JPH0552199B2 - - Google Patents

Info

Publication number
JPH0552199B2
JPH0552199B2 JP59123758A JP12375884A JPH0552199B2 JP H0552199 B2 JPH0552199 B2 JP H0552199B2 JP 59123758 A JP59123758 A JP 59123758A JP 12375884 A JP12375884 A JP 12375884A JP H0552199 B2 JPH0552199 B2 JP H0552199B2
Authority
JP
Japan
Prior art keywords
enzyme
polynucleotide
stranded
dna
stranded polynucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59123758A
Other languages
Japanese (ja)
Other versions
JPS613064A (en
Inventor
Yoshihiro Ashihara
Yasushi Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Inc
Original Assignee
Fujirebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujirebio Inc filed Critical Fujirebio Inc
Priority to JP59123758A priority Critical patent/JPS613064A/en
Publication of JPS613064A publication Critical patent/JPS613064A/en
Publication of JPH0552199B2 publication Critical patent/JPH0552199B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 特定の構造を有するデオキシリボ核酸(DNA)
およびリボ核酸(RNA)の測定は生化学分野に
おいて重要であり、例えば人血清中のDNAを測
定することによつてウイルス感染の検査あるいは
遺伝性疾患の発見などを行なうことができる。本
発明はこのようなDNA及びRNAの特定のものを
簡便かつ正確に測定しうる方法を提供するもので
ある。 (従来の技術及び発明が解決しようとする問題
点) 従来、このDNA及びRNAの測定方法として
は、試料を変性処理して得た一本鎖DNA(S−
DNA)又は一本鎖RNA(S−RNA)を固相に結
合させ、この固相にラジオアイソトープを標識し
たS−DNA又はS−RNAを作用させて固相のS
−DNA又はS−RNAとバイブリツドを形成させ
てから未反応の標識S−DNA又はS−RNAを除
去し、固相の放射線を測定する方法が行なわれて
いた。この方法は測定の際に固定化、洗浄等数多
くの工程を必要とし、特に試料の固定化に長時間
を要するところから操作の労力及び時間の両方に
問題があつた。 本発明者らはこのような問題のない方法を開発
すべく種々検討の結果、予め標識された一本鎖ポ
リヌクレオチドを固相に結合させておき、この固
相に試料を変性処理させて得た一本鎖ポリヌクレ
オチドを作用させてハイブリツドを形成させ、ハ
イブリツドしたポリヌクレオチドを制限酵素で切
断する方法を案出し、その内容を既に特許出願
(特願昭58−199702号)した。しかしながら、こ
の方法もまだ固相の分離が必要であり、特に大量
の検体を一度に処理する臨床分析等にあつてはこ
の分離操作が煩雑であつた。 (問題点を解決するための手段) 本発明はこのような問題点を解決するものであ
り、測定対象の一本鎖ポリヌクレオチドとハイブ
リツドする一本鎖ポリヌクレオチドに一の酵素及
びこの酵素の作用による生成物質を基質とする他
の一の酵素を結合させ又はしうるようにし、この
二種の酵素による連続反応がこのポリヌクレオチ
ドの切断によつて変化することを利用している。 すなわち、本発明は、測定対象の一本鎖ポリヌ
クレオチドと二本鎖ポリヌクレオチドを形成しう
る一本鎖ポリヌクレオチドに、酵素1と、酵素
1の作用により生成する物質を基質とする酵素2
とが、直接又は間接的に結合しているか、ある
いは酵素1及び酵素2がそれぞれ結合しうる親和
性物質が結合している、標識ポリヌクレオチド
に;測定対象の一本鎖ポリヌクレオチドを接触さ
せて二本鎖ポリヌクレオチドを形成させ;該二本
鎖ポリヌクレオチドに二本鎖ポリヌクレオチド制
限酵素を作用させて切断し;上記の場合には、
上記いずれかの段階で該親和性物質に酵素1及び
酵素2をそれぞれ結合させ;その後酵素2の活性
を測定することを特徴とするポリヌクレオチドの
測定方法である。 測定対象は一本鎖ポリヌクレオチド(以下、測
定対象ポリヌクレオチドという。)である。測定
対象ポリヌクレオチドにはDNA及びRNAを含
む。試料中に含まれるポリヌクレオチドが二本鎖
である場合には水酸化ナトリウム溶液の添加など
のアルカリ処理あるいは熱処理などにより一本鎖
にしておく必要がある。試料の種類は問わない
が、例えば人血清、尿、組織抽出物などである。
人血清などのようにポリヌクレオチドが蛋白と結
合しているおそれがある場合には試料をプロテア
ーゼ等を処理して蛋白を分離しておくのがよい。 この測定対象ポリヌクレオチドと接触させる一
本鎖ポリヌクレオチド(以下、標識ポリヌクレオ
チドという。)は、酵素1と、酵素1の作用によ
り生成する物質を基質とする酵素2とが、直接又
は間接的に前記一本鎖ポリヌクレオチドに結合し
ているか、あるいは酵素1及び酵素2がそれぞれ
結合しうる親和性物質が結合している。従つて、
この標識ポリヌクレオチドは測定対象ポリヌクレ
オチドに対するプローブである。一本鎖ポリヌク
レオチドは測定対象ポリヌクレオチドを含む二本
鎖ポリヌクレオチドをアルカリ処理、熱処理など
で変性させて用いればよい。その場合、相補性が
ある相手方の一本鎖ポリヌクレオチドは極力除去
する必要があり、そのため、電気泳動やイオン交
換クロマトグラフイーあるいはアフイニテイーク
ロマトグラフイーなどを利用して精製を行なうの
がよい。また、最近測定対象ポリヌクレオチド、
DNase I及びDNAポリメラーゼIの存在下で
各種ヌクレオチドを次々と結合させるニツクトラ
ンスレーシヨン法や大腸菌を用いるcDNA作製法
等の直接一本鎖ポリヌクレオチドを合成する方法
が開発されており、これらの方法によつて合成す
ることも可能である。さらに検出プローブのみを
溶液中でアニーリングさせ、これに二本鎖ポリヌ
クレオチド制限酵素を作用させた後ゲル過して
混入している相補性ポリヌクレオチドを除去して
もよい。 酵素1及び酵素2は、酵素1の作用により生ず
る物質を酵素2が基質とする関係にあればよい。
このような酵素の組合せの例を次に示す。
(Industrial application field) Deoxyribonucleic acid (DNA) with a specific structure
