JPH0515439B2 - - Google Patents

Info

Publication number
JPH0515439B2
JPH0515439B2 JP59123757A JP12375784A JPH0515439B2 JP H0515439 B2 JPH0515439 B2 JP H0515439B2 JP 59123757 A JP59123757 A JP 59123757A JP 12375784 A JP12375784 A JP 12375784A JP H0515439 B2 JPH0515439 B2 JP H0515439B2
Authority
JP
Japan
Prior art keywords
polynucleotide
luminescent substance
dna
stranded
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59123757A
Other languages
Japanese (ja)
Other versions
JPS613063A (en
Inventor
Yoshihiro Ashihara
Yasushi Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Inc
Original Assignee
Fujirebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujirebio Inc filed Critical Fujirebio Inc
Priority to JP59123757A priority Critical patent/JPS613063A/en
Publication of JPS613063A publication Critical patent/JPS613063A/en
Publication of JPH0515439B2 publication Critical patent/JPH0515439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 特定の構造を有するデオキシリボ核酸(DNA)
及びリボ核酸(RNA)の測定は生化学分野にお
いて重要であり、例えば人血清中のDNAを測定
することによつてウイルス感染の検査あるいは遺
伝性疾患の発見などを行なうことができる。本発
明はこのようなDNA及びRNAの特定のものを簡
便かつ正確に測定しうる方法を提供するものであ
る。
[Detailed description of the invention] [Object of the invention] (Industrial application field) Deoxyribonucleic acid (DNA) having a specific structure
The measurement of RNA and ribonucleic acid (RNA) is important in the field of biochemistry; for example, by measuring DNA in human serum, it is possible to test for viral infection or discover genetic diseases. The present invention provides a method for easily and accurately measuring such specific DNA and RNA.

(従来の技術及び発明が解決しようとする問題
点) 従来、このDNA又はRNAの測定方法として
は、試料を変性処理して得た一本鎖DNA(S−
DNA)又は一本鎖RNA(S−RNA)を固相に結
合させ、この固相にラジオアイソトープを標識し
たS−DNA又はS−RNAを作用させて固相のS
−DNA又はS−RNAとハイブリツドを形成させ
てから未反応の標識S−DNA又はS−RNAを除
去し、固相の放射線を測定する方法が行なわれて
いた。この方法は測定の際に固定化、洗浄等数多
くの工程を必要とし、特に試料の固定化に長時間
を要するところから操作の労力及び時間の両方に
問題があつた。
(Prior art and problems to be solved by the invention) Conventionally, as a method for measuring this DNA or RNA, single-stranded DNA (S-
DNA) or single-stranded RNA (S-RNA) is bound to a solid phase, and S-DNA or S-RNA labeled with a radioisotope is applied to the solid phase to
- A method has been used in which a hybrid is formed with DNA or S-RNA, unreacted labeled S-DNA or S-RNA is removed, and radiation on a solid phase is measured. This method requires many steps such as fixation and washing during measurement, and in particular, it takes a long time to fix the sample, which poses problems in terms of both operational labor and time.

一方、最近DNAプローブを短かく切断してそ
の5′端及び3′端にエネルギートランスフアーす
る螢光物質を結合させ、ハイブリツドによりエネ
ルギートランスフアーを起こさせ、それによる螢
光を測定してポリヌクレオチドを測定する技術が
開発された(特開昭58−40099号公報)。しかしな
がら、この方法はDNAプローブを短かく切断す
るために特異性が低下し、また、螢光量が少ない
ために感度が充分でない等の問題があつた。
On the other hand, recently DNA probes have been cut short and fluorescent substances that transfer energy are bonded to the 5' and 3' ends of the DNA probes, energy transfer is caused by hybridization, and the resulting fluorescence is measured and polynucleotides are analyzed. A technique for measuring the amount of water was developed (Japanese Patent Application Laid-Open No. 1983-40099). However, this method had problems such as a decrease in specificity because the DNA probe was cut short, and insufficient sensitivity due to the low amount of fluorescence.

本発明者らはこのような問題のない方法を開発
すべく種々検討の結果、予め標識された一本鎖ポ
リヌクレオチドを固相に結合させておき、この固
相に試料を変性処理させて得た一本鎖ポリヌクレ
オチドを作用させてハイブリツドを形成させ、ハ
イブリツドしたポリヌクレオチドを制限酵素で切
断する方法を案出し、その内容を既に特許出願
(特願昭58−199702号)した。しかしながら、こ
の方法もまだ固相の分離が必要であり、特に大量
の検体を一度に処理する臨床分析等にあつてはこ
の分離操作が煩雑であつた。
The present inventors conducted various studies to develop a method free of such problems, and found that a pre-labeled single-stranded polynucleotide was bound to a solid phase, and a sample was denatured on this solid phase. He devised a method of reacting single-stranded polynucleotides to form a hybrid and cleaving the hybridized polynucleotides with restriction enzymes, and has already filed a patent application for this method (Japanese Patent Application No. 199702-1981). However, this method still requires separation of the solid phase, and this separation operation is complicated, especially in clinical analyzes where a large amount of specimens are processed at once.

