが望たしい。 酵玠の䟋ずしおは、グルコヌス−−リン酞脱
氎玠酵玠、ヘキ゜キナヌれ、α−アミラヌれ、マ
レヌトデヒドロゲナヌれ、アルカリ性ホスフアタ
ヌれ、ペルオキシダヌれ、β−ガラクトシダヌ
れ、クレアチンキナヌれ、リボヌクレアヌれ、ペ
ニシリナヌれなどを挙げるこずができる。酵玠は
特異性を高める点で耐熱性のものが奜たしい。 プロステむツクグルヌプの䟋ずしおは、FAD、
NADH、NADPH2、アミノピロリン酞、ピリド
キサヌルリン酞、ADP、ATPなどを挙げるこず
ができる。 ビオチンはアビゞンを結合しうる誘導䜓であ぀
おもよい。 アビゞンはビオチンず結合しうるものであり、
ストレプトアビゞンあるいはこれらの誘導䜓であ
぀おもよい。 ハプテンは䟋えばゞニトロプノヌル、ゞニト
ロアニリンなどである。 螢光物質は、フルオレセむン、ロヌダミン、ダ
ンシルクロラむド、フルオレスクアミン、クマリ
ン、アクリゞン、ベンゟオキサゞアゟヌル、トリ
アリヌルメタン、ピレン類などである。 化孊発光物質は、ルミノヌル、む゜ルミノヌ
ル、アクリゞニりム、ヒドロペルオキシド、ポル
フむリン、むントレン−−むルヒドロペルオキ
シド、−トリプニルむミダゟヌル、
ルシプリン−ルシプラヌれなどである。 攟射性同䜍元玠には32P、3H、35S、14C、125Iなど
を利甚すればよい。 これらのなかで特に酵玠、プロステむツクグル
ヌプ、ビオチン及びその誘導䜓䞊びにアビゞン、
ストレプトアビゞン及びこれらの誘導䜓が䜿甚の
簡䟿さ、感床等の点で奜たしい。 暙識物の高分子化合物ぞの結合方法は前述の高
分子化合物を䞀本鎖ポリヌクレオチドに結合させ
る方法のなかから適宜遞択すればよい。 暙識物の高分子化合物ぞの結合量は倚いほうが
望たしい。 このような暙識ポリヌクレオチドを枬定察象ポ
リヌクレオチドず接觊させお二本鎖ポリヌクレオ
チドを圢成させる。接觊させる方法ずしおは、た
ず枬定察象ポリヌクレオチドを含有する溶液にニ
トロセルロヌスフむルタヌを浞しお枬定察象ポリ
ヌクレオチドを吞着させ、これを充分に掗浄す
る。次に、このニトロセルロヌスフむルタヌを暙
識ポリヌクレオチドを含む溶液に浞挬しお反応さ
せる。反応条件はニトロセルロヌスフむルタヌに
吞着されおいる枬定察象ポリヌクレオチドが暙識
ポリヌクレオチドず充分に反応しおハむブリツド
を圢成しうる皋床がよい。この条件は暙識ポリヌ
クレオチドの濃床等によるが、通垞は20〜75℃、
PH〜皋床で0.5〜48時間皋床である。 反応終了埌はこのフむルタヌを充分に掗浄し、
フむルタヌに吞着された暙識物を枬定する。枬定
方法は暙識物の皮類に応じお各々の公知の方法に
埓぀お行なえばよい。 䜜甚 本発明の方法においおは、暙識ポリヌクレオチ
ドが枬定察象ポリヌクレオチドに察し特異的にハ
むブリツドを圢成する。そしお、このハむブリツ
ドを圢成した暙識ポリヌクレオチドの暙識物の量
を枬定するこずにより枬定察象ポリヌクレオチド
の量を求めるこずができる。 発明の効果 本発明の方法においおは、暙識ポリヌクレオチ
ドの端郚以倖には暙識物が結合されおいないずこ
ろから枬定察象ポリヌクレオチドずハむブリツド
を圢成する特異性が損なわれない。たた、暙識物
を高分子化合物に結合させおいるずころから暙識
物の量を倚くするこずができ、その結果、枬定感
床を高めるこずができる。本発明の方法は操䜜が
簡単であるずいう利点も有する。 実斜䟋 実斜䟋  (1) HBV−DNAプロヌブの調補 500mlの慢性型肝炎患者のプヌル血枅を
9000rpmで15分間遠心し、埗られた䞊枅を℃
100000×で時間超遠心しおHBV粒子をペレ
ツトずしお集めた。このペレツトを0.1M NaCl、
1mM EDTA、0.1−メルカプト゚タノヌル
及び0.1BSAを含む0.01Mトリス−塩酞緩衝液
PH7.510mlに溶かし、このりむルス溶液のうち
mlを保存し、残mlを100000×で再床時間
超遠心しおペレツトを埗た。 このペレツトを0.5NP−40を含む10mMトリ
ス−塩酞、0.1M NaClPH7.5溶液200Όで凊理
し、DNAポリメラヌれを掻性化した。この溶液
