JPH0551109B2 - - Google Patents

Info

Publication number
JPH0551109B2
JPH0551109B2 JP61220193A JP22019386A JPH0551109B2 JP H0551109 B2 JPH0551109 B2 JP H0551109B2 JP 61220193 A JP61220193 A JP 61220193A JP 22019386 A JP22019386 A JP 22019386A JP H0551109 B2 JPH0551109 B2 JP H0551109B2
Authority
JP
Japan
Prior art keywords
station
light
servo
optical axis
collimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61220193A
Other languages
Japanese (ja)
Other versions
JPS6373178A (en
Inventor
Yoshiisa Narutaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTETSUKU KK
Original Assignee
OPUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTETSUKU KK filed Critical OPUTETSUKU KK
Priority to JP22019386A priority Critical patent/JPS6373178A/en
Publication of JPS6373178A publication Critical patent/JPS6373178A/en
Publication of JPH0551109B2 publication Critical patent/JPH0551109B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は自動視準光波距離計に関し、特に沿岸
作業船台が広範囲に移動する海洋作業システムに
用いて好適なものである。 〔発明の概要〕 固定局側に光波距離計、移動局側には反射器を
夫々設け、且つこれらの固定局及び移動局の各々
に、相手局から送光される視準サーボ光を受光す
る対物レンズと位置センサとを具える視準シーボ
系を設け、これらの視準サーボ系で対物レンズの
光軸を視準サーボ光の光軸と一致させるようにし
て固定局と移動局とを互いに視準させる。相対移
動する相手局の視準サーボ光に対する視準サーボ
系の応答速度を、移動局よりも固定局の応答速度
を遅くすると共に、視準サーボ光が障害物等によ
つて一時的に遮られた際に、移動局に対する固定
局の追尾速度をその直前の一定時間内の平均値に
維持するようにして、広い角度範囲にわたつて安
定した速度ができるようにした自動視準光波距離
計装置である。 〔従来の技術〕 土木工事、港湾工事、沿岸工事等において、ブ
ルトーザー、浚渫船、作業船等の移動体の位置又
は距離を固定位置から計測するシステムが求めら
れている。 従来、固定位置及び移動体の一方に光波距離
計、他方の反射器(コーナキユーブプリズム等)
を設け、これらの光軸をお互いに一致させる自動
視準式にして、船台等の移動体が揺動しても支障
無く位置計測ができるようなシステムが知られて
いる(例えば実公昭59−8221号公報)。 公知の自動視準式光波距離計は、距離計と平行
な視準サーボ用光軸を有し、固定局からの視準サ
ーボ光を4分割受光素子(受光面を水平、垂直の
4象限に分割したフオトダイオード等)で受け
て、その出力を水平、垂直の首振りモータにフイ
ードバツクして、受光素子の原点にサーボ光を結
象させるようなサーボ系を備えている。 距離計による測距データは船台側で使用される
ので、通常は船台側に距離計が置かれ、陸上側に
反射器を置く構成が採用されている。反射器を持
つ陸上局は、視準サーボ光の発光源と送光レンズ
とを備え、この送光レンズの光軸は船台局に向け
て固定されている。船台局はこの固定の光軸に関
し、自己の光軸を一致させるように自動視準す
る。 〔発明が解決しようとする問題点〕 上述のように従来は半自動式であり、船台が広
範囲にわたつて移動する場合には、陸上側の作業
者が反射器を船台の移動に合わせて向け直す必要
があつた。 完全自動にするためには双方向視準式にしなけ
ればならないが、以下の問題が生じる。測ち、陸
上局からの視準サーボ光の光軸は出来る限り固定
にした方が、船台局が陸上局に視準させる際のサ
ード系の安定がよい。つまり船台局のサーボ系は
陸上局からのサーボ光を基準光軸として参照し、
自己の対物レンズの光軸のずれを検出してこのず
れを修復するように動作する。従つて基準光軸自
体が変動するのは好ましくない。 ところが双方向視準にすると、基準に対する補
正と言う動作は無く、お互いに対物レンズの光軸
の角度差が無くなるように補正し合うことにな
る。視準が達成された状態では、船台局と陸上局
とを結んだ直線上に夫々の光軸が一致する。しか
し夫々の光軸が相手局から幾分ずれているが互い
に平行である場合を考えると、この場合も光軸の
角度差が無く、しかも双方の平行光線が各焦点に
結像する故、各局においては誤差検出が無く、光
軸修正は行われない。このような光軸の平行関係
は無数に存在する。このことは、双方向視準で
は、サーボ系に安定点が無く、夫々の視準点が一
点に定まらないことを意味する。 本発明はこの問題点にかんがみ、双方向視準で
もサーボ系を安定に動作することができ、以つて
広い角度範囲にわたつて自動視準測距ができるよ
うにすることを目的とする。 〔問題点を解決するための手段〕 第1図に示すように光波距離計3を固定局(陸
上局)側に設けると共に、反射器4を移動局(船
合局)側に設けて測距系が構成されている。 一対の対物レンズ(受光レンズ13及び送光レ
ンズ12)を有するサーボ系光軸が上記測距系光
軸と平行に設けてある。このサーボ系の光軸と直
交して結像点の原点からのずれを検出する位置セ
ンサ23を、固定局及び移動局の双方に設ける。
この位置センサ23の出力を用いて上記対物レン
ズの光軸を水平及び垂直に振つて相手局に視準さ
せる視準サーボ系を構成する。 視準サーボ光の光軸ずれの時間変動に対する視
準サーボ系の応答速度に関し、移動局の応答速度
より固定局の応答速度を遅くし、固定局の視準サ
ーボ光が急変動しない基準軸を成すように構成さ
れている。 移動局の移動に伴つて移動局からのサーボ光が
障害物等によつて一時的に遮られたときに、固定
局が基準としての機能を維持するように、遮光状
態を検知する手段(第9図、ブロツクB1)と、
遮光時に移動局に対する固定局の追尾速度(光軸
偏向の各速度)をその直前の一定時間内の平均値
に維持する速度維持手段(第9図、ブロツクB
2)が夫々固定局に設けられている。 なお、視準サーボ光の光軸のずれの時間変動に
対する視準サーボ光の応答速度とは、制御系の一
般理論に従い、サーボ系の一時遅れ要素(積分要
素)の時定数に対応し、応答速度が速いとは、時
定数が小さくて応答し得る周波数の上限が高く、
応答速度が遅いとは、時定数が大で応答し得る周
波数の上限が低いことを意味する。 また追尾速度とは、追尾動作時のサーボ系の出
力軸(水平、垂直の光軸偏向軸)の角速度であ
り、本発明の実施例では、光路の一時遮光時には
例えば数十秒間の平均速度に移動局に対する固定
局の追尾(追従)速度が維持される。 〔作用〕 固定局と移動局の双方にそれぞれ視準サーボ系
を設けたので、固定局及び移動局はいずれも相手
の局を自動視準することができて、移動局が広い
範囲を移動した場合でもそれに自動的に追従する
ことができる。 このように固定局と移動局が共に相手局を自動
視準するようにしたものであるが、固定局側のサ
ーボ時定数を大きく設定しているので、移動局側
の速い光軸変動に関して固定局のサーボ光軸はほ
ぼ固定されている。従つて移動局はこの固定のサ
ーボ光軸を基準にして自己の光軸変動を修正す
る。 一方、固定局は移動局の速い光軸変動に追従し
て視準することは無く、移動局のゆつくりした動
きを追尾するように動作する。 また、移動局を追尾中の固定局は、移動局の視
準サーボ光が障害物で遮られた際に、移動局に対
する固定局の追尾速度をその直前の平均値に維持
するので、固定局が移動局を見失うことがなく、
障害物等により視準サーボ系の動作が妨害される
ことがない。 〔実施例〕 第1図は本発明の一実施例を示す海洋作業用光
測距システムの全体のブロツク図で、第2図及び
第3図は陸上局及び船台局の各測距離装置の正面
図である。各局は基台1上に設けられた自動視準
装置2を備え、陸上局には光波距離計3、船台局
には反射器4が夫々設けられている。光波距離計
3は対物レンズ5を備え、反射器4はコーナーキ
ユーブプリズム6を備えている。 視準装置2は、水平面内で回動自在の水平架腕