〔発明の構成〕[Structure of the invention]

本発明はこのような問題点を解決するものであ
り、測定対象の一本鎖ポリヌクレオチドとハイブ
リツドする一本鎖ポリヌクレオチドに2種の発光
物質を結合させ、その間のエネルギー移動がこの
ポリヌクレオチドの切断によつて変化することを
利用している。
The present invention solves these problems by binding two types of luminescent substances to a single-stranded polynucleotide that hybridizes with the single-stranded polynucleotide to be measured, and the energy transfer between them is caused by the energy transfer of this polynucleotide. It takes advantage of the fact that it changes depending on the cutting.

(問題点を解決するための手段) 本発明は、測定対象の一本鎖ポリヌクレオチド
と二本鎖ポリヌクレオチドを形成しうる一本鎖ポ
リヌクレオチドに、発光物質1が直接又は間接的
に結合し、かつ発光物質1によつて励起されて発
光する発光物質2が結合している標識ポリヌクレ
オチドに;測定対象の一本鎖ポリヌクレオチドを
接触させて二本鎖ポリヌクレオチドを形成させ;
該二本鎖ポリヌクレオチドに二本鎖ポリヌクレオ
チド制限酵素を作用させて該二本鎖ポリヌクレオ
チドを切断し、その後発光物質1又は発光物質2
の発光を測定することを特徴とするポリヌクレオ
チドの測定方法に関するものである。
(Means for Solving the Problems) The present invention is characterized in that the luminescent substance 1 binds directly or indirectly to a single-stranded polynucleotide that can form a double-stranded polynucleotide with a single-stranded polynucleotide to be measured. , and a labeled polynucleotide bound to a luminescent substance 2 that emits light when excited by the luminescent substance 1; contacts a single-stranded polynucleotide to be measured to form a double-stranded polynucleotide;
A double-stranded polynucleotide restriction enzyme is allowed to act on the double-stranded polynucleotide to cleave the double-stranded polynucleotide, and then luminescent substance 1 or luminescent substance 2
The present invention relates to a polynucleotide measuring method characterized by measuring the luminescence of a polynucleotide.

測定対象は一本鎖ポリヌクレオチド(以下、測
定対象ポリヌクレオチドという。)である。測定
対象ポリヌクレオチドにはDNA及びRNAを含
む。試料中に含まれるポリヌクレオチドが二本鎖
である場合には水酸化ナトリウム溶液の添加など
のアルカリ処理あるいは熱処理などにより一本鎖
にしておく必要がある。試料の種類は問わない
が、例えば人血清、尿、組織抽出物などである。
人血清などのようにポリヌクレオチドが蛋白と結
合しているおそれがある場合には試料をプロテア
ーゼ等で処理して蛋白を分離しておくのがよい。
The measurement target is a single-stranded polynucleotide (hereinafter referred to as the measurement target polynucleotide). Polynucleotides to be measured include DNA and RNA. If the polynucleotide contained in the sample is double-stranded, it is necessary to make it single-stranded by an alkali treatment such as addition of a sodium hydroxide solution or heat treatment. The type of sample does not matter, but examples include human serum, urine, and tissue extracts.
If there is a possibility that polynucleotides may be bound to proteins, such as in human serum, it is preferable to separate the proteins by treating the sample with protease or the like.

この測定対象ポリヌクレオチドと接触させる一
本鎖ポリヌクレオチド(以下、標識ポリヌクレオ
チドという。)は、発光物質1が直接又は間接的
に結合し、かつ発光物質1によつて励起されて発
光する発光物質2が結合し、かつ該測定対象ポリ
ヌクレオチドと二本鎖ポリヌクレオチドを形成し
うるものである。従つて、この標識ポリヌクレオ
チドは測定対象ポリヌクレオチドに対するプロー
ブである。この標識ポリヌクレオチドは測定対象
ポリヌクレオチドを含む二本鎖ポリヌクレオチド
をアルカリ処理、熱処理などで変性させて得ても
よく、あるいは測定対象ポリヌクレオチド、
DNase及びDNAポリメラーゼの存在下で各
種ヌクレオチドを次々と結合させて得てもよい。
A single-stranded polynucleotide (hereinafter referred to as a labeled polynucleotide) to be brought into contact with this polynucleotide to be measured is a luminescent substance to which luminescent substance 1 is directly or indirectly bound and which emits light when excited by luminescent substance 1. 2 can bind to each other and form a double-stranded polynucleotide with the polynucleotide to be measured. Therefore, this labeled polynucleotide is a probe for the polynucleotide to be measured. This labeled polynucleotide may be obtained by denaturing a double-stranded polynucleotide containing the polynucleotide to be measured by alkali treatment, heat treatment, etc., or the polynucleotide to be measured,
It may also be obtained by sequentially linking various nucleotides in the presence of DNase and DNA polymerase.