The measurement of RNA and ribonucleic acid (RNA) is important in the field of biochemistry; for example, by measuring DNA in human serum, it is possible to test for viral infection or discover genetic diseases. The present invention provides a method for easily and accurately measuring such specific DNA and RNA. (Problems to be Solved by the Prior Art and the Invention) Conventionally, as a method for measuring DNA and RNA, single-stranded DNA (S-
DNA) or single-stranded RNA (S-RNA) is bound to a solid phase, and S-DNA or S-RNA labeled with a radioisotope is applied to the solid phase to
- A method has been used in which hybrids are formed with DNA or S-RNA, unreacted labeled S-DNA or S-RNA is removed, and radiation on the solid phase is measured. This method requires many steps such as fixation and washing during measurement, and in particular, it takes a long time to fix the sample, which poses problems in terms of both operational labor and time. The present inventors conducted various studies to develop a method free of such problems, and found that a pre-labeled single-stranded polynucleotide was bound to a solid phase, and a sample was denatured on this solid phase. He devised a method of reacting single-stranded polynucleotides to form a hybrid and cleaving the hybridized polynucleotides with restriction enzymes, and has already filed a patent application for this method (Japanese Patent Application No. 199702-1981). However, this method still requires separation of the solid phase, and this separation operation is complicated, especially in clinical analyzes where a large amount of specimens are processed at once. (Means for Solving the Problems) The present invention solves these problems by applying an enzyme to the single-stranded polynucleotide hybridized with the single-stranded polynucleotide to be measured and the action of this enzyme. This method utilizes the fact that the continuous reaction between these two types of enzymes changes depending on the cleavage of the polynucleotide. That is, the present invention provides enzyme 1 and enzyme 2 whose substrate is a substance produced by the action of enzyme 1 on a single-stranded polynucleotide that can form a double-stranded polynucleotide with the single-stranded polynucleotide to be measured.
is bound directly or indirectly, or to a labeled polynucleotide to which an affinity substance to which Enzyme 1 and Enzyme 2 can bind, respectively; is contacted with a single-stranded polynucleotide to be measured; forming a double-stranded polynucleotide; cleaving the double-stranded polynucleotide with a double-stranded polynucleotide restriction enzyme; in the above case,
This is a method for measuring polynucleotides, which comprises binding enzyme 1 and enzyme 2 to the affinity substance at any of the steps described above; and then measuring the activity of enzyme 2. The measurement target is a single-stranded polynucleotide (hereinafter referred to as the measurement target polynucleotide). Polynucleotides to be measured include DNA and RNA. If the polynucleotide contained in the sample is double-stranded, it is necessary to make it single-stranded by an alkali treatment such as addition of a sodium hydroxide solution or heat treatment. The type of sample does not matter, but examples include human serum, urine, and tissue extracts.