7及び垂直面内で回動自在の垂直架腕8を備え、
夫々X軸ギヤモータ9及びY軸ギヤモータ10に
よつて駆動される。垂直架腕8上には、互いに平
行光属軸の送光レンズ12及び受光レンズ13を
備える送受光ユニツト11が取付けられている。
なお陸上局と船台局とでは、第1図に示すように
各レンズ12,13の送−受が対向し、一対の送
光路14と受光路15(陸上を基準にして)を形
成する。 第1図には、自動視準装置2の視準光学系2a
(陸上局)に連なる視準サーボ回路及び光通信回
路が示してあるが、船台局の視準光学系2bにも
全く同一の回路が付属していて、双方向視準を行
うことができるようになつている。視準光学系2
a送光レンズ12の焦点に送光用発光ダイオード
20が配置され、発振器21の正弦波出力(5k
Hz)がLEDドライブ回路22を経て供給される。
これにより、AM変調された視準サーボ光が送光
レンズ12を通つて船台側の視準光学系2bの受
光レンズ13に入射され、その焦点に配置された
位置センサ23に結像する。 一方、船台側の光学系2bにおける送光用発光
ダイオード20からは、同じくAM変調された視
準サーボ光が送光レンズ12を通して陸上局に向
けて放射され、陸上局の受光レンズ13を介して
位置センサ23で受光される。 なお陸上局光学系2aから船台局へ送出された
視準サーボ光が、船台局の反射器4で反射されて
自局の受光系に戻つて来て、サーボ系の妨害信号
となる。これを防ぐために、船台局の視準サーボ
光のAM変調周波数を第4図Aに示すように3kHz
にして、陸上局のAM変調周波数5kHzと異ならせ
ている。陸上局サーボ系は後述のように受信サー
ボ信号の周波数選択を行つて、船台局からのサー
ボ光(3kHz)のみに応答し、自局の戻り光(5k
Hz)による妨害を排除している。 位置センサ23は、例えば光スポツトの原点か
らの位置を検出する二次元(X−Y平面)の半導
体位置検出素子であつてよい。この素子は方形受
光面を持つフオトダイオードの四辺に4つの電極
(X、Y二対)を設けた構造を有し、光スポツト
が当たつた位置に生成された電荷が、光電流とし
て各電極までの距離に反比例して受光面の抵抗層
によつて分割されて各電極から取出されるように
成されている。 第1図において、位置センサ23の各電極の出
力は、電流−電圧変換アンプ24a〜d、バンド
パスフイルタ25a〜dを通り、検波器26a〜
dで同期検波されて、受光位置に対応したレベル
値のDCレベル信号に変換される。4極の検波出
力は、上下(U、D)及び左右(L、R)の位置
検出信号として、A/D変換器27でデイジタル
値に変換されてから、システムコントローラ28
内のマイクロプロセツサに取込まれる。 なおバンドパフイルタ25a〜dは、第4図A
に示すように中心3kHzのバンドパス特性BMを有
し、船台局からの3kHzのサーボ信号のみを通過
させ、自局(陸上局)の5kHzサーボ光の戻り光
による妨害を排除している。 マイクロプロセツサ内ではU、D、L、Rの位
置検出データから位置センサ23の受光面におけ
る受光スポツトのX−Y座標位置が演算される。
システムコントローラ28はこの座標位置データ
に基づいて各軸のモータドライブ回路30X,3
0Yに駆動パルスを導出し、これによりX軸、Y
軸のギヤモータ9,10が夫々駆動される。位置
センサ23からモータ9,10に至るサーボルー
プは、センサ23の受光スポツトが受光面のX−
Y座標の原点に位置するように動作する。サーボ
が利いている状態では、陸上局及び船台局の視準
光学系2a,2bの光軸が一致する。この結果、
陸上局の光波距離計3の光軸が船台局の反射器4
に正しく向けられて、測距が可能となる。 なお船台局には同様の視準サーボ系が設けられ
ているので、対向する二局でお互いに視準し合う
ことになる。 各局の視準装置2の光軸の向きを微調する手段
が設けられている。第1図ではこの微調手段はジ
ヨイステイツク31であるが、各X−Y軸のモー
タ9,10のギヤ系に微調つまみを設けてもよ
い。ジヨイステイツク31のX方向及びY方向の
操作に対応した電圧出力がA/D変換器32を介
してシステムコントローラ28に送られ、コント
ローラ28からモータドライブ回路30X,30
Yに微調用駆動パルスが導出されて各モータ9,
10が微動される。従つてオペレータは例えば光
波距離計3の視準望遠鏡を覗きながらジヨイステ
イツク31を操作して相手局を視準する。視準が
完了した時点でサーボのスタート釦を押すと、上
述の視準サーボが始動し、その後は船台のゆれや
移動に追従した双方向の自動視準が行われる。 位置センサ23によつて検出された光軸のずれ
等は、システムコントローラ28に連なる表示器
33A〜Cによつて表示される。表示器33A,
33Bの各指針がX軸(水平方向)及びY軸(垂
直方向)の原点からずれを示す。表示器33Cの
指針は位置センサ23の総合受光レベル(受光強
度)を示す。 視準状態で光波距離計3の回路部34が作動す
ると、対物レンズ5の焦点位置に置かれた送受光
ユニツト35により、約15MHz(AM)の測距光
の発信及び測定点からの反射光の受信が行われ
る。これらの発信光と受信光との位相差が回路部
34で測定されて、それに基づいて局開距離が算
出される。距離データは、インターフエース36
を通じてシステムコントローラ28に転送され、
更にモデム37を通じて船台局に送出される。 このように陸上局と船台局の各々が相手の局を
視準しあう双方向視準としたものであるから、船
台局が広い範囲を移動した場合でも良好に自動視
準することができる。第6図は自動追尾測量シス
テムの一例を示したもので、陸上に一定の長さD
の基線49を設定し、その左右両端A,Bにそれ
ぞれ陸上局を据え付けると共に、船台Cに上記陸
上局に対応する船台局を2式据え付けてある。 船台局が移動しない場合は第7図のaに示すよ
うに、船台局と陸上局の各々の光軸は、光軸A及
びA′で一致している。しかし、船台局が例えば
第6図中矢示60方向に移動した時に、船台局側
にしか自動視準装置が設けられていない場合に
は、第7図のbに示すように船台局側の光軸B−
B′と陸上局画の光軸A−A′は大きくずれてしま
う。従つて、船台局が大きく移動した場合には陸
上局を設置しなおさなければならない。しかし本
実施例では、陸上局側にも自動視準装置を設けて
双方向視準としているので、第7図のcに示すよ
うに陸上局側の光軸を船台局側に振つて、船台局
及び陸上局の光軸を、光軸B−B′で一致させる
ことができる。 陸上局は原点位置を中心として略±45度の範囲
の自動追尾が可能であり、船台Cが第6図中矢示
60,61で示すように大きく移動する場合でも
広い範囲を自動追尾することができる。即ち、1
回の据付けで行うことができる測量の範囲を広く
することができて、測量作業効率を大幅に向上す
ることができる。 双方向視準とした場合には上記したような利点
があるものの、既述のように船台局と陸上局との
サーボ系が干渉し合い安定しない問題がある。こ
の問題を解決するために、船台局及び陸上局のそ
れぞれの視準サーボ系にサーボ時定数設定部46
を設け、X軸ギヤモータ9及びY軸ギヤモータ1
0を含むサーボ系の応答速度(サーボ系の積分要
素の時定数)を、船台局側が高速、陸上局側が低
速になるように設定している。サーボ時定数設定
部46は、接点47a及び47bを持つ切換えス
イツチ47を備えている。各接点47a,47b
にはループフイルタの一部を成すコンデンサ48
a,48bが他端を接地して接続されている。一
方のコンデンサ48aは比較的容量が大で、サー
ボ系に長時定数を与え、他方のコンデンサ48b
は比較的容量が小で、サーボ系に短時定数を与え
る。なお切換スイツチ47及びコンデンサ48
a,48bは位置センサ23の出力を処理する回
路の4つの検波器26a〜d(上下左右方向)の
各出力に結合してある。 陸上局では、コンデンサ48aを選択してサー
ボ時定数を長くする。一方、船台局ではコンデン
サ48bを選択してサーボ時定数を短くする。こ
の結果、船台局では、波の影響等による数秒の速
い周期の光軸変動に追従して視準サーボ動作が行
われる。一方、陸上局では、このような早い光軸
変動には不感であり、船台の移動のような非常に
ゆつくりした光軸のずれを追従して動作する。つ
まり陸上局では船台局からの視準サーボ光の光軸
変動の平均位置に基準光軸があると見なして、こ
の基準光軸と自己の対物レンズの光軸とを一致さ
せるようにサーボ系が動作する。一方、船台局で
は、陸上局からの視準サーボ光の光軸が数秒の周
期内ではほぼ固定されていると見なせるので、こ
の光軸を基準軸として船台の揺動による自己の光
軸変動を検出することができ、検出結果に基づい
て陸上局に正しく視準するように修正動作を行
う。 このように双方向視準が支障無く行われると共
に、既述のように船台局では反射器4としてコー
ナーキユーブプリズム6を用いているので、船台
の揺動によつて光軸が多少ずれた場合でも安定し
た測距を行うことができる。これは、上記コーナ
ーキユーブプリズム6は入射光と平行に反射させ