発光物質1は外部からの光を吸収して発光する
螢光物質又はリン光物質であつてもよく、酸化反
応等の化学反応によつて発光する化学発光物質あ
るいは生物発光物質であつてもよい。
The luminescent substance 1 may be a fluorescent substance or a phosphorescent substance that emits light by absorbing external light, or may be a chemiluminescent substance or a bioluminescent substance that emits light by a chemical reaction such as an oxidation reaction. .

発光物質2は発光物質1によつて励起されて発
光するものであり、従つて螢光物質又はリン光物
質である。
The luminescent substance 2 is excited by the luminescent substance 1 to emit light, and is therefore a fluorescent substance or a phosphorescent substance.

発光物質1及び発光物質2に用いることができ
る螢光物質は通常320nm〜600nm程度の波長で励
起されて螢光を発するものである。このような螢
光物質の例として、フルオレツセイン、ローダミ
ン、ダンシルクロライド、フルオレスクアミン、
クマリン、アクリジン、NADPH,NADH、ベ
ンゾオキサジアゾール、トリアリールメタン、ピ
レン類、これらの誘導体あるいは活性化型のもの
などを挙げることができる。
The fluorescent substances that can be used for the luminescent substance 1 and the luminescent substance 2 are those that normally emit fluorescence when excited at a wavelength of about 320 nm to 600 nm. Examples of such fluorophores include fluorescein, rhodamine, dansyl chloride, fluorescamine,
Examples include coumarin, acridine, NADPH, NADH, benzoxadiazole, triarylmethane, pyrenes, and derivatives or activated forms thereof.

発光物質1に用いることができる化学発光物質
の例としては、ルミノール、イソルミノール、ア
クリジニウム、ヒドロペルオキシド、ポルフイリ
ン、イントレン−3−イルヒドロペルオキシド、
2,4,5−トリフエニルイミダゾール及びこれ
らの誘導体を挙げることができる。生物発光物質
の例としてはルシフエラーゼによつて発光するル
シフエリンを挙げることができる。
Examples of chemiluminescent substances that can be used as the luminescent substance 1 include luminol, isoluminol, acridinium, hydroperoxide, porphyrin, intren-3-yl hydroperoxide,
Mention may be made of 2,4,5-triphenylimidazole and derivatives thereof. An example of a bioluminescent substance is luciferin, which emits light by luciferase.

発光物質1に化学発光物質又は生物発光物質を
用いる場合には、標識物質にはこれらの発光物質
を直接又は間接的に発光させる物質を結合させる
こともできる。例えば、発光物質1にルシフエリ
ンを用いる場合にはルシフエラーゼ又はその基質
を結合させてこれらの作用によりルシフエリンを
発光させることができる。
When a chemiluminescent substance or a bioluminescent substance is used as the luminescent substance 1, a substance that causes these luminescent substances to emit light can be bound to the labeling substance directly or indirectly. For example, when luciferin is used as the luminescent substance 1, luciferase or its substrate can be bound to it, and the luciferin can be made to emit light by the action of these.

本発明の方法においては、発光物質1によつて
発光物質2が励起されるのであるから両者の組合
せはこのような関係が成立するものが選択されな
ければならない。このような組合せの例としてフ
ルオレツセインとローダミンを挙げることができ
る。フルオレツセインは430〜530nmの波長の光
により励起され500〜560nmの波長の螢光を発す
る。一方、ローダミンは530〜580nmの波長の光
により励起され560〜620nmの波長の螢光を発す
る。従つて、この両者の混合物に430〜530nmの
光を照射すると500〜560nmの螢光に加えて560〜
620nmの螢光も現われる。
In the method of the present invention, since the luminescent substance 2 is excited by the luminescent substance 1, the combination of the two must be selected such that such a relationship is established. An example of such a combination is fluorescein and rhodamine. Fluorescein is excited by light with a wavelength of 430 to 530 nm and emits fluorescence with a wavelength of 500 to 560 nm. On the other hand, rhodamine is excited by light with a wavelength of 530 to 580 nm and emits fluorescence with a wavelength of 560 to 620 nm. Therefore, when a mixture of the two is irradiated with light of 430 to 530 nm, in addition to the fluorescent light of 500 to 560 nm, it emits light of 560 to 560 nm.
Fluorescence at 620 nm also appears.