If there is a possibility that polynucleotides may be bound to proteins, such as in human serum, it is preferable to treat the sample with protease or the like to separate the proteins. The single-stranded polynucleotide (hereinafter referred to as a labeled polynucleotide) that is brought into contact with this polynucleotide to be measured is directly or indirectly contacted with enzyme 1 and enzyme 2 whose substrate is a substance produced by the action of enzyme 1. It is bound to the single-stranded polynucleotide, or an affinity substance to which Enzyme 1 and Enzyme 2 can bind, respectively, is bound. Therefore,
This labeled polynucleotide is a probe for the polynucleotide to be measured. The single-stranded polynucleotide may be used by denaturing a double-stranded polynucleotide containing the polynucleotide to be measured by alkali treatment, heat treatment, or the like. In this case, it is necessary to remove the complementary single-stranded polynucleotide as much as possible, and therefore purification is preferably performed using electrophoresis, ion exchange chromatography, affinity chromatography, or the like. In addition, recently measured polynucleotides,
Methods for directly synthesizing single-stranded polynucleotides have been developed, such as the nick translation method in which various nucleotides are linked one after another in the presence of DNase I and DNA polymerase I, and the cDNA production method using Escherichia coli. It is also possible to synthesize by Furthermore, only the detection probe may be annealed in a solution, treated with a double-stranded polynucleotide restriction enzyme, and then subjected to gel filtration to remove contaminating complementary polynucleotides. Enzyme 1 and enzyme 2 may be in a relationship such that enzyme 2 uses a substance produced by the action of enzyme 1 as a substrate.
Examples of such enzyme combinations are shown below.

【表】 フマラーゼ −マレートデヒドロゲナーゼ
これらは一例であり、酵素ハンドブツクあるい
は生化学ハンドブツクに記載されている各種酵素
のなかから適当な組合せを選択して使用すること
ができる。酵素には作用至適PHが中性のほか酸性
あるいはアルカリ性のものがあり、また、耐熱性
を有するものなど種々のものがあるから、測定条
件などに応じ適当なものを選択する。使用される
酵素は通常は2種類であるが、必要に応じ連続反
応する関係にある3種以上の酵素を使用すること
もできる。 酵素1及び酵素2を直接又は間接的に一本鎖ポ
リヌクレオチドに結合させるには、水溶液中で容
易に酵素1及び酵素2を結合しうる親和性物質を
介して行われる。直接結合させる場合、例えば酵
素1及び酵素2のそれぞれに対する抗体に結合さ
せるか、抗体の代りにハプテンを用いてもよい。
間接的に結合しうる親和性物質としては、例えば
一本鎖ポリヌクレオチドに結合したビオチンに、
酵素1及び酵素2がそれぞれ結合したアビジンを
結合させる場合のビオチン−アビジンがこれに相
当する。 あるいは別の実施態様として、酵素1及び酵素
2がそれぞれ結合しうる親和性物質、例えばビオ
チンを一本鎖ポリヌクレオチドに結合させたもの
を標識ポリヌクレオチドとして用い、これを測