る作用を有していて、ほぼ±30度傾斜した場合で
も入射光を発光源に向けて反射させることができ
るからである。 上記陸上局と船台局との間の自動視準用の送光
光路14及び受光光路15を双方向光通信路とし
て利用している。即ち、モデム37の送信端子S
からの出力は、セレクト回路38からFM変調器
39に導出され5.5MHzのキヤリアが送信データ
でもつてFM変調される。FM出力はLEDドライ
ブ回路40を介して送信発光ダイオード41に与
えられる。このダイオード41からの送信データ
光は、視準サーボ系の送光レンズ12の光軸に略
45°の角度で挿入されたカツトフイルタ42によ
り、送光光路14に乗せられ、船台局に送られ
る。 一方、船台局は同様なモデム37や送信用発光
ダイオード41等を備えていて、送信データ光を
陸上局のサーボ用受光光路15に乗せて送信して
来る。この際、既述の視準サーボ系と同じ理由に
より、船台局からの送信光のFMキヤリアを5M
Hzにして、第4図Bに示すように陸上局からのキ
ヤリア周波数5.5MHzと異ならせている。これに
より距離計3の反射光路が存在することに起因す
る陸上局側の自己漏話を無くしている。船台局か
らの送信データは例えば気圧、温度等の測距用の
物理条件補正データである。 船台局から受光光路15に乗せて陸上局に送ら
れて来たデータ光は、受光レンズ13の光軸に略
45°の角度で挿入されたカツトフイルタ43によ
り受光ダイオード44に分岐される。ダイオード
44の受光出力はアンプ50、バンドパスフイル
タ51を通り、FM復調器52で復調され、モデ
ム37の受信端子Rに入力される。モデム37で
デコード処理された受信データはシステムコント
ローラ28に導入され、マイクロプロセツサによ
る測距データの補正等に利用される。 バンドパスフイルタ51は、第4図Bに示すよ
うに中心5MHzのバンドパス特性BMを有し、上
述のように5.5MHzキヤリアの自己漏話を防止し
ている。 上述のように基準サーボ用光路とデータ通信用
光路とを共用するため、相互干渉、特にデータ光
がサーボ系を妨害する問題を生じる。このため上
述のようにデータ光とサーボ光とで変調周波数を
5MHzと5KHzに分離すると共に、波長を890nmと
1100nmとに分けている。つまり下表のような配
分にして電気的及び物理的に帯域分離させて光路
の共用を図つている。
[Industrial Application Field] The present invention relates to an automatic collimating optical range finder, and is particularly suitable for use in a marine work system in which a coastal work platform moves over a wide range. [Summary of the invention] A light wave distance meter is provided on the fixed station side and a reflector is provided on the mobile station side, and each of the fixed station and mobile station receives collimated servo light transmitted from the other station. A collimation servo system including an objective lens and a position sensor is provided, and these collimation servo systems align the optical axis of the objective lens with the optical axis of the collimation servo light to connect the fixed station and the mobile station to each other. Aim. The response speed of the collimating servo system to the collimating servo light of a relatively moving partner station is made slower for the fixed station than for the mobile station, and the collimating servo light is temporarily blocked by obstacles etc. This automatic collimating optical distance meter device maintains the tracking speed of the fixed station relative to the mobile station at the average value over a certain period of time immediately before the mobile station, allowing stable speed over a wide angular range. It is. [Prior Art] In civil engineering work, port construction work, coastal construction work, etc., there is a need for a system that measures the position or distance of a moving object such as a bulltozer, dredger, work boat, etc. from a fixed position. Conventionally, a light wave distance meter is used on one side of a fixed position and a moving object, and a reflector (corner cube prism, etc.) on the other side.
There is a known system in which the optical axis is automatically collimated so that the position can be measured without any problem even if a moving object such as a ship's platform swings. Publication No. 8221). A known automatic collimation type light wave rangefinder has a collimation servo optical axis parallel to the rangefinder, and splits the collimation servo light from a fixed station into four light receiving elements (the light receiving surface is divided into four horizontal and vertical quadrants). It is equipped with a servo system that receives the output from a divided photodiode (such as a split photodiode) and feeds the output back to the horizontal and vertical oscillation motors to image the servo light at the origin of the light receiving element. Since the distance measurement data from the rangefinder is used on the ship's platform side, the distance meter is usually placed on the ship's platform side and the reflector is placed on the shore side. A land station with a reflector is equipped with a collimating servo light source and a light transmitting lens, and the optical axis of the light transmitting lens