発光物質1を直接又はビオチン−アビゼンを介
して間接的に標識ポリヌクレオチドに結合させる
方法、及び発光物質2を標識ポリヌクレオチドに
結合させる方法は、公知の標識DNAの調製法に
よればよく、例えば、モノヌクレオチドに発光物
質を導入して修飾型ヌクレオチドとし、これに未
修飾のモノヌクレオチドを混合してニツクトラン
スレーシヨン法あるいはポリヌクレオチドの化学
的合成法等によつてポリヌクレオチドにすればよ
い。そのほか、ニツクトランスレーシヨン法や大
腸菌を用いるcDNA作製法等によりポリヌクレオ
チドを作製し、一方発光物質を活性化しておいて
その活性基をポリヌクレオチドと反応させてもよ
い。発光物質の結合方法としては、ポリヌクレオ
チドに直接結合させる方法のほか、ビオチン−ア
ビジンのビオチンをポリヌクレオチドに結合さ
せ、アビジンを発光物質に結合させてこのビオチ
ン−アビジンの反応を利用して結合させるような
間接的な方法をとつてもよい。
The method of binding the luminescent substance 1 to the labeled polynucleotide directly or indirectly via biotin-avizen, and the method of binding the luminescent substance 2 to the labeled polynucleotide may be according to known methods for preparing labeled DNA, such as Alternatively, a modified nucleotide may be obtained by introducing a luminescent substance into a mononucleotide, and an unmodified mononucleotide may be mixed with the mononucleotide to form a polynucleotide by a nick translation method or a chemical polynucleotide synthesis method. In addition, a polynucleotide may be prepared by a nick translation method, a cDNA preparation method using Escherichia coli, or the like, and a luminescent substance may be activated and its active group may be reacted with the polynucleotide. Methods for binding luminescent substances include direct binding to polynucleotides, as well as binding of biotin-avidin to polynucleotides, avidin binding to the luminescent substance, and binding using this biotin-avidin reaction. You can also take indirect methods such as:

本発明の方法においては、発光物質1から発光
物質2へエネルギートランスフアーを起こさせる
ところに特徴があり、このエネルギートランスフ
アーを効率よく起こさせるためにポリヌクレオチ
ドにおける発光物質1と発光物質2との間隔を50
Å以下、従つて24〜26塩基以内になるように両者
を結合させることが好ましい。
The method of the present invention is characterized in that energy transfer occurs from luminescent substance 1 to luminescent substance 2, and in order to cause this energy transfer to occur efficiently, luminescent substance 1 and luminescent substance 2 in the polynucleotide are combined. interval to 50
It is preferable that the two be bonded so that the length is less than .ANG., ie, within 24 to 26 bases.

このような標識ポリヌクレオチドを測定対象ポ
リヌクレオチドと接触させて二本鎖ポリヌクレオ
チドを形成させる。接触時間は通常は測定対象ポ
リヌクレオチドが標識ポリヌクレオチドと充分に
反応してハイブリツドを形成しうる程度である
が、例えば0.5〜40時間程度が適当である。温度
は20〜70℃程度、PHは5〜9程度がよい。
Such a labeled polynucleotide is brought into contact with a polynucleotide to be measured to form a double-stranded polynucleotide. The contact time is usually such that the polynucleotide to be measured can sufficiently react with the labeled polynucleotide to form a hybrid, and for example, about 0.5 to 40 hours is appropriate. The temperature is preferably about 20 to 70°C, and the pH is about 5 to 9.

二本鎖ポリヌクレオチドを形成させたのちはこ
れに二本鎖ポリヌクレオチド制限酵素(以下、単
に制限酵素という。)を作用させる。この制限酵
素は二本鎖ポリヌクレオチドにのみ特異的に作用
するものがよく、また、認識ポリヌクレオチド鎖
のあまり長くないもののほうが好ましい。制限酵
素は1種のみでなく、2種以上を併用してもよ
い。制限酵素を作用させる時期は通常は測定対象
ポリヌクレオチドと標識ポリヌクレオチドとの反
応終了後であるが、測定対象ポリヌクレオチドと
同時あるいはその前に反応系に添加しておいても
よい場合もある。
After forming a double-stranded polynucleotide, it is treated with a double-stranded polynucleotide restriction enzyme (hereinafter simply referred to as a restriction enzyme). This restriction enzyme preferably acts specifically on double-stranded polynucleotides, and preferably recognizes polynucleotide chains that are not too long. Not only one restriction enzyme but also two or more restriction enzymes may be used in combination. The restriction enzyme is normally applied after the reaction between the polynucleotide to be measured and the labeled polynucleotide has finished, but it may be added to the reaction system at the same time as or before the polynucleotide to be measured.