に1mM dATP、1mM dTTP、2.5ÎŒM dGTP、
2.5ÎŒM dCTPを含む0.08M MgCl20.2Mトリス緩
衝液PH7.550Όを加えお時間加枩した。こ
の溶液を30シナヌクロヌス溶液の入぀た遠心チ
ナヌブに重局し、SW65ロヌタヌベツクマン瀟
補を甚い50000rpmで時間遠心しおペレツト
を埗た。このペレツトをプロナヌれで凊理し、埗
られた溶液をプノヌルで回抜出凊理した。抜
出液を〜20シナヌクロヌスグラゞ゚ントで
50000rpmにお時間遠心しお15S DNA分画を集
めこれをプヌルした。この分画から15S DNAを
゚タノヌルを甚いお沈柱させ、也燥しお目的の
HBV−DNAを埗た。 (2) ニツクトランスレヌシペンによるDNAプロ
ヌブの調補 5mM MgCl2、10mM2−メルカプト゚タノヌ
ル、5ÎŒM dTTP、5ÎŒM dGTP、5ÎŒM dCTP及
び5ÎŒM dATPを含む50mMトリス−HCl緩衝液
PH7.5100Όに前項で埗られたHBV−DNA1ÎŒ
、DNase  100p及びDNAポリメラヌれ
 100pを加えお15℃で90分間むンキナベヌ
トした。この溶液をプノヌルで抜出し、
Sephadex −50カラムで粟補しおHBV−DNA
を埗た。 (3) 高分子化合物及び暙識物の結合 このようにしお埗た二本鎖HBV−DNAを
0.5N氎酞化ナトリりム溶液で分離させお䞀本鎖
DNAずし、この溶液を䞭和した。これに盎ちに
アミノヘキシルアデノシンゞホスプヌトを加
え、次にRNAリガヌれ10Uを加えた。時間反
応埌、反応液をゲル過しおアミノ化HBV−侀
本鎖DNAを埗た。 次に、これに分子量50000のCHM化れラチン
mgを加え、さらに氎溶性カルボゞむミドmgを
加えお37℃で時間PH5.0に保持した。この反応
液をセフアクリル−300カラムでゲル過し、
CHM化れラチン結合HBV−䞀本鎖DNAを埗た。 このCHM化れラチン結合HBV−䞀本鎖DNA
に垞法によ぀お埗たSH化ペルオキシダヌれ10mg
を加え、PH7.0、℃で䞀倜攪拌した。反応物を
セフアロヌス4Bでゲル過しお未反応のペルオ
キシダヌれを陀去し、目的の暙識䞀本鎖DNAを
埗た。 (4) ポリヌクレオチドの枬定 HBりむルス性肝炎患者血枅100Όに0.5N
NaOH100Όを加えお宀枩で10分間攪拌した。
次に、0.5N HCl100Όを加え、さらに200Ό
mlのプロテむンキナヌれ溶液200Όを加えお
70℃で時間反応させた。それから、飜和プノ
ヌル−クロロホルム氎溶液200Όを
加え、分局した氎局200Όをニトロセルロヌス
を底に敷いた96り゚ルのマむクロプレヌトに入れ
た。各り゚ルの氎局を吞匕過埌85℃で時間む
ンキナベヌトし、PBSで回掗浄した。これに
前項で埗られた暙識䞀本鎖DNA1Όを含む溶液
200Όを加え、40℃で18時間加枩した。このフ
むルタヌを0.1M酢酞−10ÎŒM EDTA−1M NaCl
PH7.0で回掗浄埌、このフむルタヌに0.5mM4−
メトキシナフトヌル及び2mMH2O2を含む基質溶
液PH7.0 100Όを加えお30分間反応させた。各フ
むルタヌに発色したスポツトをリフラクトメヌタ
ヌで枬定し、血枅垌釈率ず盞察反応匷床の関係を
求めた結果を第図に瀺す。 各皮血枅のHBV−DNAの量を䞊蚘の方法によ
぀お枬定し、埓来法であるラゞオアむ゜トヌプ暙
識固盞法による枬定倀ず比范した結果を䞋衚に瀺
す。
(Industrial application field) Deoxyribonucleic acid (DNA) with a specific structure
Alternatively, the measurement of ribonucleic acid (RNA) is important in the field of biochemistry; for example, by measuring DNA in human serum, it is possible to test for viral infection or discover genetic diseases.