is fixed toward the platform station. The platform station automatically collimates to match its own optical axis with respect to this fixed optical axis. [Problems to be solved by the invention] As mentioned above, conventional systems are semi-automatic, and when the platform moves over a wide range, a worker on the shore side redirects the reflector to match the movement of the platform. The need arose. In order to make it fully automatic, it must be bidirectionally collimated, but the following problems arise. It is better to keep the optical axis of the collimating servo light from the land station as fixed as possible to stabilize the third system when the platform station collimates to the land station. In other words, the servo system of the platform station refers to the servo light from the land station as the reference optical axis.
It detects the deviation of the optical axis of its own objective lens and operates to correct this deviation. Therefore, it is undesirable for the reference optical axis itself to fluctuate. However, when bidirectional collimation is used, there is no correction with respect to the reference, and corrections are made to each other so that the angular difference in the optical axes of the objective lenses is eliminated. When collimation is achieved, each optical axis coincides with a straight line connecting the platform station and the land station. However, if we consider the case where the optical axes of each station are somewhat offset from the other station but parallel to each other, in this case too, there is no difference in the angle of the optical axes, and moreover, both parallel rays form an image at each focal point, so each station In this case, there is no error detection and no optical axis correction is performed. There are countless parallel relationships between optical axes like this. This means that in bidirectional collimation, there is no stable point in the servo system, and each collimation point is not fixed at one point. In view of this problem, an object of the present invention is to enable stable operation of a servo system even in bidirectional collimation, and to enable automatic collimation and distance measurement over a wide angular range. [Means for solving the problem] As shown in Fig. 1, a light wave distance meter 3 is provided on the fixed station (land station) side, and a reflector 4 is provided on the mobile station (ship station) side for distance measurement. system is configured. A servo system optical axis having a pair of objective lenses (light receiving lens 13 and light transmitting lens 12) is provided parallel to the distance measuring system optical axis. A position sensor 23 that is perpendicular to the optical axis of the servo system and detects the deviation of the imaging point from the origin is provided in both the fixed station and the mobile station.
Using the output of the position sensor 23, a collimating servo system is configured to swing the optical axis of the objective lens horizontally and vertically to aim at the partner station. Regarding the response speed of the collimation servo system to time variations in the optical axis deviation of the collimation servo light, we set the response speed of the fixed station slower than the response speed of the mobile station, and set a reference axis in which the collimation servo light of the fixed station does not fluctuate suddenly. is configured to do so. When the servo light from the mobile station is temporarily blocked by an obstacle etc. as the mobile station moves, the fixed station can maintain its function as a reference. Figure 9, block B1) and
Speed maintenance means (Figure 9, block B) that maintains the tracking speed of the fixed station with respect to the mobile station (each speed of optical axis deflection) at the average value within a certain period of time immediately before the time of light interruption.