制限酵素を作用させたのちは発光物質1又は発
光物質2の発光を測定する。測定は通常の螢光光
度計を用いてその強度を測定すればよい。
After allowing the restriction enzyme to act, the luminescence of Luminescent Substance 1 or Luminescent Substance 2 is measured. The intensity may be measured using an ordinary fluorophotometer.

(作用) 標識ポリヌクレオチドは測定対象ポリヌクレオ
チドとハイブリツドを形成する。ハイブリツドを
形成することによつて制限酵素が働いてこの二本
鎖ポリヌクレオチドを切断する。その結果、標識
ポリヌクレオチドに結合されている発光物質1と
発光物質2が分断されて別個に溶液中を動きまわ
るようになり、エネルギートランスフアーが起こ
らなくなる。そこで、発光物質1の発光強度の減
少はなくなり、一方、発光物質2からの発光はな
くなる。
(Function) The labeled polynucleotide forms a hybrid with the polynucleotide to be measured. By forming a hybrid, restriction enzymes act to cleave this double-stranded polynucleotide. As a result, luminescent substance 1 and luminescent substance 2 bound to the labeled polynucleotide are separated and move around in the solution separately, so that no energy transfer occurs. Therefore, the luminescent intensity of the luminescent material 1 no longer decreases, and on the other hand, the luminescent material 2 no longer emits light.

〔発明の効果〕〔Effect of the invention〕

本発明の方法においては発光物質1から発光物
質2へのエネルギートランスフアーを利用してお
り、発光物質1の発光波長と発光物質2の発光波
長が異なるところから両者の発光を別々に定量で
きる。その結果、先願の方法と異なり固相と液相
の分離及びそれに付随する洗浄操作が不要にな
る。
The method of the present invention utilizes energy transfer from luminescent substance 1 to luminescent substance 2, and since the emission wavelengths of luminescent substance 1 and luminescent substance 2 are different, the luminescence of both can be separately quantified. As a result, unlike the method of the prior application, separation of the solid phase and liquid phase and the accompanying washing operation are not necessary.

本発明の方法は従来の方法と異なり、測定対象
ポリヌクレオチドを固相に固定するという煩雑な
操作がなく、先願の方法に比しても固液分離操作
が不要な点でさらに簡便にされている。本発明の
方法に用いる試薬、器具類はキツト化が容易であ
り、このキツトを使用することによつてDNA等
のポリヌクレオチドを実用的かつ簡便に測定する
ことができる。
Unlike conventional methods, the method of the present invention does not require the complicated operation of immobilizing the polynucleotide to be measured on a solid phase, and is even simpler than the method of the previous application in that it does not require a solid-liquid separation operation. ing. The reagents and instruments used in the method of the present invention can be easily made into a kit, and by using this kit, polynucleotides such as DNA can be measured practically and easily.

〔実施例〕 (1) HBV−DNAプローブの調製 500mlの慢性B型肝炎患者のプール血清を
9000rpmで15分間遠心し、得られた上清を4℃
100000×gで5時間超遠心してB型肝炎ウイルス
(HBV)をペレツトとして集めた。このペレツト
を0.1MNaCl、1mM EDTA、0.1%2−メルカプ
トエタノール及び0.1%BSAを含む0.01Mトリス
−塩酸緩衝液(PH7.5)10mlに溶かし、このウイ
ルス溶液のうち5mlを保存し、残5mlを100000×
gで再度5時間超遠心してペレツトを得た。
[Example] (1) Preparation of HBV-DNA probe 500 ml of pooled serum from chronic hepatitis B patients was
Centrifuge at 9000 rpm for 15 minutes and store the resulting supernatant at 4°C.
Hepatitis B virus (HBV) was collected as a pellet by ultracentrifugation at 100,000 xg for 5 hours. This pellet was dissolved in 10 ml of 0.01 M Tris-HCl buffer (PH7.5) containing 0.1 M NaCl, 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.1% BSA, 5 ml of this virus solution was saved, and the remaining 5 ml was 100000×
A pellet was obtained by ultracentrifugation again at g for 5 hours.