定対象のポリヌクレオチドと接触させてバイブリ
ツドする段階、これを制限酵素で切断する段
階、のそれぞれの前又は後に、酵素1及び酵素2
がそれぞれ結合したアビジンを反応させて上記間
接法と同様にビオチン−アビジンを介して酵素1
及び酵素2をポリヌクレオチドに結合させてもよ
い。 酵素1及び酵素2を直接又は間接的に標識ポリ
ヌクレオチドとなる一本鎖ポリヌクレオチドに結
合させる方法は、例えば公知のビオチン・アビジ
ン法に準じて行えばよい。酵素1及び酵素2をポ
リヌクレオチドに結合させる間隙は10〜1000Å程
度が適当であり、このような間隔で結合されるよ
うにこれらの添加量あるいは反応条件などを調節
するのがよい。 このような標識ポリヌクレオチドを測定対象ポ
リヌクレオチドと接触させて二本鎖ポリヌクレオ
チドを形成させる。接触時間は通常は測定対象ポ
リヌクレオチドが標識ポリヌクレオチドと充分に
反応してバイブリツドを形成しうる程度である
が、例えば0.5〜40時間程度が適当である。温度
は20〜70℃程度、PHは5〜9程度がよい。 二本鎖ポリヌクレオチドを形成させたのちはこ
れに二本鎖ポリヌクレオチド制限酵素(以下、単
に制限酵素という。)を作用させる。この制限酵
素は二本鎖ポリヌクレオチドにのみ特異的に作用
するものがよく、また、認識ポリヌクレオチド鎖
のあまり長くないもののほうが好ましい。制限酵
素は1種のみでなく、2種以上を併用してもよ
い。制限酵素を作用させる時期は通常は測定対象
ポリヌクレオチドと標識ポリヌクレオチドとの反
応終了後であるが、測定対象ポリヌクレオチドと
同時あるいはその前に反応系に添加しておいてよ
い場合もある。 制限酵素を作用させたのちはポリヌクレオチド
に結合されている酵素2の活性を測定する。この
反応は公知の活性測定方法により測定すればよ
く、これらの共役酵素や化学物質を利用して比色
定量あるいは蛍光、発光等を定量するなどすれば
よい。 (作用) 標識ポリヌクレオチドは測定対象ポリヌクレオ
チドとハイブリツドを形成する。ハイブリツドを
形成することによつて制限酵素が働いてこの二本
鎖ポリヌクレオチドを切断する。その結果、標識
ポリヌクレオチドに結合されている酵素1と酵素
2との距離が離れて連続反応が起こりにくくな
る。そこで酵素2による反応速度が低下する。 (発明の効果) 本発明の方法は、従来の方法と異なり、測定対
象ポリヌクレオチドを固相に固定するという煩雑
な操作がなく、先願の方法に比しても固液分離及
びそれに付随する洗浄効果が不要な点でさらに簡
便にされている。 (実施例) HBV−DNAプローブの調製 500mlの慢性B型肝炎患者のプール血清を
9000rpmで15分間遠心し、得られた上清を4℃
100000×gで5時間超遠心してB型肝炎ウイルス
(HBV)粒子をペリツトとして集めた。このペレ
ツトを0.1M NaCl、1mM EDTA、0.1%2−メ
ルカプトエタノール及び0.1%BSAを含む0.01M
トリス−塩酸緩衝液(PH7.5)10mlに溶かし、こ
のウイルス溶液のうち5mlを保存し、残5mlを
100000×gで再度5時間超遠心してペレツトを得
た。 このペレツトを0.5%NP−40を含む10mMトリ
ス−塩酸、0.1M NaClPH7.5溶液200μで処理
し、DNAポリメラーゼを活性化した。この溶液
に1mM dATP、1mM dTTP、
2.5μM32PdGTP、2.5μM32PdCTPを含む0.08M
MgCl2 0.2Mトリス緩衝液(PH7.5)50μを加
えて3時間加温した。この溶液を30%シユークロ
ース溶液の入つた遠心チユーブに重層し、SW65
ローター(ベツクマン社製)を用い50000rpmで
3時間遠心してペレツトを得た。このペレツトを
プロナーゼで処理し、得られた溶液をフエノール
で2回抽出処理した。抽出液を5〜20%シユーク
ロースグラジエントで50000rpmにて3時間遠心
して15S32PDNA分画を集めこれをプールした。
この分画から15S32PDNAをエタノールを用いて
沈澱させ、乾燥して目的のHBV−DNAを得た。 一本鎖HBV−DNAの調製 次に、5mM MgCl2、10mM2−メルカプトエ
タノール、5μM dTTP、5μM dGTP、5μM
dCTP、5μM dATP、10μMアミノヘキシル
dATP及び10μMアミノヘキシルdCTPを含む
50mMトリス−HCl緩衝液(PH7.5)100μにや
はりHBV−DNA1μg、DNase I100pg及び
DNAポリメラーゼI100pgを加えて15℃で90分間
インキユベートした。この溶液をやはりフエノー
ルで抽出し、Sephadex G−50カラムで精製して
修飾型HBV−DNAを得た。この二本鎖HBV−
DNA1mg(1ml)とHBV−DNAを導入した一本
鎖M13−フアジDNA5mg(2ml)にホルムアミド
8mlを加え、5分間この混合液を沸とうさせた。
次に、これに2mlの緩衝液(0.07モル/トリス
−HCl2モル/NaCl、15mM EDTAPH7.5)を
加え、50℃で4時間そしてさらに60℃で1時間加
温した。 この反応液をBio−Gel A50mでゲル過し、
ハイブリツドしたDNAと未反応のDNAを分離し
た。ボイド分画の近くに溶出される最初のピーク
を分画し、これにNaClが0.1Mになるように粉末
を加えて溶かした。そして、さらに100%エタノ
ールを溶液1mlに対し2倍の比率(2ml)で加
え、−70℃で2時間放置した。次に、17000×gで
10分間遠心し、エタノール沈澱物を50mlの0.1N
NaOH、0.25mM EDTA、0.001%フエノールレ
ツドで溶解した。ただちにこれをBio−Gel A50
でゲル過し、目的の一本鎖HBV−DNAを得