The present invention provides a method for easily and accurately measuring such specific DNA and RNA. (Problems to be Solved by the Prior Art and the Invention) Conventionally, as a method for measuring DNA and RNA, single-stranded DNA (S-
DNA) or single-stranded RNA (S-RNA) is bound to a solid phase, and S-DNA or S-RNA labeled with a radioisotope is applied to the solid phase to
- A method has been used in which a hybrid is formed with DNA or S-RNA, unreacted labeled S-DNA or S-RNA is removed, and radiation on a solid phase is measured. This method requires many steps such as fixation and washing during measurement, and in particular, it takes a long time to fix the sample, which poses problems in terms of both operational labor and time. In addition, 20% of the single-stranded polynucleotide that hybridizes with the single-stranded polynucleotide to be measured is
A method is also known in which a label such as an enzyme, biotin, or hapten is bound to every 150 bases, and this label is used for measurement. However, these methods have a problem in that increasing the amount of labeled material reduces specificity for hybrid DNA, while decreasing the amount of labeled material reduces measurement sensitivity. In addition, a technique has recently been developed in which a DNA probe is cut short and a label is attached to its 5' and 3' ends (Japanese Patent Application Laid-open No. 1983-40099), but this method also requires that the DNA probe is short. Therefore, specificity is low;
In addition, there was a problem that the sensitivity was not sufficient because the amount of labeled substance was small. (Means for Solving the Problems) The present invention provides a method for measuring polynucleotides that solves these problems. 5′ end of nucleotide or
By selectively binding a specific polymer compound to the 3′ end, the specificity of forming a hybrid is not impaired, and
The present invention was also made based on the discovery that this hybrid can be measured with high sensitivity by binding a large number of labels to this polymer compound. That is, the present invention provides a single-stranded polynucleotide capable of forming a double-stranded polynucleotide with a single-stranded polynucleotide to be measured, which is composed of a polypeptide, a polysaccharide, a polyphosphoric acid, a polyethylene glycol, and a polyvinyl alcohol. A polynucleotide selected from the group consisting of: a polymer compound having a label selectively bound to its 5' end or 3' end is brought into contact with a single-stranded polynucleotide to be measured. This invention relates to a method for measuring polynucleotides. The measurement target is a single-stranded polynucleotide (hereinafter referred to as the measurement target polynucleotide). Polynucleotides to be measured include DNA and RNA. If the polynucleotide contained in the sample is double-stranded, it is necessary to make it single-stranded by an alkali treatment such as addition of a sodium hydroxide solution or heat treatment. The type of sample does not matter, but examples include human serum, urine, and tissue extracts.
If there is a possibility that polynucleotides may be bound to proteins, such as in human serum, it is preferable to separate the proteins by treating the sample with protease or the like. The single-stranded polynucleotide (hereinafter referred to as labeled polynucleotide) that is brought into contact with this polynucleotide to be measured is a polymeric compound having a labeled substance.
It is bound to the 5' end or 3' end and can form a double-stranded polynucleotide with the single-stranded polynucleotide to be measured. This single-stranded polynucleotide can be synthesized by the currently known solid-phase polynucleotide synthesis method or the γ-DNA method using genetic engineering using a plasmid. It is also possible to extract DNA using general biochemical methods and denature it with alkali to make it into a single strand. In addition, those already commercially available can also be used. It is preferable to use genetic engineering techniques because single-stranded polynucleotides can be easily obtained in large quantities. For example, single-stranded DNA can be easily obtained by introducing the desired DNA into mp7 phage and culturing it into φ×174 cells. The single-stranded DNA obtained does not become double-stranded by itself, so it can be stored at normal neutral temperatures and at room temperature. Therefore, there is no need for a process to convert the polynucleotide into a single strand after synthesis, and extra effort can be omitted. The polymer compound may be one that is water-soluble and does not non-specifically react with the polynucleotide to be measured. The molecular weight is preferably 1000 or more. Examples of polymeric compounds include polypeptides such as gelatin, hemocyanin, and ferritin, soluble dextran, carboxymethylated dextran, aminated dextran, polysaccharides such as amylose, polyphosphoric acid, polyethylene glycol, and polyvinyl alcohol. . For example, an amino group, a carboxyl group, a thiol group, a hydroxyl group, a reactive chlorine group, etc. may be introduced into these in advance in order to facilitate the introduction of a label. Of the ends of a single-stranded polynucleotide, it is generally easier to bind a polymer compound to the 3' end, and this polynucleotide is less affected. For example, a single-stranded polynucleotide is added to S-acetylhexylaminoadenosine diphosphate, and RNA is attached to the 3' end.