このペレツトを0.5%NP−40を含む10mMトリ
ス−塩酸、0.1MNaClPH7.5溶液200μで処理し、
DNAポリメラーゼを活性化した。この溶液に
1mM dATP、1mM dTTP、2.5μM32PdGTP、
2.5μM32PdCTPを含む0.08M MgCl20.2Mトリス
緩衝液(PH7.5)50μを加えて3時間加温した。
この溶液を30%シユークロース溶液の入つた遠心
チユーブに重層し、SW65ローター(ベツクマン
社製)を用い50000rpmで3時間遠心してペレツ
トを得た。このペレツトをプロナーゼで処理し、
得られた溶液をフエノールで2回抽出処理した。
抽出液を5〜20%シユークロースグラジエントで
50000rpmにて3時間遠心して15S32PDNA分画を
集めこれをプールした。この分画から15S32
PDNAをエタノールを用いて沈澱させ、乾燥し
て目的のHBV−DNAを得た。
This pellet was treated with 200μ of 10mM Tris-HCl, 0.1M NaClPH7.5 solution containing 0.5% NP-40,
Activated DNA polymerase. in this solution
1mM dATP, 1mM dTTP, 2.5μM 32PdGTP ,
50μ of 0.08M MgCl 2 0.2M Tris buffer (PH7.5) containing 2.5μM 32 PdCTP was added and heated for 3 hours.
This solution was layered on a centrifuge tube containing a 30% sucrose solution, and centrifuged for 3 hours at 50,000 rpm using an SW65 rotor (manufactured by Beckman) to obtain a pellet. This pellet is treated with pronase,
The resulting solution was extracted twice with phenol.
Prepare the extract using a 5-20% sucrose gradient.
The mixture was centrifuged at 50,000 rpm for 3 hours to collect 15S 32 PDNA fractions and pool them. 15S 32 from this fraction
PDNA was precipitated using ethanol and dried to obtain the desired HBV-DNA.

(2) ニツクトランスレーシヨン法による修飾型
HBV−DNAの調製 次に、5mMMgCl2、10mM2−メルカプトエタ
ノール、5μMdTTP、5μMdGTP、5μMdCTP、
5μMdATP、10μMアミノヘキシルdATP及び
10μMアミノヘキシルdCTPを含む50mMトリス
−HCl緩衝液(PH7.5)100μに(1)で得たHBV−
DNA1μg、DNase100pg及びDNAポリメラー
ゼ100pgを加えて15℃で90分間インキユベート
した。この溶液をフエノールで抽出し、
SephadexG−50カラムで精製して修飾型HBV−
DNAを得た。
(2) Modified type by Nik translation method
Preparation of HBV-DNA Next, 5mMgCl2 , 10mM2-mercaptoethanol, 5μMdTTP, 5μMdGTP, 5μMdCTP,
5μM dATP, 10μM aminohexyl dATP and
HBV obtained in (1) was added to 100μ of 50mM Tris-HCl buffer (PH7.5) containing 10μM aminohexyl dCTP.
1 μg of DNA, 100 pg of DNase, and 100 pg of DNA polymerase were added and incubated at 15° C. for 90 minutes. This solution was extracted with phenol,
Purify with Sephadex G-50 column to obtain modified HBV-
I got DNA.

この二本鎖HBV−DNA1mg(1ml)とHBV−
DNAを導入した一本鎖M13−フアジDNA5mg
(2ml)にホルムアミド8mlを加え、5分間この
混合液を沸とうさせた。次に、これに2mlの緩衝
液(0.07モル/l,トリス−HCl 2モル/l
NaCl,1.5mM EDTAPH7.5)を加え、50℃で4
時間そしてさらに60℃で1時間加温した。
This double-stranded HBV-DNA 1mg (1ml) and HBV-
Single-stranded M13-phage DNA introduced with DNA 5mg
(2 ml) was added with 8 ml of formamide and the mixture was boiled for 5 minutes. Next, add 2 ml of buffer (0.07 mol/l, Tris-HCl 2 mol/l)
Add NaCl, 1.5mM EDTAPH7.5) and incubate at 50℃ for 4 hours.
The mixture was further heated at 60° C. for 1 hour.

この反応液をBio−GelA50mでゲル過し、ハ
イブリツドしたDNAと未反応のDNAを分離し
た。ボイド分画の近くに溶出される最初のピーク
を分画し、これにNaClが0.1Mになるように粉末
を加えて溶かした。そして、さらに100%エタノ
ールを溶液1mlに対し2倍の比率(2ml)で加
え、−70℃で2時間放置した。次に、17000×gで
10分間遠心し、エタノール沈殿物を50mlの
0.1NNaOH,0.25mM EDTA,0.001%フエノー
ルレツドで溶解した。ただちにこれをBio−
GelA50でゲル過し、目的の一本鎖HBV−
DNAを得た。
This reaction solution was gel-filtered with Bio-GelA 50m to separate hybridized DNA and unreacted DNA. The first peak eluted near the void fraction was fractionated, and powder was added to it to make NaCl 0.1M and dissolved. Further, 100% ethanol was added at twice the ratio (2 ml) per 1 ml of the solution, and the mixture was left at -70°C for 2 hours. Next, at 17000×g
Centrifuge for 10 minutes and remove 50 ml of ethanol precipitate.
Dissolved with 0.1N NaOH, 0.25mM EDTA, and 0.001% phenol. Bio-
Gel-filter with GelA50 and target single-stranded HBV-
I got DNA.