た。 ビオチン化一本鎖HBV−DNAの調製 で調製した一本鎖HBV−DNA100μgにビオ
チンのサクシンイミドエステル1μgをPH8.0の炭
酸緩衝液中で37℃で2時間反応させた。これをセ
フアデツクスG−25でゲル過し、ボイド分画を
60℃で一夜放置した。この溶液にd−DNA制限
酵素溶液(Hae 、Hae 、Hap 、Bgl
、Ava 各1U/ml、10mMトリス−HCl、
7mM MgCl2、7mM2−メルカプトエタノール、
PH7.5)1mlを加え、37℃で1時間反応させた。
この反応物をセフアデツクスG−100でゲル過
し、ボイド分画をプールしてこれに除蛋白処理を
行なつた。 SH化アビジンの調製 アビジン2mgを0.1Mリン酸緩衝液PH7.5に溶か
した溶液1mlにSPDP200μgを含むDMF溶液
100μを加え、室温で30分間反応させた。これ
を1mM EDTAを含む0.1Mリン酸緩衝液PH7.0で
平衡化したセフアデツクスG−25のカラムに入れ
同じ液で展開してゲル過を行なつた。ボイド分
画をプールし、これに2−メルカプトエチルアミ
ン200μgを加えて37℃で3時間攪拌した。続い
て上記のセフアデツクスG−25のカラムを用いて
同様にゲル過し、SH化アビジン2mgを得た。 CHM化ヘキソキナーゼ ヘキサキナーゼ1mgを含む0.1Mリン酸緩衝液
PH7.01mlにシクロヘキシル−4−マレイミドメチ
ルシクロヘキサン−1−カルボン酸サクシンイミ
ドエステル(CHMS)200μgを含むDMF溶液
100μを加え、室温で1時間放置した。これを
前項と同じセフアデツクスG−25のカラムでゲル
過し、ポイド分画をプールした。 アビジン結合ヘキソキナーゼの調製 で調製したSH化アビジン1mgにで調製し
たCHM化ヘキソキナーゼ1mgを加え、37℃で90
分間反応させた。次に、これをACA34カラムで
ゲル過し、アビジンとヘキソキナーゼの1:1
の結合物を分取した。 アビジン結合グルコース−6−リン酸デヒド
ロゲナーゼの調製 と同様の方法で調製したCHM化グルコース
−6−リン酸デヒドロゲナーゼ1mgを含む溶液1
mlにのSH化アビジン500μgを含む溶液1mlを
加え、37℃で90分間反応させた。反応物を
ACA34カラムでゲル過し、アビジンとグルコ
ース−6−リン酸デヒドロゲナーゼの1:1の結
合物を分取した。 DNAの測定 HBウイルス性肝炎患者血清100μに0.5N
NaOH100μを加えて室温で10分間攪拌した。
次に、0.5NHCl100μを加えさらに200μg/ml
のプロテイナーゼK溶液200μを加えて70℃で
1時間反応させた。これに項で調製したビオチ
ン化一本鎖HBV−DNA200μを加え、37℃で一
夜放置した。d−DNA制限酵素溶液(Bgl 、
Ava 、Hae 、Hae 、Hap 、
Hinc 各1U/ml、10mMトリス−HCl、7mM
MgCl2、70mM NaCl、7mM 2−メルカプトエ
タノール、PH7.5)を1.0ml加えて37℃で1時間反
応させた。反応後、アビジン結合ヘキソキナーゼ
及びアビジン結合グルコース−6−リン酸デヒド
ロゲナーゼを各々1.0μg含む溶液100μを加え、
さらに基質液(0.1Mグリシルグリシン、20mM
MgCl2グルコース50mg/ml、0.5mM ATP、
0.5mM NADP+、PH8.0)3mlを加え、NADPH
の増加を340nmの吸光度を測定することによりレ
ートアツセイした。 図面は得られた結果を示すものであり、縦軸は
吸光度をそして横軸は血清の希釈度をそれぞれ表
わしている。
[Table] Fumarase - Malate dehydrogenase These are just examples, and an appropriate combination can be selected and used from the various enzymes listed in the Enzyme Handbook or Biochemistry Handbook. There are various types of enzymes whose optimal pH for action is neutral, acidic or alkaline, and there are also those that are heat resistant, so choose the appropriate one depending on the measurement conditions. Usually two types of enzymes are used, but three or more types of enzymes that are involved in continuous reaction can also be used if necessary. Enzyme 1 and Enzyme 2 can be directly or indirectly bound to a single-stranded polynucleotide using an affinity substance that can easily bind Enzyme 1 and Enzyme 2 in an aqueous solution. In the case of direct binding, for example, it may be combined with antibodies against each of Enzyme 1 and Enzyme 2, or a hapten may be used instead of the antibody.