When T4 ligase is applied, an S-acetyl group is introduced at the 3' end. When this is treated with an aqueous sodium hydroxide solution, the acetyl group is removed and becomes an SH group. If water-soluble gelatin into which a maleimide group has been introduced is applied to this, single-stranded polynucleotides can be formed.
Gelatin can be introduced at the 3′ end. RNA
By using T4 ligase, an amino group or a carboxyl group can be easily introduced at the 3' end, so it is also possible to use these to bond a polymer compound. Methods for bonding macromolecular compounds using these functional groups are described, for example, in “Method in Immunology and
“Immunochemistry” (CA Williams et al,
The methods described in books such as "Enzyme Immunoassay" (Ishikawa et al., Igaku Shoin, 1978) can be selected and used as appropriate. For example, when bonding between amino groups, the diisocyanate method, glutaraldehyde method, difluorobenzene method, benzoquinone method, etc. can be used, and when bonding between amino groups and carboxyl groups, In addition to the method of converting a carboxyl group into a succinimide ester, a carbodiimide method, a Woodward reagent method, etc. can be used. There is also a periodate oxidation method (Nakane method) that crosslinks amino groups and sugar chains. When using a thiol group, for example, the carboxyl group on the other side is esterified with succinimide, this is reacted with cysteine to introduce a thiol group, and the two are bonded using a thiol group-reactive divalent cross-linking reagent. can do. Methods that utilize phenyl groups include diazotization and alkylation. In addition to the method described above, methods for binding to the 3' end include, for example, solid-phase synthesis of a single-stranded polynucleotide using a nucleotide to which a polymer compound has been previously bound to the 3' end by the method described above. Finally, there is also a method of separating the polymer compound from the solid phase part. On the other hand, when binding to the 5' end, for example, in a double-stranded DNA state, modified DNA to which amino groups, carboxyl groups, etc. have been bound in advance by the action of DNA T4 ligase is linked to the 5' end, and then If the DNA is separated into single-stranded DNA, amino groups, carboxyl groups, etc. can be introduced at the 5' end. Therefore, a polymer compound may be bonded using this functional group by the method described above. It goes without saying that the polymer compound may be introduced at both the 3' end and the 5' end. The type of sign is not particularly limited,
Enzymes, prosthetic groups, biotin, avidin, haptens, fluorophores, chemiluminescent substances, radioisotopes, etc. can be widely used. It is desirable that these substances can be easily measured and easily bonded to a polymer compound. Examples of enzymes include glucose-6-phosphate dehydrogenase, hexokinase, α-amylase, malate dehydrogenase, alkaline phosphatase, peroxidase, β-galactosidase, creatine kinase, ribonuclease, penicillinase, and the like. The enzyme is preferably thermostable in order to increase specificity. Examples of prosthetic groups include FAD,
Examples include NADH, NADPH 2 , aminopyrophosphate, pyridoxal phosphate, ADP, and ATP. Biotin may be a derivative capable of binding avidin. Avidin can bind to biotin,
It may be streptavidin or a derivative thereof. Haptens include, for example, dinitrophenol, dinitroaniline, and the like. Fluorescent substances include fluorescein, rhodamine, dansyl chloride, fluorescamine, coumarin, acridine, benzoxadiazole, triarylmethane, and pyrenes. Chemiluminescent substances include luminol, isoluminol, acridinium, hydroperoxide, porphyrin, intren-3-yl hydroperoxide, 2,4,5-triphenylimidazole,
Such as luciferin-luciferase. 32 P, 3 H, 35 S, 14 C, 125 I, etc. may be used as radioactive isotopes. Among these, enzymes, prosthetic groups, biotin and its derivatives, avidin,
Streptavidin and derivatives thereof are preferred in terms of ease of use, sensitivity, etc. The method for binding the label to the polymer compound may be appropriately selected from among the methods described above for binding the polymer compound to the single-stranded polynucleotide. It is desirable that the amount of the label bound to the polymer compound be large. Such a labeled polynucleotide is brought into contact with a polynucleotide to be measured to form a double-stranded polynucleotide. As for the contacting method, first, a nitrocellulose filter is immersed in a solution containing the polynucleotide to be measured to adsorb the polynucleotide to be measured, and then thoroughly washed. Next, this nitrocellulose filter is immersed in a solution containing the labeled polynucleotide and allowed to react. The reaction conditions are preferably such that the polynucleotide to be measured adsorbed on the nitrocellulose filter sufficiently reacts with the labeled polynucleotide to form a hybrid. These conditions depend on the concentration of the labeled polynucleotide, etc., but are usually 20-75°C.