(3) 発光物質の導入 ローダミンイソチオシアネート及びフレオレツ
セインイソチオシアネート各1.0μgを含むDMF溶
液100μにこの(2)で得た一本鎖HBV−
DNA100μgを含む2mlの0.1M炭酸緩衝液PH10.0
を混合し、4℃で18時間反応させた。これをセフ
アデツクスG−50でゲル過し、フルオレツセイ
ン及びローダミンを導入した一本鎖標識HBV−
DNA100μgを得た。
(3) Introducing the luminescent substance into 100μ of a DMF solution containing 1.0μg each of rhodamine isothiocyanate and fluorescein isothiocyanate.
2ml of 0.1M carbonate buffer PH10.0 containing 100μg of DNA
were mixed and reacted at 4°C for 18 hours. This was gel-filtered with Sephadex G-50, and single-stranded HBV-labeled HBV containing fluorescein and rhodamine was added.
100 μg of DNA was obtained.

(4) ヒト血清HBV−DNAの測定 HBウイルス性肝炎患者血清100μに
0.5NNaOH100μを加えて室温で10分間攪拌し
た。次に、0.5NHcl100μを加えさらに200μg/
mlのプロテイナーゼK溶液200μを加えて70℃
で1時間反応させた。(3)項で調製した発光物質フ
ルオレツセイン及びローダミンが結合した一本鎖
標識HBV−DNA10ngを含む溶液100μを加え
て37℃で一夜放置した。これにd−DNA制限酵
素溶液(Bgl,Ava,Hae,Hae,Hap
,Hinc各1U/ml、10mMトリス−Hcl、
7mMMgcl2、70mMNaCl、7mM2−メルカプト
エタノール、PH7.5)を1.0ml加えて37℃で1時間
反応させた。反応物に470nmの光を照射し、
600nmの螢光強度を測定した。
(4) Measurement of human serum HBV-DNA: 100μ of serum from patients with HB viral hepatitis
100μ of 0.5NNaOH was added and stirred at room temperature for 10 minutes. Next, add 100μ of 0.5NHcl and further 200μg/
Add 200μ of proteinase K solution and heat at 70°C.
The reaction was carried out for 1 hour. 100 µ of a solution containing 10 ng of single-stranded labeled HBV-DNA bound to the luminescent substances fluorescein and rhodamine prepared in section (3) was added, and the mixture was left at 37°C overnight. Add d-DNA restriction enzyme solution (Bgl, Ava, Hae, Hae, Hap) to this.
, Hinc 1U/ml each, 10mM Tris-Hcl,
1.0 ml of 7mMgcl2 , 70mMNaCl, 7mM2-mercaptoethanol, PH7.5) was added and reacted at 37°C for 1 hour. Irradiate the reactant with 470 nm light,
The fluorescence intensity at 600 nm was measured.

図面は得られた結果を示すものであり、縦軸は
相対螢光強度をそして横軸は血清の希釈度を表わ
している。
The figure shows the results obtained, with the vertical axis representing the relative fluorescence intensity and the horizontal axis representing the dilution of the serum.

次に本発明法及び従来のラジオアイソトープを
用いた方法で測定した各種ヒト血清のHBV−
DNA量を示す。 本発明法 従来法 A 100pg 110pg B ND ND C 210〃 200〃 D 890〃 860〃 E 60〃 70〃
Next, HBV-
Indicates the amount of DNA. Present invention method Conventional method A 100pg 110pg B ND ND C 210〃 200〃 D 890〃 860〃 E 60〃 70〃