2) are provided at each fixed station. In addition, according to the general theory of control systems, the response speed of the collimating servo light to the time variation of the optical axis deviation of the collimating servo light corresponds to the time constant of the temporary delay element (integral element) of the servo system, and the response speed Fast speed means that the time constant is small and the upper limit of the frequency that can respond is high.
A slow response speed means that the time constant is large and the upper limit of the frequency to which it can respond is low. In addition, the tracking speed is the angular velocity of the output axis (horizontal and vertical optical axis deflection axes) of the servo system during tracking operation, and in the embodiment of the present invention, when the optical path is temporarily shaded, the average speed for several tens of seconds is The tracking (tracking) speed of the fixed station relative to the mobile station is maintained. [Function] Since both the fixed station and the mobile station are equipped with collimation servo systems, both the fixed station and the mobile station can automatically aim at the other station, allowing the mobile station to move over a wide range. It can be automatically followed in any case. In this way, both the fixed station and the mobile station are configured to automatically aim at the other station, but since the servo time constant on the fixed station side is set large, the fast optical axis fluctuations on the mobile station side are fixed. The servo optical axis of the station is almost fixed. Therefore, the mobile station corrects its optical axis fluctuations with reference to this fixed servo optical axis. On the other hand, the fixed station does not collimate by following the rapid optical axis fluctuations of the mobile station, but operates to track the slow movement of the mobile station. In addition, when a fixed station is tracking a mobile station, when the mobile station's collimation servo light is blocked by an obstacle, the fixed station's tracking speed with respect to the mobile station is maintained at the previous average value. without losing sight of the mobile station.
The operation of the collimation servo system is not hindered by obstacles or the like. [Embodiment] Fig. 1 is an overall block diagram of an optical ranging system for marine work showing an embodiment of the present invention, and Figs. 2 and 3 are front views of each ranging device of a land station and a berth station. It is a diagram. Each station is equipped with an automatic sighting device 2 provided on a base 1, a light wave distance meter 3 is provided at the land station, and a reflector 4 is provided at the boat station. The optical distance meter 3 includes an objective lens 5, and the reflector 4 includes a corner cube prism 6. The collimation device 2 includes a horizontal arm 7 that is rotatable in a horizontal plane and a vertical arm 8 that is rotatable in a vertical plane.
They are driven by an X-axis gear motor 9 and a Y-axis gear motor 10, respectively. A light transmitting/receiving unit 11 is mounted on the vertical arm 8 and includes a light transmitting lens 12 and a light receiving lens 13 whose optical axes are parallel to each other.
As shown in FIG. 1, in the land station and the platform station, the transmission and reception of the lenses 12 and 13 face each other, forming a pair of light transmission path 14 and light reception path 15 (with respect to land). FIG. 1 shows a collimating optical system 2a of an automatic collimating device 2.
Although the collimation servo circuit and optical communication circuit connected to the (land station) are shown, the same circuit is also attached to the collimation optical system 2b of the platform station, so that bidirectional collimation can be performed. It's getting old. Collimation optical system 2
A light emitting diode 20 for light transmission is arranged at the focal point of the light transmission lens 12, and the sine wave output (5k
Hz) is supplied via the LED drive circuit 22.
As a result, the AM-modulated collimating servo light passes through the light transmitting lens 12 and enters the light receiving lens 13 of the collimating optical system 2b on the ship's platform side, and forms an image on the position sensor 23 disposed at its focal point. On the other hand, the collimated servo light, which is also AM-modulated, is emitted from the light-transmitting light emitting diode 20 in the optical system 2b on the ship's platform side through the light-transmitting lens 12 toward the land station, and is transmitted through the light-receiving lens 13 of the land station. The light is received by the position sensor 23. Note that the collimated servo light sent from the land station optical system 2a to the platform station is reflected by the reflector 4 of the platform station and returns to the light receiving system of the own station, becoming a disturbance signal for the servo system. In order to prevent this, the AM modulation frequency of the collimation servo light of the ship's platform station was changed to 3kHz as shown in Figure 4A.
The AM modulation frequency of the land station is 5kHz. The land station servo system selects the frequency of the received servo signal as described later, responds only to the servo light (3kHz) from the platform station, and responds only to the return light (5k) from the own station.
Hz) interference is eliminated. The position sensor 23 may be, for example, a two-dimensional (XY plane) semiconductor position detection element that detects the position of the light spot from the origin. This element has a structure in which four electrodes (two pairs of X and Y) are provided on the four sides of a photodiode with a rectangular light-receiving surface, and the charge generated at the position hit by the light spot is transferred to each electrode as a photocurrent. The light is divided by the resistive layer on the light receiving surface in inverse proportion to the distance from the light receiving surface and taken out from each electrode. In FIG. 1, the output of each electrode of the position sensor 23 passes through current-voltage conversion amplifiers 24a-d, bandpass filters 25a-d, and detectors 26a-26d.
It is synchronously detected at d and converted into a DC level signal with a level value corresponding to the light receiving position. The detection outputs of the four poles are converted into digital values by the A/D converter 27 as upper and lower (U, D) and left and right (L, R) position detection signals, and then sent to the system controller 28.
is incorporated into the internal microprocessor. Note that the bandpuff filters 25a to 25d are shown in FIG. 4A.
As shown in the figure, it has a bandpass characteristic BM centered at 3kHz, allowing only the 3kHz servo signal from the ship's platform station to pass through, and eliminating interference caused by the return light of the 5kHz servo light from the local station (land station). In the microprocessor, the X-Y coordinate position of the light receiving spot on the light receiving surface of the position sensor 23 is calculated from the U, D, L, and R position detection data.
The system controller 28 uses the motor drive circuits 30X and 3 for each axis based on this coordinate position data.
Deriving the drive pulse to 0Y, this causes the X axis, Y
Gear motors 9 and 10 of the shafts are respectively driven. In the servo loop from the position sensor 23 to the motors 9 and 10, the light receiving spot of the sensor 23 is located at the X-
Operates to locate at the origin of the Y coordinate. When the servo is activated, the optical axes of the collimating optical systems 2a and 2b of the land station and the platform station coincide. As a result,
The optical axis of the land station's optical distance meter 3 is the reflector 4 of the ship's platform station.