It takes about 0.5 to 48 hours at a pH of about 5 to 9. After the reaction is complete, wash this filter thoroughly.
Measure the label adsorbed on the filter. The measurement method may be carried out according to each known method depending on the type of label. (Function) In the method of the present invention, the labeled polynucleotide specifically forms a hybrid with the polynucleotide to be measured. Then, by measuring the amount of the labeled polynucleotide that has formed this hybrid, the amount of the polynucleotide to be measured can be determined. (Effects of the Invention) In the method of the present invention, the specificity of forming a hybrid with a polynucleotide to be measured is not impaired since no label is bound to any part other than the end of the labeled polynucleotide. Furthermore, since the label is bound to the polymer compound, the amount of the label can be increased, and as a result, the measurement sensitivity can be increased. The method of the invention also has the advantage of being simple to operate. (Example) Example 1 (1) Preparation of HBV-DNA probe 500 ml of pooled serum from chronic hepatitis B patients was
Centrifuge at 9000 rpm for 15 minutes and store the resulting supernatant at 4°C.
The HBV particles were collected as a pellet by ultracentrifugation at 100,000 xg for 5 hours. This pellet was mixed with 0.1M NaCl,
Dissolve in 10 ml of 0.01 M Tris-HCl buffer (PH7.5) containing 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.1% BSA, save 5 ml of this virus solution, and incubate the remaining 5 ml again at 100,000 × g for 5 ml. A pellet was obtained by ultracentrifugation for an hour. This pellet was treated with 200 µ of a 10 mM Tris-HCl, 0.1M NaClPH7.5 solution containing 0.5% NP-40 to activate DNA polymerase. This solution contains 1mM dATP, 1mM dTTP, 2.5ÎŒM dGTP,
50Ό of 0.08M MgCl 2 0.2M Tris buffer (PH7.5) containing 2.5ΌM dCTP was added and heated for 3 hours. This solution was layered on a centrifuge tube containing a 30% sucrose solution, and centrifuged for 3 hours at 50,000 rpm using an SW65 rotor (manufactured by Beckman) to obtain a pellet. This pellet was treated with pronase, and the resulting solution was extracted twice with phenol. Prepare the extract using a 5-20% sucrose gradient.
The 15S DNA fraction was collected by centrifugation at 50,000 rpm for 3 hours and pooled. From this fraction, 15S DNA is precipitated with ethanol and dried to obtain the desired
HBV-DNA was obtained. (2) Preparation of DNA probe by Nikk translation Add the sample obtained in the previous section to 100Ό of 50mM Tris-HCl buffer (PH7.5) containing 5mM MgCl 2 , 10mM 2-mercaptoethanol, 5ΌM dTTP, 5ΌM dGTP, 5ΌM dCTP and 5ΌM dATP. HBV-DNA1Ό
g, 100 pg of DNase I and 100 pg of DNA polymerase I were added and incubated at 15°C for 90 minutes. This solution was extracted with phenol,
HBV-DNA was purified using a Sephadex G-50 column.
I got it. (3) Binding of a polymer compound and a label The double-stranded HBV-DNA thus obtained is
Separate into single strands with 0.5N sodium hydroxide solution
This solution was neutralized as DNA. To this was immediately added aminohexyladenosine diphosphate, followed by 10 U of RNA ligase. After 1 hour of reaction, the reaction solution was gel-filtered to obtain aminated HBV-single-stranded DNA. Next, 1 mg of CHM gelatin having a molecular weight of 50,000 was added thereto, and further 1 mg of water-soluble carbodiimide was added thereto, and the mixture was maintained at pH 5.0 at 37° C. for 1 hour. This reaction solution was gel-filtered through a Sephacryl S-300 column,
CHM-formed gelatin-bound HBV-single-stranded DNA was obtained. This CHM-formed gelatin-bound HBV-single-stranded DNA
10mg of SH peroxidase obtained by conventional method
was added, and the mixture was stirred overnight at pH 7.0 and 4°C. The reaction product was gel-filtered with Sepharose 4B to remove unreacted peroxidase, and the desired labeled single-stranded DNA was obtained. (4) Measurement of polynucleotide: 0.5N in 100Ό of HB viral hepatitis patient serum
100Ό of NaOH was added and stirred at room temperature for 10 minutes.
Next, add 100Ό of 0.5N HCl and add 200Όg/
Add 200 ÎŒl of protein kinase K solution
The reaction was carried out at 70°C for 1 hour. Then, 200Ό of a saturated phenol-chloroform aqueous solution (1:1) was added, and 200Ό of the separated aqueous layer was placed in a 96-well microplate lined with nitrocellulose at the bottom. The aqueous layer of each well was filtered by suction, incubated at 85° C. for 1 hour, and washed once with PBS. Add to this a solution containing 1 Όg of labeled single-stranded DNA obtained in the previous section.
200Ό was added and heated at 40°C for 18 hours. This filter was mixed with 0.1M acetic acid - 10ΌM EDTA - 1M NaCl.
After washing 4 times with PH7.0, add 0.5mM4− to this filter.
100Ό of a substrate solution PH7.0 containing methoxynaphthol and 2mMH 2 O 2 was added and reacted for 30 minutes. The colored spots on each filter were measured using a refractometer, and the relationship between serum dilution rate and relative reaction intensity was determined. The results are shown in FIG. The amount of HBV-DNA in various serums was measured by the above method, and the results were compared with the values measured by the conventional radioisotope labeling solid phase method, and the results are shown in the table below.

【衚】 実斜䟋  実斜䟋で䜜補した二本鎖HBV−DNA1mg
mlずHBV−DNAを導した䞀本鎖M13−フ
アヌゞDNA5mgmlにホルムアミドmlを加
え、分間この混合液を沞ずうさせた。次に、こ
れにmlの緩衝液0.07モル トリス−
HCl2モル NaCl、15mM EDTAPH7.5を
加え、50℃で時間そしおさらに60℃で時間加
枩した。 この反応液をBio−Gel A50でゲル過し、
ハむブリツドしたDNAず未反応のDNAを分離し
た。ボむド分画の近くに溶出される最初のピヌク
を分画し、これにNaClが0.1Mになるように粉末
を加えお溶かした。そしお、さらに100゚タノ
ヌルを溶液mlに察し倍の比率mlで加
え、−70℃で時間攟眮した。次に、17000×で
10分間遠心し、゚タノヌル沈殿物を50mlの0.1N
NaOH、0.25mM EDTA、0.001プノヌルレ
ツドで溶解した。ただちにこれをBio−GelA50
でゲル過し、目的の䞀本鎖HBV−DNAを埗
た。 この䞀本鎖DNAに−アセチルメルカプト
ヘキシルアデノシンゞホスプヌト10mM及
びRNAリガヌれ10Uを加え、10mMトリス−
HCl、1mM EDTA、0.1M NaClPH7.3で37℃で
時間反応させた。これをBioゲルA60でゲル
過し、修食䞀本鎖DNA分画を分取した。PEG−
15000でmlに濃瞮埌、0.1N NaOHでPH1.0に維
持し完党にアセチル基を陀去した。SPD−化ル
ミノヌル結合デキストラン10mgをPH7.0で加え、
℃で䞀倜攟眮した。 次に、これをバむオゲルA60でゲル過し、目
的のルミノヌル結合暙識HBV−䞀本鎖DNAを埗
た。 HBりむルス性肝炎患者血枅100Όに0.5N
NaOH100Όを加えお宀枩で10分間攪拌した。
次に、0.5N HCl100Όを加え、さらに200Ό
mlのプロテむンキナヌれ溶液200Όを加えお
70℃で時間反応させた。それから、飜和プノ
ヌル−クロロホルム氎溶液200Όを
加え、分局した氎局200Όをニトロセルロヌス
を底に敷いた96り゚ルのマむクロプレヌトに入れ
た。各り゚ルの氎局を吞匕過埌85℃で時間む
ンキナベヌト、PBSで回掗浄した。これに前
項で埗られた暙識䞀本鎖DNA100mgを含む溶液
200Όを加え、65℃で18時間加枩した。このフ
むルタヌを0.1M酢酞−10ÎŒM EDTA−1M NaCl
PH7.0で回掗浄埌、このフむルタを切りずり、
ルミノホトメヌタヌ䞭でH2O22mM、POD10U、
Na2CO30.1MPH9.5を200Ό含む発光管に移し、
発光匷床を枬定した。 埗られた結果を第図に瀺す。
[Table] Example 2 1 mg of double-stranded HBV-DNA prepared in Example 1
(1 ml) and 5 mg (2 ml) of single-stranded M13-phage DNA containing HBV-DNA were added with 8 ml of formamide, and the mixture was boiled for 5 minutes. Next, add 2 ml of buffer (0.07 mol/Tris-
2 mol of HCl/NaCl, 15mM EDTAPH7.5) was added, and the mixture was heated at 50°C for 4 hours and further heated at 60°C for 1 hour. This reaction solution was gel-filtered with Bio-Gel A50m,
Hybridized DNA and unreacted DNA were separated. The first peak eluted near the void fraction was fractionated, and powder was added to it to make NaCl 0.1M and dissolved. Further, 100% ethanol was added at twice the ratio (2 ml) per 1 ml of the solution, and the mixture was left at -70°C for 2 hours. Next, at 17000×g
Centrifuge for 10 minutes and precipitate with 50ml 0.1N ethanol.
Dissolved in NaOH, 0.25mM EDTA, 0.001% phenol. Immediately apply this to Bio-GelA50
The target single-stranded HBV-DNA was obtained by gel filtration. 6-S acetylmercaptohexyladenosine diphosphate (10mM) and 10U of RNA ligase were added to this single-stranded DNA, and 10mM Tris-
The mixture was reacted with HCl, 1mM EDTA, and 0.1M NaClPH7.3 at 37°C for 2 hours. This was gel-filtered with Biogel A60, and a modified single-stranded DNA fraction was collected. PEG−
After concentrating to 2 ml at 15,000, the pH was maintained at 1.0 with 0.1N NaOH to completely remove acetyl groups. Add 10 mg of SPD-modified luminol-conjugated dextran at pH 7.0,
It was left at 4°C overnight. Next, this was gel-filtered through Biogel A60 to obtain the desired luminol-conjugated labeled HBV-single-stranded DNA. 0.5N in 100Ό of HB viral hepatitis patient serum
100Ό of NaOH was added and stirred at room temperature for 10 minutes.
Next, add 100Ό of 0.5N HCl and add 200Όg/
Add 200 ÎŒl of protein kinase K solution
The reaction was carried out at 70°C for 1 hour. Then, 200Ό of a saturated phenol-chloroform aqueous solution (1:1) was added, and 200Ό of the separated aqueous layer was placed in a 96-well microplate lined with nitrocellulose at the bottom. The aqueous layer of each well was filtered by suction, incubated at 85° C. for 1 hour, and washed once with PBS. Add to this a solution containing 100 mg of labeled single-stranded DNA obtained in the previous section.
200Ό was added and heated at 65°C for 18 hours. This filter was washed with 0.1M acetic acid - 10ΌM EDTA - 1M NaCl.
After washing 4 times at PH7.0, cut out this filter.
H2O2 2mM , POD10U, in a luminophotometer
Transfer Na2CO30.1MPH9.5 to an arc tube containing 200Ό ,
The luminescence intensity was measured. The results obtained are shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれもHBりむルス性肝炎患者血枅に
぀いお本発明の方法で枬定した結果を瀺すもので
あり、第図は䞀実斜䟋における血枅垌釈率ず発
色スポツトの反射匷床の関係を、そしお第図は
他の実斜䟋における血枅垌釈率ず化孊発光匷床の
関係をそれぞれ瀺しおいる。
The drawings all show the results of measuring the serum of patients with HB viral hepatitis using the method of the present invention; Fig. 1 shows the relationship between the serum dilution rate and the reflection intensity of the colored spot in one example, and Fig. 2 shows the relationship between the serum dilution rate and the reflection intensity of the colored spot in one example. shows the relationship between serum dilution rate and chemiluminescence intensity in other Examples.

Claims (1)

【特蚱請求の範囲】[Claims]  枬定察象である䞀本鎖ポリヌクレオチドず二
本鎖ポリヌクレオチドを圢成しうる䞀本鎖ポリヌ
クレオチドであ぀お、ポリペプチド、ポリサツカ
ラむド、ポリリン酞、ポリ゚チレングリコヌル及
びポリビニルアルコヌルより成る矀から遞択され
か぀暙識物を有する高分子化合物がその5′端又は
3′端に遞択的に結合されたポリヌクレオチドを、
枬定察象である䞀本鎖ポリヌクレオチドず接觊さ
せるこずを特城ずするポリヌクレオチドの枬定方
法。
1. A single-stranded polynucleotide capable of forming a double-stranded polynucleotide with the single-stranded polynucleotide to be measured, selected from the group consisting of polypeptide, polysaccharide, polyphosphoric acid, polyethylene glycol, and polyvinyl alcohol. and the polymeric compound having the label is located at its 5′ end or
A polynucleotide selectively attached to the 3′ end,
A method for measuring polynucleotides, which comprises bringing them into contact with a single-stranded polynucleotide to be measured.
JP59112519A 1984-06-01 1984-06-01 Assay of polynucleotide Granted JPS60256059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59112519A JPS60256059A (en) 1984-06-01 1984-06-01 Assay of polynucleotide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112519A JPS60256059A (en) 1984-06-01 1984-06-01 Assay of polynucleotide

Publications (2)

Publication Number Publication Date
JPS60256059A JPS60256059A (en) 1985-12-17
JPH0551280B2 true JPH0551280B2 (en) 1993-08-02

Family

ID=14588674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112519A Granted JPS60256059A (en) 1984-06-01 1984-06-01 Assay of polynucleotide

Country Status (1)

Country Link
JP (1) JPS60256059A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082830A (en) * 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861468A (en) * 1981-10-09 1983-04-12 Hitachi Ltd Immunoassay method and immune reagent used for said method
JPS60144662A (en) * 1983-12-12 1985-07-31 モレキナラヌ・ダむアグノステむツクス・むンコヌポレヌテツド Nucleic acid probe, polynucleotide alignment and testing method and reagent group for detecting antibody thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861468A (en) * 1981-10-09 1983-04-12 Hitachi Ltd Immunoassay method and immune reagent used for said method
JPS60144662A (en) * 1983-12-12 1985-07-31 モレキナラヌ・ダむアグノステむツクス・むンコヌポレヌテツド Nucleic acid probe, polynucleotide alignment and testing method and reagent group for detecting antibody thereof

Also Published As

Publication number Publication date
JPS60256059A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
CA1272443A (en) Solution-phase dual hybridization assay for detecting polynucleotide sequences
JPH0378120B2 (en)
US4968602A (en) Solution-phase single hybridization assay for detecting polynucleotide sequences
EP0379559B1 (en) Method and reagents for detecting nucleic acid sequences
US4724202A (en) Use of non-hybridizable nucleic acids for the detection of nucleic acid hybridization
US4752566A (en) Displacement polynucleotide method and reagent complex employing labeled probe polynucleotide
EP0163220B1 (en) Nucleic acid hybridization assay employing detectable anti-hybrid antibodies
US5053326A (en) Hybridization method and probe
JPH06502766A (en) Non-isotopic detection of nucleic acids using a polystyrene support-based sandwich hybridization assay and compositions used therefor
JPH02309254A (en) Detection of substance bondable specifically in body liquor and reagent receptor
JPS5983056A (en) Digoxigenine immunogen composite body, antibody, marked composite body, related derivative and reagent system using these substance and immunity test method
JPH11511558A (en) Fluorescent and luminescent label compositions and methods of using them
JP3093116B2 (en) Nucleic acid detection method
JP2511221B2 (en) Method for measuring polymerase activity
JP2613203B2 (en) Solution-phase single-cross assays for detection of polynucleotide sequences
EP0146815B1 (en) Nucleic acid hybridization assay employing antibodies to intercalation complexes
JPH0551280B2 (en)
EP0209702A1 (en) Solid-phase hybridization assay using anti-hybrid antibodies
JPH0627740B2 (en) Antigen measurement method
JPH0469345B2 (en)
JPH0515439B2 (en)
JPH0531108B2 (en)
JPH0552199B2 (en)
JPH01101900A (en) Method and reagent for conducting hybridization
EP1098990B1 (en) Blocked-polymerase polynucleotide immunoassay method and kit