As an affinity substance that can bind indirectly, for example, biotin bound to a single-stranded polynucleotide,
This corresponds to biotin-avidin in which enzyme 1 and enzyme 2 are bound to avidin, respectively. Alternatively, in another embodiment, an affinity substance to which Enzyme 1 and Enzyme 2 can each bind, such as biotin, bound to a single-stranded polynucleotide is used as a labeled polynucleotide, and this is contacted with the polynucleotide to be measured. Enzyme 1 and Enzyme 2 are added to
The enzyme 1 is reacted with the avidin bound to each, and the enzyme 1
and Enzyme 2 may be linked to the polynucleotide. Enzyme 1 and Enzyme 2 may be directly or indirectly bound to a single-stranded polynucleotide serving as a labeled polynucleotide, for example, in accordance with the known biotin-avidin method. The appropriate gap for binding Enzyme 1 and Enzyme 2 to the polynucleotide is about 10 to 1000 Å, and it is preferable to adjust the amounts added or reaction conditions so that the enzymes 1 and 2 are bonded at such a gap. Such a labeled polynucleotide is brought into contact with a polynucleotide to be measured to form a double-stranded polynucleotide. The contact time is usually such that the polynucleotide to be measured sufficiently reacts with the labeled polynucleotide to form a hybrid, and for example, about 0.5 to 40 hours is appropriate. The temperature is preferably about 20 to 70°C, and the pH is about 5 to 9. After forming a double-stranded polynucleotide, it is treated with a double-stranded polynucleotide restriction enzyme (hereinafter simply referred to as a restriction enzyme). This restriction enzyme preferably acts specifically on double-stranded polynucleotides, and preferably recognizes polynucleotide chains that are not too long. Not only one restriction enzyme but also two or more restriction enzymes may be used in combination. The restriction enzyme is normally applied after the reaction between the polynucleotide to be measured and the labeled polynucleotide has finished, but in some cases it may be added to the reaction system at the same time as or before the polynucleotide to be measured. After allowing the restriction enzyme to act, the activity of enzyme 2 bound to the polynucleotide is measured. This reaction may be measured by a known activity measuring method, such as by colorimetric determination or fluorescence, luminescence, etc., using these conjugated enzymes and chemical substances. (Function) The labeled polynucleotide forms a hybrid with the polynucleotide to be measured. By forming a hybrid, restriction enzymes act to cleave this double-stranded polynucleotide. As a result, the distance between enzyme 1 and enzyme 2 bound to the labeled polynucleotide increases, making it difficult for continuous reactions to occur. Therefore, the reaction rate by enzyme 2 decreases. (Effects of the Invention) Unlike conventional methods, the method of the present invention does not require the complicated operation of immobilizing the polynucleotide to be measured on a solid phase, and compared to the method of the prior application, solid-liquid separation and accompanying It is further simplified in that no cleaning effect is required. (Example) Preparation of HBV-DNA probe 500ml of pooled serum from chronic hepatitis B patients was
Centrifuge at 9000 rpm for 15 minutes and store the resulting supernatant at 4°C.
Hepatitis B virus (HBV) particles were collected as a pellet by ultracentrifugation at 100,000 xg for 5 hours. This pellet was mixed with 0.01M NaCl, 1mM EDTA, 0.1% 2-mercaptoethanol and 0.1% BSA.
Dissolve in 10 ml of Tris-HCl buffer (PH7.5), save 5 ml of this virus solution, and save the remaining 5 ml.
Ultracentrifugation was performed again at 100,000 xg for 5 hours to obtain a pellet. This pellet was treated with 200 µ of a 10 mM Tris-HCl, 0.1M NaClPH7.5 solution containing 0.5% NP-40 to activate DNA polymerase. This solution contains 1mM dATP, 1mM dTTP,
0.08M containing 2.5μM32PdGTP, 2.5μM32PdCTP
50μ of MgCl 2 0.2M Tris buffer (PH7.5) was added and heated for 3 hours. This solution was layered in a centrifuge tube containing 30% sucrose solution, and SW65
A pellet was obtained by centrifugation at 50,000 rpm for 3 hours using a rotor (manufactured by Beckman). This pellet was treated with pronase, and the resulting solution was extracted twice with phenol. The extract was centrifuged at 50,000 rpm for 3 hours in a 5-20% sucrose gradient to collect 15S32PDNA fractions and pool them.
From this fraction, 15S32PDNA was precipitated using ethanol and dried to obtain the desired HBV-DNA. Preparation of single-stranded HBV-DNA Next, 5mM MgCl 2 , 10mM 2-mercaptoethanol, 5μM dTTP, 5μM dGTP, 5μM
dCTP, 5μM dATP, 10μM aminohexyl
Contains dATP and 10μM aminohexyl dCTP
Also, 1μg of HBV-DNA, 100pg of DNase I and 100μg of 50mM Tris-HCl buffer (PH7.5) were added.
100 pg of DNA polymerase I was added and incubated at 15°C for 90 minutes. This solution was also extracted with phenol and purified using a Sephadex G-50 column to obtain modified HBV-DNA. This double-stranded HBV-
8 ml of formamide was added to 1 mg (1 ml) of DNA and 5 mg (2 ml) of single-stranded M13-phage DNA introduced with HBV-DNA, and the mixture was boiled for 5 minutes.
Next, 2 ml of buffer solution (0.07 mol/Tris-HCl 2 mol/NaCl, 15 mM EDTAPH 7.5) was added thereto, and the mixture was heated at 50°C for 4 hours and then at 60°C for 1 hour. This reaction solution was gel-filtered with Bio-Gel A50m,
Hybridized DNA and unreacted DNA were separated. The first peak eluted near the void fraction was fractionated, and powder was added to it to make NaCl 0.1M and dissolved. Then, 100% ethanol was added at twice the ratio (2 ml) per 1 ml of the solution, and the mixture was left at -70°C for 2 hours. Next, at 17000×g
Centrifuge for 10 minutes and remove the ethanol precipitate with 50 ml of 0.1N
Dissolved in NaOH, 0.25mM EDTA, 0.001% phenol. Immediately apply this using Bio-Gel A50
The target single-stranded HBV-DNA was obtained by gel filtration. Preparation of biotinylated single-stranded HBV-DNA 100 μg of the single-stranded HBV-DNA prepared in step 1 was reacted with 1 μg of biotin succinimide ester in a carbonate buffer at pH 8.0 at 37° C. for 2 hours. This was gel-filtered with Sephadex G-25 to remove the void fraction.
It was left at 60°C overnight. Add d-DNA restriction enzyme solution (Hae, Hae, Hap, Bgl) to this solution.
, Ava 1U/ml each, 10mM Tris-HCl,
7mM MgCl2 , 7mM2-mercaptoethanol,
1 ml of PH7.5) was added, and the mixture was reacted at 37°C for 1 hour.
This reaction product was gel-filtered with Sephadex G-100, and the void fractions were pooled and subjected to protein removal treatment. Preparation of SH-modified avidin A DMF solution containing 200 μg of SPDP in 1 ml of a solution of 2 mg of avidin dissolved in 0.1 M phosphate buffer pH 7.5.
100μ was added and allowed to react at room temperature for 30 minutes. This was placed in a Sephadex G-25 column equilibrated with 0.1M phosphate buffer containing 1mM EDTA, pH 7.0, and developed with the same solution for gel filtration. The void fractions were pooled, 200 μg of 2-mercaptoethylamine was added thereto, and the mixture was stirred at 37° C. for 3 hours. Subsequently, gel filtration was performed in the same manner using the above-mentioned Sephadex G-25 column to obtain 2 mg of SH-modified avidin. CHM hexokinase 0.1M phosphate buffer containing 1mg hexakinase
DMF solution containing 200μg of cyclohexyl-4-maleimidomethylcyclohexane-1-carboxylic acid succinimide ester (CHMS) in PH7.01ml
100μ was added and left at room temperature for 1 hour. This was gel-filtered using the same Sephadex G-25 column as in the previous section, and the void fractions were pooled. Preparation of avidin-conjugated hexokinase Add 1 mg of CHM-conjugated hexokinase prepared in step 1 to 1 mg of SH-linked avidin prepared in step 1, and incubate at 37°C for 90 minutes.
Allowed to react for minutes. Next, this was gel-filtered on an ACA34 column and a 1:1 mixture of avidin and hexokinase was added.
The bound product was fractionated. Preparation of avidin-conjugated glucose-6-phosphate dehydrogenase Solution 1 containing 1 mg of CHM-conjugated glucose-6-phosphate dehydrogenase prepared in the same manner as in
1 ml of a solution containing 500 μg of SH-modified avidin was added to each ml, and the mixture was reacted at 37° C. for 90 minutes. reactant
A 1:1 combination of avidin and glucose-6-phosphate dehydrogenase was fractionated by gel filtration using an ACA34 column. DNA measurement 0.5N in 100μ of HB viral hepatitis patient serum
100μ of NaOH was added and stirred at room temperature for 10 minutes.
Next, add 100μ of 0.5NHCl and add 200μg/ml.
200μ of proteinase K solution was added and reacted at 70°C for 1 hour. To this was added 200μ of the biotinylated single-stranded HBV-DNA prepared in Section 2, and the mixture was left at 37°C overnight. d-DNA restriction enzyme solution (Bgl,
Ava, Hae, Hae, Hap,
Hinc 1U/ml each, 10mM Tris-HCl, 7mM
1.0 ml of MgCl2 , 70mM NaCl, 7mM 2-mercaptoethanol, PH7.5) was added and reacted at 37°C for 1 hour. After the reaction, add 100 μg of a solution containing 1.0 μg each of avidin-conjugated hexokinase and avidin-conjugated glucose-6-phosphate dehydrogenase,
Additionally, substrate solution (0.1M glycylglycine, 20mM
MgCl 2 Glucose 50mg/ml, 0.5mM ATP,
Add 3 ml of 0.5mM NADP + , PH8.0), NADPH
The rate increase was assayed by measuring the absorbance at 340 nm. The figure shows the results obtained, with the vertical axis representing the absorbance and the horizontal axis representing the dilution of the serum.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の方法で測定して得られた、血
清の希釈度と吸光度との関係を示すものである。
The drawing shows the relationship between serum dilution and absorbance measured by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 測定対象の一本鎖ポリヌクレオチドと二本鎖
ポリヌクレオチドを形成しうる一本鎖ポリヌクレ
オチドに、酵素1と、酵素1の作用により生成
する物質を基質とする酵素2とが、直接又は間接
的に結合しているか、あるいは酵素1及び酵素
2がそれぞれ結合しうる親和性物質が結合してい
る、標識ポリヌクレオチドに;測定対象の一本鎖
ポリヌクレオチドを接触させて二本鎖ポリヌクレ
オチドを形成させ;該二本鎖ポリヌクレオチドに
二本鎖ポリヌクレオチド制限酵素を作用させて切
断し;上記の場合には、上記いずれかの段階で
該親和性物質に酵素1及び酵素2をそれぞれ結合
させ;その後酵素2の活性を測定することを特徴
とするポリヌクレオチドの測定方法。
1 Enzyme 1 and enzyme 2 whose substrate is a substance produced by the action of enzyme 1 are directly or indirectly attached to a single-stranded polynucleotide that can form a double-stranded polynucleotide with the single-stranded polynucleotide to be measured. A single-stranded polynucleotide to be measured is brought into contact with a labeled polynucleotide to which it is bound, or an affinity substance to which Enzyme 1 and Enzyme 2 can bind, respectively; to form; the double-stranded polynucleotide is cleaved by the action of a double-stranded polynucleotide restriction enzyme; in the above case, enzyme 1 and enzyme 2 are respectively bound to the affinity substance in any of the above steps; ; A method for measuring polynucleotides, which comprises subsequently measuring the activity of enzyme 2.
JP59123758A 1984-06-18 1984-06-18 Measurement of polynucleotide using luminous substance Granted JPS613064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123758A JPS613064A (en) 1984-06-18 1984-06-18 Measurement of polynucleotide using luminous substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123758A JPS613064A (en) 1984-06-18 1984-06-18 Measurement of polynucleotide using luminous substance

Publications (2)

Publication Number Publication Date
JPS613064A JPS613064A (en) 1986-01-09
JPH0552199B2 true JPH0552199B2 (en) 1993-08-04

Family

ID=14868563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123758A Granted JPS613064A (en) 1984-06-18 1984-06-18 Measurement of polynucleotide using luminous substance

Country Status (1)

Country Link
JP (1) JPS613064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259461A (en) * 1994-03-23 1995-10-09 Nomura Kensetsu Kk Stepladder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2636970B1 (en) * 1988-09-26 1991-11-29 Inst Nat Sante Rech Med METHOD FOR DETECTION AND DETERMINATION OF A SPECIFIC SEQUENCE OF DNA OR RNA, REAGENT AND NECESSARY FOR ITS IMPLEMENTATION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259461A (en) * 1994-03-23 1995-10-09 Nomura Kensetsu Kk Stepladder

Also Published As

Publication number Publication date
JPS613064A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
JPH0378120B2 (en)
US4752566A (en) Displacement polynucleotide method and reagent complex employing labeled probe polynucleotide
JP2846018B2 (en) Amplification and detection of nucleic acid sequences
Caron et al. Involvement of helicase II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex.
US5660988A (en) Cycling probe cleavage detection of nucleic acid sequences
US7659069B2 (en) Binary signaling assay using a split-polymerase
US6048687A (en) Cycling DNA/RNA amplification electrochemiluminescent probe assay
EP0200057B1 (en) Diagnostic reagent, kit and method employing polynucleotide displacement, separation, enzymatic cleavage and adenosine phosphate detection
US5780227A (en) Oligonucleotide probe conjugated to a purified hydrophilic alkaline phosphatase and uses thereof
JPH05503422A (en) DNA-dependent RNA polymerase transcripts as reporter molecules for signal amplification in nucleic acid hybridization assays
Nakai et al. Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7. Protein-protein and protein-DNA interactions involved in RNA-primed DNA synthesis.
JPH082320B2 (en) Method and kit for detecting polyriboadenosine segment and messenger RNA
WO2009012220A2 (en) Analyte detection assays
JP2004501615A (en) Degradable nucleic acid probe and nucleic acid detection method
JPH0667958B2 (en) Reaction product of protein and polyamine and method for producing the same
US7105318B2 (en) Specific and sensitive nucleic acid detection method
JP2003510063A (en) Uptake of modified nucleotides by archaeal DNA polymerase and methods related thereto
JPH11506613A (en) Method for detecting nucleic acid sequence using competitive amplification
Cordell et al. tRNATrp as primer for RNA-directed DNA polymerase: structural determinants of function.
JP3068848B2 (en) Amplified DNA assay
Duguet et al. The rep protein of Escherichia coli: interaction with DNA and other proteins
JPH0552199B2 (en)
JPH04211400A (en) Method for producing modification nucleic acid
US5294534A (en) Amplification method for polynucleotide assays
JPS63282659A (en) Method of measuring nucleic acid and measuring agent