When the object is pointed correctly, distance measurement becomes possible. Note that the platform station is equipped with a similar collimation servo system, so the two opposing stations collimate each other. Means for finely adjusting the direction of the optical axis of the collimation device 2 of each station is provided. In FIG. 1, this fine adjustment means is a joystick 31, but fine adjustment knobs may be provided in the gear systems of the motors 9, 10 for each XY axis. Voltage output corresponding to the operation of the joystick 31 in the X and Y directions is sent to the system controller 28 via the A/D converter 32, and from the controller 28 to the motor drive circuits 30X, 30.
Fine adjustment drive pulses are derived from Y and each motor 9,
10 is slightly moved. Therefore, the operator operates the joystick 31 while looking through the sighting telescope of the optical distance meter 3 to sight the other station. When the servo start button is pressed when the sighting is completed, the above-mentioned sighting servo starts, and then bidirectional automatic sighting follows the sway and movement of the boat platform. The deviation of the optical axis detected by the position sensor 23 is displayed on indicators 33A to 33C connected to the system controller 28. Display device 33A,
Each pointer 33B indicates the deviation from the origin of the X axis (horizontal direction) and the Y axis (vertical direction). The pointer of the display 33C indicates the overall light reception level (light reception intensity) of the position sensor 23. When the circuit section 34 of the optical distance meter 3 operates in the collimated state, the light transmitting/receiving unit 35 placed at the focal position of the objective lens 5 emits a distance measuring light of approximately 15 MHz (AM) and reflects light from the measuring point. is received. The phase difference between the transmitted light and the received light is measured by the circuit section 34, and the station opening distance is calculated based on the phase difference. Distance data is from interface 36.
is transferred to the system controller 28 through
Furthermore, it is sent to the dock station via the modem 37. In this way, since the land station and the platform station each sight the other's station, so that the two-way collimation is achieved, even when the platform station moves over a wide range, automatic aiming can be performed effectively. Figure 6 shows an example of an automatic tracking survey system.
A base line 49 is set, and land stations are installed at both left and right ends A and B, respectively, and two sets of ship platforms corresponding to the land stations are installed on the platform C. When the platform station does not move, the optical axes of the platform station and the land station coincide with each other at optical axes A and A', as shown in FIG. 7a. However, when the platform station moves, for example, in the direction of arrow 60 in Figure 6, if only the platform station is equipped with an automatic sighting device, the light on the platform station's side as shown in b in Figure 7. Axis B-
B' and the optical axis A-A' of the land station picture are greatly misaligned. Therefore, if the platform station is moved significantly, the land station must be reinstalled. However, in this embodiment, an automatic sighting device is also provided on the land station side to achieve bidirectional collimation, so the optical axis of the land station side is swung toward the ship's platform station as shown in Fig. 7c. The optical axes of the station and the land station can be aligned at the optical axis B-B'. The land station is capable of automatic tracking within a range of approximately ±45 degrees centered on the origin position, and even when the platform C moves significantly as shown by arrows 60 and 61 in Figure 6, automatic tracking can be performed over a wide range. can. That is, 1
The surveying range that can be carried out in one installation can be expanded, and surveying work efficiency can be greatly improved. Although bidirectional collimation has the above-mentioned advantages, as mentioned above, there is a problem in that the servo systems of the platform station and land station interfere with each other and become unstable. In order to solve this problem, a servo time constant setting unit 46 is installed in each collimation servo system of the ship's platform station and land station.
An X-axis gear motor 9 and a Y-axis gear motor 1 are provided.
The response speed of the servo system including 0 (time constant of the integral element of the servo system) is set so that the platform station side is high speed and the land station side is slow speed. The servo time constant setting section 46 includes a changeover switch 47 having contacts 47a and 47b. Each contact 47a, 47b
is a capacitor 48 which forms part of the loop filter.
a and 48b are connected with their other ends grounded. One capacitor 48a has a relatively large capacity and provides a long time constant to the servo system, and the other capacitor 48b
has a relatively small capacity and provides a short time constant to the servo system. In addition, the changeover switch 47 and the capacitor 48
a and 48b are coupled to respective outputs of four detectors 26a to 26d (in the vertical and horizontal directions) of a circuit that processes the output of the position sensor 23. At the land station, capacitor 48a is selected to lengthen the servo time constant. On the other hand, at the platform station, the capacitor 48b is selected to shorten the servo time constant. As a result, the platform station performs a collimation servo operation following optical axis fluctuations with a quick period of several seconds due to the influence of waves and the like. On the other hand, a land station is insensitive to such rapid optical axis fluctuations and operates by following very slow optical axis deviations such as the movement of a ship's platform. In other words, the land station assumes that the reference optical axis is at the average position of the optical axis fluctuations of the collimating servo light from the platform station, and uses the servo system to align this reference optical axis with the optical axis of its own objective lens. Operate. On the other hand, at the ship's platform station, the optical axis of the collimating servo light from the land station can be considered to be almost fixed within a period of several seconds, so this optical axis is used as the reference axis and the own optical axis fluctuation due to the rocking of the ship's platform is measured. Based on the detection results, corrective actions are taken to properly aim at the land station. In this way, bidirectional collimation is performed without any problems, and as mentioned above, the corner cube prism 6 is used as the reflector 4 at the platform station, so the optical axis may be slightly shifted due to the rocking of the platform. Stable distance measurement can be performed even when This is because the corner cube prism 6 has the function of reflecting incident light in parallel, and can reflect the incident light toward the light emitting source even when tilted by approximately ±30 degrees. The light transmitting optical path 14 and the light receiving optical path 15 for automatic collimation between the land station and the ship's platform station are used as bidirectional optical communication paths. That is, the transmission terminal S of the modem 37
The output from the select circuit 38 is led to the FM modulator 39, where the 5.5 MHz carrier is FM modulated with the transmission data. The FM output is provided to a transmitting light emitting diode 41 via an LED drive circuit 40. The transmitted data light from this diode 41 is approximately on the optical axis of the light transmitting lens 12 of the collimation servo system.