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明法で測定した発光物質2の相対螢
光強度と血清希釈率との関係の一例を示すもので
ある。
The drawing shows an example of the relationship between the relative fluorescence intensity of the luminescent substance 2 and the serum dilution rate measured by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 測定対象の一本鎖ポリヌクレオチドと二本鎖
ポリヌクレオチドを形成しうる一本鎖ポリヌクレ
オチドに、発光物質1が直接又は間接的に結合
し、かつ発光物質1によつて励起されて発光する
発光物質2が結合している標識ポリヌクレオチド
に;測定対象の一本鎖ポリヌクレオチドを接触さ
せて二本鎖ポリヌクレオチドを形成させ;該二本
鎖ポリヌクレオチドに二本鎖ポリヌクレオチド制
限酵素を使用させて該二本鎖ポリヌクレオチドを
切断し;その後発光物質1又は発光物質2の発光
を測定することを特徴とするポリヌクレオチドの
測定方法。 2 発光物質2が蛍光物質である特許請求の範囲
第1項記載の測定方法。
[Claims] 1. Luminescent substance 1 is directly or indirectly bound to a single-stranded polynucleotide that can form a double-stranded polynucleotide with the single-stranded polynucleotide to be measured, and A labeled polynucleotide bound to a luminescent substance 2 that is excited and emits light; contacts a single-stranded polynucleotide to be measured to form a double-stranded polynucleotide; A method for measuring a polynucleotide, which comprises cleaving the double-stranded polynucleotide using a polynucleotide restriction enzyme; and then measuring the luminescence of luminescent substance 1 or luminescent substance 2. 2. The measuring method according to claim 1, wherein the luminescent substance 2 is a fluorescent substance.
JP59123757A 1984-06-18 1984-06-18 Measurement of polynucleotide utilizing luminous substance Granted JPS613063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123757A JPS613063A (en) 1984-06-18 1984-06-18 Measurement of polynucleotide utilizing luminous substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123757A JPS613063A (en) 1984-06-18 1984-06-18 Measurement of polynucleotide utilizing luminous substance

Publications (2)

Publication Number Publication Date
JPS613063A JPS613063A (en) 1986-01-09
JPH0515439B2 true JPH0515439B2 (en) 1993-03-01

Family

ID=14868543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123757A Granted JPS613063A (en) 1984-06-18 1984-06-18 Measurement of polynucleotide utilizing luminous substance

Country Status (1)

Country Link
JP (1) JPS613063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379888B1 (en) 1999-09-27 2002-04-30 Becton, Dickinson And Company Universal probes and methods for detection of nucleic acids

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538848A (en) * 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
US5846726A (en) * 1997-05-13 1998-12-08 Becton, Dickinson And Company Detection of nucleic acids by fluorescence quenching
WO2003035864A1 (en) * 2001-10-26 2003-05-01 Matsushita Electric Industrial Co., Ltd. Method of detecting target nucleic acid and nucleic acid probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379888B1 (en) 1999-09-27 2002-04-30 Becton, Dickinson And Company Universal probes and methods for detection of nucleic acids

Also Published As

Publication number Publication date
JPS613063A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
JP5453132B2 (en) Beads for high-throughput nucleic acid analysis
EP0185547B1 (en) Polynucleotide hybridization assays employing catalyzed luminescence
JPH0378120B2 (en)
JPH11504517A (en) Nucleic acid detection and amplification by chemical bonding of oligonucleotides
US6013442A (en) Direct quantitation of low copy number RNA
JPH02135100A (en) Detecting method for specific nucleic acid configuration
JPH0811079B2 (en) Amplification hybridization assay
CN111876525A (en) gRNA, primer and kit for detecting SARS-CoV-2
JPS60144662A (en) Nucleic acid probe, polynucleotide alignment and testing method and reagent group for detecting antibody thereof
JP2939485B2 (en) Amplification / detection system based on replicated RNA
KR101964746B1 (en) Composition and method for improving sensitivity and specificity on detection of nucleic acids with using dCas9 protein and gRNA for binding to target nucleic acid sequence
JPH05508323A (en) Detection of DNA/RNA by fluorescence polarization
IL95537A (en) Process for the multiplication of nucleic acids using at least two adaptors
KR20080070838A (en) Activated spilit-polypeptides and methods for their production and use
JP2019519192A (en) Compositions and methods for detecting Zika virus
US6482938B1 (en) Compounds having energy transfer function and method for DNA base sequencing by using the same
JPH0515439B2 (en)
KR20210113083A (en) Composition For Detecting SARS-CoV-2, Kit For Detecting the Same and Method of Detecting SARS-CoV-2 Using the Same
WO2006132022A1 (en) Simple method of detecting methylcytosine
JPH08506011A (en) Methods and compositions for cDNA synthesis
KR102366553B1 (en) Method for detecting SARS-CoV-2 using CRISPR-Cas system and RT-LAMP primer set
JP3071797B2 (en) Replicated RNA-based amplification / detection systems
US6228656B1 (en) Method of cleaving specific nucleic acid sequence
JPH0552199B2 (en)
RU2822037C1 (en) Method for differentiation of genome of arriah vaccine strain from field isolates of rabies virus by polymerase chain reaction in real time with analysis of peaks of melting temperatures of amplicons and use of asymmetric dye sybr green