A cut filter 42 inserted at an angle of 45° causes the light to be placed on the light transmission optical path 14 and sent to the ship's platform station. On the other hand, the platform station is equipped with a similar modem 37, a transmitting light emitting diode 41, etc., and transmits transmitted data light onto the servo light receiving optical path 15 of the land station. At this time, for the same reason as the collimation servo system mentioned above, the FM carrier of the transmitted light from the platform station is set to 5M.
Hz, and the carrier frequency from the land station is 5.5MHz, as shown in Figure 4B. This eliminates self-crosstalk on the land station side due to the presence of the reflected optical path of the distance meter 3. The data transmitted from the platform station is, for example, physical condition correction data for distance measurement such as atmospheric pressure and temperature. The data light transmitted from the ship's platform station to the land station along the light receiving optical path 15 is approximately aligned with the optical axis of the light receiving lens 13.
The light is branched to a light receiving diode 44 by a cut filter 43 inserted at an angle of 45°. The light output of the diode 44 passes through an amplifier 50 and a bandpass filter 51, is demodulated by an FM demodulator 52, and is input to a receiving terminal R of the modem 37. The received data decoded by the modem 37 is introduced into the system controller 28 and used for correction of distance measurement data by the microprocessor. The bandpass filter 51 has a bandpass characteristic BM centered at 5MHz as shown in FIG. 4B, and prevents self-crosstalk of the 5.5MHz carrier as described above. As described above, since the reference servo optical path and the data communication optical path are shared, there arises a problem of mutual interference, particularly data light interfering with the servo system. Therefore, as mentioned above, the modulation frequency is changed between the data light and the servo light.
In addition to separating into 5MHz and 5KHz, the wavelength is 890nm.
It is divided into 1100nm and 1100nm. In other words, the distribution as shown in the table below is used to electrically and physically separate the bands and share the optical path.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の如く、固定局側に光波距離計を
設けると共に、移動局側に反射器を設けたので移
動局が動揺して場合でも安定した測定を行うこと
ができる。また固定局と移動局の各々に自動基準
サーボ系を設けて双方向視準としたので、移動局
が大きく移動してもその移動に追従して自動追尾
させることができる。そのために、1回の設置で
行うことができる測定範囲を大幅に広げることが
できて、装置の設置及び測定作業能率を向上でき
る。 更に、自動視準を行うためのサーボ光の光軸ず
れの時間変動に対する視準サーボ系の応答速度に
関し、移動局の応答速度より固定局の応答速度を
遅くしてあるので、固定局は移動局の移動を追尾
すると共に、移動局は固定局からのほぼ固定のサ
ーボ光軸を基準に自己の揺動、振動等による光軸
変動を効果的に修正する。従つて互いに相手局を
視準しあう双方向視準としたにも拘わらず、相互
干渉を無くすことができて安定した視準及び測定
を行うことができる。 また、移動局を固定局が連続追尾しているとき
に、移動局の視準サーボ光が障害物等により一時
的に遮られた際に、固定局の追尾速度がその直前
の平均値に維持されるので、障害物等により追尾
動作が妨害されず、従つて固定局が移動局を見失
うようなことがなく、安定した追尾による連続測
定ができる。
As described above, in the present invention, a light wave distance meter is provided on the fixed station side and a reflector is provided on the mobile station side, so that stable measurement can be performed even when the mobile station is shaken. Further, since an automatic reference servo system is provided in each of the fixed station and the mobile station to provide bidirectional collimation, even if the mobile station moves significantly, it can be automatically tracked by following the movement. Therefore, the measurement range that can be performed in one installation can be greatly expanded, and the efficiency of device installation and measurement work can be improved. Furthermore, regarding the response speed of the collimation servo system to time variations in the optical axis deviation of the servo light used for automatic collimation, the response speed of the fixed station is slower than that of the mobile station, so the fixed station In addition to tracking the movement of the station, the mobile station effectively corrects optical axis fluctuations due to its own rocking, vibration, etc., based on the substantially fixed servo optical axis from the fixed station. Therefore, even though two-way collimation is used in which each station sights the other station, mutual interference can be eliminated and stable collimation and measurement can be performed. Additionally, when the fixed station is continuously tracking the mobile station and the mobile station's collimation servo light is temporarily blocked by an obstacle, the tracking speed of the fixed station will be maintained at the previous average value. Therefore, the tracking operation is not obstructed by obstacles, etc., and therefore the fixed station does not lose sight of the mobile station, and continuous measurements can be performed with stable tracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す海洋作業用光
測距システムの全体ブロツク図、第2図及び第3
図は陸上局及び船台局の各測距装置の正面図、第
4図は視準サーボ系と光通信系との周波数分配
図、第5図は波長カツトフイルタの特性図、第6
図は自動追尾測量システムの一例を示す図、第7
図は船台局及び陸上局の光軸の状態を説明する
図、第8図は位置センサに入る光量を調節する装
置のブロツク図、第9図は受光量の調節及び制御
パルスデータ作成の手順を示すフローチヤート
図、第10図はシステムコントローラから出力さ
れる駆動パルス数と時間との関係の一例を示す図
である。 なお図面に用いた符号において、1……基台、
2……視準装置、2a,2b……視準光学系、3
……光波距離計、4……反射器、5……対物レン
ズ、6……コーナキユーブプリズム、7……水平
架腕、8……垂直架腕、9……X軸ギヤモータ、
10……Y軸ギヤモータ、11……送受光ユニツ
ト、12……送光レンズ、13……受光レンズ、
14……送光光路、15……受光光路、20……
送光用発光ダイオード、21……発振器、23…
…位置センサ、35……送受光ユニツト、37…
…モデム、41……送信用発光ダイオード、46
……サーボ時定数設定部である。
FIG. 1 is an overall block diagram of an optical ranging system for marine work showing one embodiment of the present invention, and FIGS.
The figure is a front view of each distance measuring device of the land station and the ship's platform station, Figure 4 is a frequency distribution diagram of the collimation servo system and optical communication system, Figure 5 is a characteristic diagram of the wavelength cut filter, and Figure 6 is a diagram of the characteristics of the wavelength cut filter.
Figure 7 shows an example of an automatic tracking survey system.
The figure is a diagram explaining the state of the optical axes of the ship's platform station and land station, Figure 8 is a block diagram of the device that adjusts the amount of light entering the position sensor, and Figure 9 shows the procedure for adjusting the amount of received light and creating control pulse data. The flowchart shown in FIG. 10 is a diagram showing an example of the relationship between the number of drive pulses output from the system controller and time. In addition, in the symbols used in the drawings, 1... base;
2...Collimation device, 2a, 2b...Collimation optical system, 3
...Light wave distance meter, 4...Reflector, 5...Objective lens, 6...Corner cube prism, 7...Horizontal arm, 8...Vertical arm, 9...X-axis gear motor,
10... Y-axis gear motor, 11... Light transmitting/receiving unit, 12... Light transmitting lens, 13... Light receiving lens,
14...Light sending optical path, 15... Light receiving optical path, 20...
Light-transmitting light emitting diode, 21... oscillator, 23...
...Position sensor, 35...Light transmitting/receiving unit, 37...
...Modem, 41...Light emitting diode for transmission, 46
...This is the servo time constant setting section.

Claims (1)

【特許請求の範囲】 1 固定局側に光波距離計及び移動局側に反射器
が夫々設けられ、 これらの固定局及び移動局各々には、相手局か
ら送光される視準サーボ光を受光する対物レンズ
と、この対物レンズの光軸と直交しかつこの対物
レンズの焦点を含む面上に配置される位置センサ
とを備えて、上記焦点をこの位置センサの原点と
して上記視準サーボ光が上記対物レンズを通つて
この位置センサ上に結像する結像点と原点とのず
れをこの位置センサで検出し、ずれを補正するよ
うに上記光軸を水平及び垂直方向に偏向させて上
記視準サーボ光の結像点を上記原点と一致させる
ことにより、上記光波距離計及び上記反射器の各
光軸を互いに相手局に視準させる視準サーボ系が
設けられ、 相手局からの上記視準サーボ光の光軸ずれの時
間変動に対する上記視準サーボ系の応答速度に関
し、移動局の応答速度より固定局の応答速度を遅
くすると共に、 移動局からの視準サーボ光が障害物等によつて
一時的に遮られたことを検知する検知手段と、そ
の検知信号に対応して移動局に対する固定局の追
尾速度(光軸偏向の角速度)をその直前の一定時
間内の追尾速度の平均値に維持する速度維持手段
とが固定局側に設けられていることを特徴とする
自動視準光波距離計装置。
[Claims] 1. A light wave distance meter is provided on the fixed station side and a reflector is provided on the mobile station side, and each of the fixed station and mobile station receives collimation servo light transmitted from the other station. and a position sensor disposed on a plane that is orthogonal to the optical axis of the objective lens and includes the focal point of the objective lens, and the collimated servo light is provided with the focal point as the origin of the position sensor. The position sensor detects the deviation between the image point formed on the position sensor through the objective lens and the origin, and deflects the optical axis horizontally and vertically to correct the deviation. By aligning the imaging point of the quasi-servo light with the origin, a collimating servo system is provided that collimates the optical axes of the optical distance meter and the reflector to the other station, and the above-mentioned view from the other station is Regarding the response speed of the above-mentioned collimation servo system to time variations in the optical axis deviation of the quasi-servo light, the response speed of the fixed station is made slower than the response speed of the mobile station, and the collimation servo light from the mobile station is prevented from hitting obstacles, etc. Therefore, there is a detection means for detecting temporary interruption, and in response to the detection signal, the tracking speed (angular speed of optical axis deflection) of the fixed station relative to the mobile station is determined by the average tracking speed within a certain period of time immediately before the detection means. 1. An automatic collimating light wave distance meter device, characterized in that a speed maintaining means for maintaining the same value is provided on the fixed station side.
JP22019386A 1986-09-17 1986-09-17 Automatic collimation type range finder utilizing light-wave Granted JPS6373178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019386A JPS6373178A (en) 1986-09-17 1986-09-17 Automatic collimation type range finder utilizing light-wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019386A JPS6373178A (en) 1986-09-17 1986-09-17 Automatic collimation type range finder utilizing light-wave

Publications (2)

Publication Number Publication Date
JPS6373178A JPS6373178A (en) 1988-04-02
JPH0551109B2 true JPH0551109B2 (en) 1993-07-30

Family

ID=16747342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019386A Granted JPS6373178A (en) 1986-09-17 1986-09-17 Automatic collimation type range finder utilizing light-wave

Country Status (1)

Country Link
JP (1) JPS6373178A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012836A1 (en) * 1988-06-15 1989-12-28 Japan Industrial Land Development Co., Ltd. Automatic tracking type surveying apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120873A (en) * 1982-12-27 1984-07-12 Sotsukishiya:Kk Directing method of light wave range finder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120873A (en) * 1982-12-27 1984-07-12 Sotsukishiya:Kk Directing method of light wave range finder

Also Published As

Publication number Publication date
JPS6373178A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
US4926050A (en) Scanning laser based system and method for measurement of distance to a target
JPH09250927A (en) Surveying system
US6043874A (en) System and method for calibrating a laser transmitter
JPH0551109B2 (en)
KR100192851B1 (en) Method and apparatus for measuring position and posture of tunnel excavator
JPH08178652A (en) Surveying device
JPS6358185A (en) Automatic collimation type light wave range finder
EP4063787A1 (en) Surveying system
JPH0414892B2 (en)
JP2840951B2 (en) Automatic collimation device
JP2931035B2 (en) Collimation device using guide light
JPH08292262A (en) Electronic distance meter
JP2002005660A (en) Remotely operated surveying system
JPH07117414B2 (en) Automatic collimating lightwave rangefinder
WO2000000788A1 (en) Method and apparatus for determining the relative height of two targets
JPS6067812A (en) Inclination angle detecting system of moving body
JPS63309814A (en) Automatic collimating device
US4203665A (en) Aerial surveying method to determine ground contours
JPH0642648B2 (en) Transmitter / receiver
US3220005A (en) Device for determining the relative position of two objects
JP3192359B2 (en) Space optical communication equipment
JPS63215231A (en) Automatic collimation type optical receiver
JPH0340803B2 (en)
JPH0865030A (en) Automatic communication antenna tracking device
JPH03152490A (en) Controlling apparatus for direction of laser beam

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees