JPH0550667B2 - - Google Patents

Info

Publication number
JPH0550667B2
JPH0550667B2 JP21825284A JP21825284A JPH0550667B2 JP H0550667 B2 JPH0550667 B2 JP H0550667B2 JP 21825284 A JP21825284 A JP 21825284A JP 21825284 A JP21825284 A JP 21825284A JP H0550667 B2 JPH0550667 B2 JP H0550667B2
Authority
JP
Japan
Prior art keywords
pipe
evaporator
condenser
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21825284A
Other languages
Japanese (ja)
Other versions
JPS6199064A (en
Inventor
Susumu Sakaida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP21825284A priority Critical patent/JPS6199064A/en
Publication of JPS6199064A publication Critical patent/JPS6199064A/en
Publication of JPH0550667B2 publication Critical patent/JPH0550667B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷房運転、暖房運転及び冷・暖房運
転が可能な冷・暖房機である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a cooling/heating machine capable of cooling operation, heating operation, and cooling/heating operation.

〔従来の技術〕[Conventional technology]

汎用空気熱源ヒートポンプにおいては、夏期の
冷房運転時には伝熱の悪い空気熱交換器からの放
熱を要するため効率が極端に低かつた。また、冬
期の暖房運転時には伝熱の悪い空気熱交換器から
の集熱を要し、低い冷媒蒸発温度で運転されるた
め効率が極端に低かつた。しかも、冬期の集熱時
に外気温度が低い場合は、伝熱面への着霜、着氷
が伝熱を妨げ、能力の低下や、デフロストサイク
ルに於ける暖房の中断など多くの問題を有してい
る。
General-purpose air source heat pumps have extremely low efficiency during summer cooling operation because heat must be dissipated from the air heat exchanger, which has poor heat transfer. Furthermore, during heating operation in winter, heat must be collected from an air heat exchanger with poor heat transfer, and the efficiency is extremely low because the operation is performed at a low refrigerant evaporation temperature. Moreover, when the outside temperature is low during heat collection in winter, frost and ice buildup on the heat transfer surface impedes heat transfer, causing many problems such as reduced capacity and interruption of heating during the defrost cycle. ing.

〔発明の構成〕[Structure of the invention]

本発明は、冷凍機とヒートポンプを組合わせた
冷・暖房機であつて、第1圧縮機A及び第2圧縮
機B、第1蒸発器Cと第2蒸発器D並びに第1凝
縮器Eと第2凝縮器Fを備え、冷房運転において
は第1蒸発器C→(第2の蒸発器D)→第1圧縮
機A→第1凝縮器E→第1蒸発器Cの順序で組合
わせて冷房サイクルを構成し、暖房運転において
は第2蒸発器D→第1圧縮機A→第1凝縮器E→
第2圧縮機B→第2凝縮器F(第1凝縮器E)→
(第1蒸発器C)→第2蒸発器Dの順序で組合わ
せて暖房サイクルを構成できるようにし、また、
冷・暖房運転に際しては、上記冷房運転と暖房運
転とを組合せて行うようにしてなる、3つの異な
る運転仕様に高効率で作動せしめるよう構成した
冷・暖房機であつて、第1図に示すようにヒーテ
イングタワーとクーリングタワーを備えた特殊
冷・暖房システムを構成したものである。冷房運
転時においてはクーリングタワーを作動させて冷
房専用機と同じ冷房運転を行い効率の高い運転が
可能となる。また暖房運転時においては、ヒーテ
イングタワーを使用してヒートポンプの場合と同
様にヒートポンプサイクル運転を行いうるので前
記暖房運転時の欠点を解消することが可能であ
る。
The present invention is a cooling/heating machine that combines a refrigerator and a heat pump, and includes a first compressor A, a second compressor B, a first evaporator C, a second evaporator D, and a first condenser E. It is equipped with a second condenser F, and in cooling operation, it is combined in the order of first evaporator C → (second evaporator D) → first compressor A → first condenser E → first evaporator C. It constitutes a cooling cycle, and in heating operation, the second evaporator D → the first compressor A → the first condenser E →
2nd compressor B → 2nd condenser F (1st condenser E) →
(First evaporator C) → second evaporator D can be combined in the order to configure a heating cycle, and
This cooling/heating machine is configured to operate with high efficiency according to three different operating specifications, and is configured to perform a combination of the above-mentioned cooling operation and heating operation during cooling/heating operation, as shown in Fig. 1. It consists of a special cooling and heating system equipped with a heating tower and a cooling tower. During cooling operation, the cooling tower is activated to perform the same cooling operation as a dedicated cooling unit, enabling highly efficient operation. Furthermore, during heating operation, a heating tower can be used to perform heat pump cycle operation in the same manner as in the case of a heat pump, so it is possible to eliminate the drawbacks during heating operation.

なお、第1図に示す例においてはクーリングタ
ワーとヒーテイングタワーを別個に設けている
が、容量の大きい方のタワー(通常はヒーテイン
グタワー)を1個設けて使い分け第1凝縮器Eと
第2蒸発器Dの両方へ夫々配管するようにしても
よい。
In the example shown in Fig. 1, the cooling tower and heating tower are provided separately, but one tower with a larger capacity (usually the heating tower) is provided and used separately for the first condenser E and the second condenser. Piping may be provided to both of the evaporators D, respectively.

また、前記運転形態において、冷房運転時にお
ける第2蒸発器D及び暖房運転時における第1凝
縮器Eならびに第1蒸発器Cは、夫々、冷媒が単
に通過するのみであつて、蒸発器あるいは凝縮器
としては機能しないものであるので括弧を付し
た。
In addition, in the above operation mode, the second evaporator D during the cooling operation and the first condenser E and the first evaporator C during the heating operation are ones through which the refrigerant simply passes, and the refrigerant does not condense into the evaporator or condenser. I put it in parentheses because it does not function as a vessel.

本発明は、空気熱源ヒートポンプとして一般に
製作されている熱源機が、夏、冬の何れにおいて
も効率が低い点を改善することを目的としてなさ
れたものである。
The present invention has been made with the aim of improving the low efficiency of heat source devices generally manufactured as air source heat pumps in both summer and winter.

即ち、通常冷房運転時においては、冷媒を5℃
程度で蒸発させ、この冷媒を圧縮機で吸引圧縮し
て熱を汲み上げ38℃で凝縮させるのでこの間の温
度差は33℃であるが、暖房運転時においては、冷
媒を例えば−14℃程度で蒸発させ51℃で凝縮させ
る為この間の温度差は55℃となる。即ち、冷房運
転時と暖房運転時とでは熱の汲み上げ高さに大き
な差異が生ずることとなり、これを一台の圧縮機
で兼務させようとすると冷房時の運転が設計点か
ら大幅に外れるため効率の低い運転を強いられる
こととなる。
In other words, during normal cooling operation, the refrigerant is heated to 5°C.
The refrigerant is evaporated at a temperature of about -14°C, and the heat is pumped up and condensed at 38°C by suction and compression by a compressor, so the temperature difference between them is 33°C. However, during heating operation, the refrigerant evaporates at a temperature of, for example, -14°C. Since it condenses at 51℃, the temperature difference during this time is 55℃. In other words, there will be a large difference in the height at which heat is pumped up during cooling operation and heating operation, and if a single compressor is used for both purposes, cooling operation will deviate significantly from the design point, resulting in lower efficiency. They will be forced to drive at a low level.

従つて、本発明においては冷房運転時は冷房用
圧縮機Aのみで理想的な高効率の運転が行えるよ
うにし、暖房時は冷房用圧縮機Aで圧縮した後、
不足分を圧縮機Bに負担させ、両圧縮機とも理想
的な高効率の運転が行えるようにすると共に蒸発
機、凝縮機も夫々2個設けこれらを巧みに配置し
たものである。
Therefore, in the present invention, ideal high-efficiency operation can be performed with only the cooling compressor A during cooling operation, and after compressing with the cooling compressor A during heating,
The shortfall is made to bear on compressor B so that both compressors can be operated with ideal high efficiency, and two evaporators and two condensers are also provided and these are skillfully arranged.

つぎに図面に基づいて本発明を詳しく説明す
る。
Next, the present invention will be explained in detail based on the drawings.

第1図において、符号Aは第1圧縮器(主圧縮
器)、Bは第2圧縮器(ブースター圧縮器)、Cは
第1蒸発器、Dは第2蒸発器、Eは第1凝縮器、
Fは第2凝縮器、1はクーリングタワー、2はヒ
ーテイングタワー、8クツシヨンタンクを示し、
20はクーリングタワー1から第1凝縮器への冷
冷却媒体配管を、21はヒーテイングタワー2か
ら第2蒸発器への加熱媒体配管を示し、9及び2
0は夫々の配管上のポンプを示す。更に、11は
冷水通水弁31を有する冷水管、17は温水通水
弁32を有する温水管、12は流量制御装置5を
有する冷媒蒸気(冷媒ガス)配管、13,14は
冷媒ガス配管、3は第2圧縮機のガス流を閉止す
る弁4を有する冷媒ガス配管、15,16は冷媒
ガス配管、18は減圧弁33を備えた凝縮した冷
媒配管、19は減圧弁34を有する凝縮した冷媒
配管、22は冷媒液閉止弁35及び流量調節弁3
6を有する凝縮した冷媒配管を示す。
In Figure 1, symbol A is the first compressor (main compressor), B is the second compressor (booster compressor), C is the first evaporator, D is the second evaporator, and E is the first condenser. ,
F is the second condenser, 1 is the cooling tower, 2 is the heating tower, 8 is the cushion tank,
20 indicates a cold cooling medium pipe from the cooling tower 1 to the first condenser, 21 indicates a heating medium pipe from the heating tower 2 to the second evaporator, and 9 and 2
0 indicates a pump on each pipe. Furthermore, 11 is a cold water pipe having a cold water flow valve 31, 17 is a hot water pipe having a hot water flow valve 32, 12 is a refrigerant vapor (refrigerant gas) pipe having a flow rate control device 5, 13 and 14 are refrigerant gas pipes, 3 is a refrigerant gas pipe having a valve 4 for closing the gas flow of the second compressor; 15 and 16 are refrigerant gas pipes; 18 is a condensed refrigerant pipe having a pressure reducing valve 33; and 19 is a condensing pipe having a pressure reducing valve 34. Refrigerant piping, 22 is a refrigerant liquid shutoff valve 35 and a flow rate adjustment valve 3
6 shows a condensed refrigerant piping with 6.

本発明の冷房運転時においては、第2圧縮機へ
のガス流を閉止する弁4及び温水通水弁32は閉
とし、ポンプ9をオン、ポンプ10をオフとして
クーリングタワーのみを作動させ、第1蒸発器C
で蒸発した冷媒蒸気は第2蒸発器D(蒸発器とし
ては機能しない)を経て第1圧縮機Aで圧縮さ
れ、第1凝縮器Eに導かれ、該凝縮器中でクーリ
ングタワー1からの冷却水により凝縮された後第
1蒸発器Cに還流する単純冷凍サイクルとなつて
おり、標準冷房専用機と同じ運転サイクルとなり
効率の高い運転が可能となる。この間、冷水は第
1蒸発器Cの冷水配管から引き出される。
During the cooling operation of the present invention, the valve 4 that closes the gas flow to the second compressor and the hot water flow valve 32 are closed, the pump 9 is turned on, the pump 10 is turned off, and only the cooling tower is operated. Evaporator C
The refrigerant vapor evaporated in This is a simple refrigeration cycle in which the water is condensed and then refluxed to the first evaporator C. This is the same operation cycle as a standard cooling-only machine, allowing highly efficient operation. During this time, cold water is drawn out from the cold water pipe of the first evaporator C.

つぎに、本発明の装置の暖房運転即ち冬におけ
る運転状態について説明すると、暖房運転時にお
いては、冷水管上の冷水通水弁31は閉とされ、
第2圧縮機へのガス流を閉止する弁4及び温水管
上の温水通水弁31は開とされると共に加熱媒体
配管上のポンプ10がオン、冷却媒体用配管上の
ポンプ9はオフの状態で運転され、ヒーテイング
タワー2からの加熱媒体により第2蒸発器D中で
冷媒は蒸発され、第1圧縮機Aで圧縮された後第
1凝縮器Eに吐出される。この場合凝縮器Eは単
なる冷媒ガスの通過部分として作動する。この凝
縮器Eからの冷媒蒸気はクツシヨンタンク8を経
由して第2圧縮器Bで圧縮された後温水コンデン
サー(第2凝縮器F)へ吐出され、冷媒は凝縮す
ると共に、該凝縮器中で温水を加温する。凝縮し
た冷媒は、エコノマイザ効果を持たせるため、一
旦第1凝縮器Eを経由して第1蒸発器Cを経て第
2蒸発器Dに還流せしめられる。この場合第1蒸
発器Cは凝縮した冷媒の通過部分として作動する
のみである。
Next, the heating operation of the apparatus of the present invention, that is, the operating state in winter, will be explained. During heating operation, the cold water flow valve 31 on the cold water pipe is closed;
The valve 4 that closes the gas flow to the second compressor and the hot water flow valve 31 on the hot water pipe are opened, the pump 10 on the heating medium pipe is turned on, and the pump 9 on the cooling medium pipe is turned off. The refrigerant is evaporated in the second evaporator D by the heating medium from the heating tower 2, compressed by the first compressor A, and then discharged to the first condenser E. In this case, the condenser E acts simply as a passage section for the refrigerant gas. The refrigerant vapor from the condenser E is compressed by the second compressor B via the cushion tank 8, and then discharged to the hot water condenser (second condenser F), where the refrigerant is condensed and inside the condenser. Heat the water with. The condensed refrigerant is once passed through the first condenser E, passed through the first evaporator C, and then refluxed to the second evaporator D in order to have an economizer effect. In this case, the first evaporator C only acts as a passage section for the condensed refrigerant.

クツシヨンタンク8は、第1凝縮器Eから第2
圧縮機Bに吸引されるガスに液滴が含まれている
場合、これを分離するために設けたものであり、
省略することも出来る。
The cushion tank 8 is connected to a first condenser E to a second condenser.
This is provided to separate droplets when the gas sucked into compressor B contains droplets.
It can also be omitted.

つぎに冷暖房併用運転時(ビルの北側は暖房を
行い南側は冷房を行う場合とか、事務室は暖房を
行いながらコンピユータ室は冷房する場合等)に
おける運転状態について説明すると、冷水通水弁
31、温水通水弁32及び冷媒液閉止35を開と
し、ポンプ9及びポンプ10がオンとして運転さ
れ、第1蒸発器Cで冷媒の一部が蒸発され、つい
で第2蒸発器D中でヒーテイングタワー2からの
加熱媒体により配管22で導かれる残りの冷媒が
蒸発され、第1圧縮機Aで圧縮された後第1凝縮
器Eに吐出される。この第1凝縮器E中でクーリ
ングタワー1からの冷却水により冷媒の一部が凝
縮され、この凝縮した冷媒は第2凝縮器Fからの
凝縮された冷媒と共に第1蒸発器Cに導かれる。
一方、第1凝縮器E中の冷媒蒸気はクツシヨンタ
ンク8を経由して圧縮機Bで圧縮された後温水コ
ンデンサー(第2凝縮器F)へ吐出され、冷媒は
凝縮すると共に、該凝縮器中で温水を加温する。
凝縮した冷媒は暖房運転時と同様エコノマイザ効
果を持たせるため、一旦凝縮器Eを経由した後第
1蒸発器Cを経て第2蒸発器Dに還流せしめられ
る。
Next, we will explain the operating conditions during combined heating and cooling operation (such as heating the north side of the building and cooling the south side of the building, heating the office and cooling the computer room, etc.). The hot water flow valve 32 and the refrigerant liquid stopper 35 are opened, the pumps 9 and 10 are turned on, and a part of the refrigerant is evaporated in the first evaporator C, and then the heating tower is heated in the second evaporator D. The remaining refrigerant guided through the pipe 22 is evaporated by the heating medium from the refrigerant 2, compressed by the first compressor A, and then discharged to the first condenser E. A part of the refrigerant is condensed in this first condenser E by the cooling water from the cooling tower 1, and this condensed refrigerant is led to the first evaporator C together with the condensed refrigerant from the second condenser F.
On the other hand, the refrigerant vapor in the first condenser E is compressed by the compressor B via the cushion tank 8, and then discharged to the hot water condenser (second condenser F). Heat the water inside.
The condensed refrigerant is once passed through the condenser E, then the first evaporator C, and then refluxed to the second evaporator D in order to have an economizer effect as in the heating operation.

そして、この間に冷水配管11から冷水が温水
配管17から温水が引き出される。
During this time, cold water is drawn out from the cold water pipe 11 and hot water is drawn out from the hot water pipe 17.

なお、第1図には、第1凝縮器Eから第2蒸発
器Dへホツトガスパイプ7が設けられているが、
これは安全運転を行うための補助的なものであ
る。
In addition, in FIG. 1, a hot gas pipe 7 is provided from the first condenser E to the second evaporator D.
This is an aid for safe driving.

ヒーテイングタワーは着霜、着氷することのな
い空気からの集熱器であり、循環される不凍液を
介して、ヒートポンプとして第2蒸発器Dで集熱
を行つている。
The heating tower is a heat collector from air that does not form frost or ice, and heat is collected by the second evaporator D as a heat pump via the circulating antifreeze.

本発明の冷・暖房の運転に際し、第1蒸発器C
の冷水配管中に凍結の可能性のある流体例えば水
を流す場合、凍結を防止するため、第1蒸発器C
から第1圧縮機Aへの冷媒蒸気配管上に冷媒の流
量を制限する装置5を設け、第1蒸発器C内の圧
力(温度)が規定値以下に下らないように制御さ
れる。
During the cooling/heating operation of the present invention, the first evaporator C
When flowing a fluid that may freeze, such as water, into the cold water piping, the first evaporator C is used to prevent freezing.
A device 5 for restricting the flow rate of the refrigerant is provided on the refrigerant vapor pipe from the evaporator C to the first compressor A, and the pressure (temperature) in the first evaporator C is controlled so as not to fall below a specified value.

またヒートポンプ運転において、第2蒸発器D
の圧力又は温度を一定の値に制御するため、圧力
又は温度検出器(PCA)を備え、該検出器によ
り検出された圧力又は温度に基づいて第1圧縮機
Aの出力を制御することにより第2蒸発器Dの圧
力又は温度を一定の値に制御するのが好ましい。
In addition, in heat pump operation, the second evaporator D
In order to control the pressure or temperature of the first compressor A to a constant value, a pressure or temperature detector (PCA) is provided, and the output of the first compressor A is controlled based on the pressure or temperature detected by the detector. It is preferable to control the pressure or temperature of the second evaporator D to a constant value.

また、外気温度が高く集熱条件が良好な場合、
外気温度検出器により検出した温度により第2蒸
発器Dの圧力(例えばPCAの設定圧力)(温度)
を制御する制御器をカスケードさせ、第2蒸発器
Dの蒸気圧力(温度)を高めるように制御するこ
ともできる。
In addition, when the outside temperature is high and the heat collection conditions are good,
The pressure of the second evaporator D (for example, the set pressure of PCA) (temperature) is determined by the temperature detected by the outside air temperature detector.
It is also possible to control the vapor pressure (temperature) of the second evaporator D by cascading controllers to increase the vapor pressure (temperature) of the second evaporator D.

また温水製造時において、温水の熱所要量(需
要)が少ない場合には、第2圧縮機Bの能力を調
整し、循環冷媒量を少なくすることにより所要動
力を低減するようにするのが好ましく、この場
合、第2圧縮機Bの調整に応じて第1凝縮器Eの
冷媒圧力が上昇した場合、先ず第1段階として第
1凝縮器Eの圧力信号により第2蒸発器Dの圧力
(温度)制御器の設定値をカスケードさせて上昇
させ、第2蒸発器Dの圧力(温度)を規定値まで
上昇させ、更に、第1凝縮器Eの圧力が上昇する
場合第2段階として第1凝縮器Eに冷却水を通水
して放熱するように制御するのが好ましい。
Further, when producing hot water, if the heat requirement (demand) for hot water is small, it is preferable to adjust the capacity of the second compressor B and reduce the amount of circulating refrigerant to reduce the required power. In this case, when the refrigerant pressure in the first condenser E increases in accordance with the adjustment of the second compressor B, the pressure (temperature ) The set value of the controller is increased in cascade, the pressure (temperature) of the second evaporator D is increased to the specified value, and further, when the pressure of the first condenser E is increased, the first condensation is performed as a second stage. It is preferable to control the heat dissipation by passing cooling water through the vessel E.

以上説明した各制御を行うことにより第1蒸発
器Cに負荷がある場合とか、温水負荷が小さい場
合或いは外気温度が高い場合など、多くの運転形
態に対し、省エネルギー運転を行うことができ
る。
By performing each of the above-described controls, energy-saving operation can be performed in many operating modes, such as when there is a load on the first evaporator C, when the hot water load is small, or when the outside air temperature is high.

第2図は、本発明のヒートポンプシステムでの
冷媒サイクルをモリエル線図で示したもので、実
線はC→(D)→A→E→Cのサイクルの場合を示
し、鎖線はD→A→E→B→F→(E)→(C)→Dのサ
イクルの場合を示しており、(D),(E),(C)などの
( )内に示すものは必ずしもその機器内を冷媒
が通過しなくても良いことを示すものである。
FIG. 2 is a Mollier diagram showing the refrigerant cycle in the heat pump system of the present invention, where the solid line indicates the cycle of C→(D)→A→E→C, and the chain line indicates the cycle of D→A→ This shows the case of the cycle E→B→F→(E)→(C)→D. Items in parentheses such as (D), (E), and (C) do not necessarily mean that the refrigerant is flowing inside the equipment. This indicates that it is not necessary to pass through.

なお、第1図にはクツシヨンタンク8が示され
ているが、このクツシヨンタンクは必ずしも必要
なものではない。
Although a cushion tank 8 is shown in FIG. 1, this cushion tank is not necessarily required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷・暖房機のフローを示す概
略図、第2図は本発明のシステムでの冷凍サイク
ルのモリエル線図を示す。 A……第1圧縮機、B……第2圧縮機、C……
第1蒸発器、D……第2蒸発器、E……第1凝縮
器、F……第2凝縮器、1……クーリングタワ
ー、2……ヒーテイングタワー。
FIG. 1 is a schematic diagram showing the flow of the cooling/heating machine of the present invention, and FIG. 2 is a Mollier diagram of the refrigeration cycle in the system of the present invention. A...First compressor, B...Second compressor, C...
First evaporator, D... second evaporator, E... first condenser, F... second condenser, 1... cooling tower, 2... heating tower.

Claims (1)

【特許請求の範囲】 1 冷凍機及びヒートポンプを組み合わせてなる
冷・暖房機において、第1圧縮機A及び第2圧縮
機B、冷水通水弁31を備えた冷水用配管を通じ
た第1蒸発器C、ヒーテイングタワー2からのポ
ンプ10備えた加熱用媒体配管21を通じた第2
蒸発器D、クーリングタワー1からのポンプ9を
備えた冷却用媒体配管20を通じた第1凝縮器
E、クツシヨンタンク8、温水通水弁32を備え
た第2凝縮器Fを備え、且つ、第1蒸発器Cと第
2蒸発器Dとを冷媒配管12で、第2蒸発器Dと
第1圧縮機Aのガス吸込側とを冷媒蒸気配管13
で、第1圧縮機Aのガス出口側と第1凝縮器Eと
を冷媒蒸気配管14で、第1凝縮器Eとクツシヨ
ンタンク8とを第2圧縮機のガス流を閉止する弁
4を有する冷媒蒸気配管3で、クツシヨンタンク
8と第2圧縮機Bのガス吸込側とを冷媒蒸気配管
15で、第2圧縮機Bのガス出口側と第2凝縮器
Fとを冷媒配管16で連結し、更に、第2凝縮器
Fと第1凝縮器Eとを膨張弁33を有する凝縮し
た冷媒用配管18で、第1凝縮器Eと第1蒸発器
Cとを膨張弁34を有する凝縮した冷媒用配管1
9で連結した冷・暖房機であつて、 (i) 冷房運転時には、第2圧縮機のガス流を閉止
する弁4、温水通水弁32を閉とし、かつ、ヒ
ーテイングタワーからの加熱媒体用配管上のポ
ンプ10は停止せしめたままで第1圧縮機及び
クリーングタワーの冷却用媒体配管上のポンプ
9を作動せしめると共に、冷水用配管11上の
冷水通水弁31を開として、冷媒を第1蒸発器
中で気化せしめることにより冷水配管中を流れ
る冷水を冷却して冷水配管から引出し、一方第
1蒸発器中で蒸発した冷媒(冷媒ガス)は、配
管12、第2蒸発器D及び配管13を経て第1
圧縮機Aで圧縮し、該圧縮した冷媒ガスを第1
凝縮器Eへ導き、配管20中を流れる冷却水に
より冷媒ガスを凝縮せしめ、該凝縮した冷媒を
配管19を経て膨張弁34により第1蒸発器C
中でガス化して冷水管11を流れる冷水を冷却
せしめるように構成し、 (ii) 暖房運転時には、冷水管上の冷水通水弁31
を閉とし、第2圧縮機のガス流を閉止する弁4
及び温水配管上の温水通水弁32を開とし、且
つ、冷却水配管上のポンプ9を停止すると共に
加熱媒体用配管上のポンプ10を作動せしめる
ことにより、第2蒸発器D中で冷媒を加熱媒体
用配管21中を流れる加熱媒体と熱交換せしめ
て加熱した後、第2蒸発器でガス化した冷媒ガ
スを配管13により第1圧縮機に導いて加圧
し、加圧された冷媒ガスを第1凝縮器E、配管
3を経てクツシヨンタンクに導き、液滴冷媒を
除いた後配管15を経て第2圧縮機に導き、更
に加圧せしめた後、第2凝縮器中で温水配管1
7中を流れる温水と熱交換せしめて冷媒ガスを
凝縮せしめると共に温水を加熱し、加熱された
温水は温水配管17より抜き出し、一方凝縮し
た冷媒は配管18より膨張弁33を経由して第
1凝縮機Eへ導き、更に配管19、膨張弁34
を経て第1蒸発器C中で膨張せしめることによ
り、温水配管17中を流れる温水を加熱せしめ
るように構成し、 (iii) 冷・暖房併用運転に際しては、第2圧縮機の
ガス流を閉止する弁4、冷水通水弁31、温水
通水弁32を共に開とし、冷却水配管上のポン
プ9及び加熱媒体用配管上のポンプ10を共に
作動させながら、第1蒸発器中で液化した冷媒
の一部が蒸発せしめられ、冷水管11を流れる
冷水を冷却して、冷水管11より冷水を引き出
し、ついで第2蒸発器D中でヒーテイングタワ
ーからの加熱媒体配管中を流れる加熱媒体によ
り、配管22で導かれる残りの液化した冷媒が
加熱されて蒸発せしめられ、第1蒸発器Cから
配管12を経て第2蒸発器Dに導入された冷媒
ガスと共に配管13を経て第1圧縮機に導かれ
圧縮された後配管14を経て第1凝縮器E中へ
吐出され、第1凝縮器中でクーリングタワー1
からの冷却媒体により冷媒ガスの一部が凝縮さ
れ、この凝縮された冷媒は、第2凝縮器Fから
第1凝縮器へ導かれる凝縮された冷媒と共に、
配管19により膨張弁34を経て第1蒸発器C
へ導かれ、一方、第1凝縮器中で凝縮されなか
つた冷媒ガスは、第1凝縮器Eから配管3を経
てクツシヨンタンク8に導かれた後配管15を
経て第2圧縮機に導かれて圧縮された後、配管
16を経て第2凝縮器中に導かれ、温水配管中
を流れる温水を加熱すると共に、自らは凝縮
し、該加熱された温水は配管17から抜き出
し、一方凝縮された冷媒は、第2凝縮器Fから
導管18及び膨張弁33を経て第1凝縮器に導
かれるように構成した、 冷・暖房機。 2 暖房運転並びに冷・暖房併用運転時におい
て、第1凝縮器からの冷媒ガスを、配管3により
第2圧縮機の吸込側に直接導入するように構成し
てなる特許請求の範囲第1項記載の冷・暖房機。 3 冷・暖房併用運転において、第2蒸発器D→
第1圧縮機A→第1凝縮器E→第2圧縮機B→第
2凝縮器F→第1凝縮器E→第1蒸発器C→第2
蒸発器Dの順序で冷媒を流す暖房運転と第1蒸発
器C→第2蒸発器D→第1圧縮機A→第1凝縮器
E→第1蒸発器Cの順序で冷媒を流す冷房運転と
を同時に行い、2つの蒸発器C,Dに同時に夫々
異なる温度の冷凍負荷をかける特許請求の範囲第
1項記載の冷・暖房機。 4 冷房運転又は冷・暖房併用運転において、第
1蒸発器Cに冷水などの凍結の可能性のある流体
を流す場合、該凍結を防止するため第1蒸発器C
から第1圧縮機Aへの冷媒蒸気吸入配管上に流量
を制限する装置5を設け、第1蒸発器C内の圧力
(蒸発温度)が規定値以下に下らないように流量
制限装置を制御するようにしてなる特許請求の範
囲第1項記載の冷・暖房機。 5 第2蒸発器Dの圧力(温度)を一定の値に制
御するための圧力(温度)検出器並びに制御器を
設けて必要量の空気からの集熱を行うようにして
なる特許請求の範囲第1項、第2項又は第3項記
載の冷・暖房機。 6 第2蒸発器Dの集熱において外気温度が高
く、集熱条件が良好な場合、外気温度検出器によ
り検出した温度により第2蒸発器Dの圧力(温
度)を制御する制御器をカスケードさせ、第2蒸
発器Dの蒸気圧力(温度)を高めるように構成し
てなる特許請求の範囲第5項記載の冷・暖房機。 7 暖房運転又は冷暖房併用運転において、第2
凝縮器Fから引出される温水の温水熱所要量が少
ない場合には、第2圧縮機Bの能力を調整し、所
要動力の低減を図るようにしてなる特許請求の範
囲第1項、第2項又は第3項記載の冷・暖房機。 8 第2凝縮器Fから引出される温水の温水熱所
要量が少ない場合には、第2圧縮機Bの能力を調
整し、所要動力の低減を図るようにしてなる冷・
暖房機において、第2圧縮機Bの能力が調整さ
れ、この調整に応じて第1凝縮器Eの冷媒圧力が
上昇した場合、第1段階として該第1凝縮器Eの
圧力信号により第2蒸発器Dの圧力(温度)調節
器の設定値をカスケードさせて上昇させ、第2蒸
発器Dの調節器設定圧力(温度)を規定値まで上
昇させても更に第1凝縮器Eの圧力が上昇する場
合第2段階として第1凝縮器Eに冷却水を通水し
て放熱するようにしてなる特許請求の範囲第1
項、第2項、第3項、第5項、第6項又は第7項
記載の冷・暖房機。
[Scope of Claims] 1. In a cooling/heating machine that combines a refrigerator and a heat pump, a first compressor A, a second compressor B, and a first evaporator are connected to a cold water pipe provided with a cold water flow valve 31. C, the second through the heating medium pipe 21 with the pump 10 from the heating tower 2;
an evaporator D, a first condenser E through a cooling medium pipe 20 with a pump 9 from the cooling tower 1, a cushion tank 8, a second condenser F with a hot water flow valve 32; The first evaporator C and the second evaporator D are connected by a refrigerant pipe 12, and the second evaporator D and the gas suction side of the first compressor A are connected by a refrigerant vapor pipe 13.
A refrigerant vapor pipe 14 is connected between the gas outlet side of the first compressor A and the first condenser E, and a valve 4 for closing the gas flow of the second compressor is connected between the first condenser E and the cushion tank 8. A refrigerant vapor pipe 3 connects the cushion tank 8 and the gas suction side of the second compressor B with a refrigerant vapor pipe 15, and a refrigerant pipe 16 connects the gas outlet side of the second compressor B with the second condenser F. Further, the second condenser F and the first condenser E are condensed with the refrigerant pipe 18 having the expansion valve 33, and the first condenser E and the first evaporator C are condensed with the expansion valve 34. Refrigerant piping 1
(i) During cooling operation, the valve 4 that closes the gas flow of the second compressor and the hot water flow valve 32 are closed, and the heating medium from the heating tower is The pump 10 on the cooling medium pipe of the first compressor and the cleaning tower is operated while the pump 10 on the cooling pipe is kept stopped, and the cold water flow valve 31 on the cold water pipe 11 is opened to supply the refrigerant to the first compressor. The cold water flowing through the cold water piping is cooled by vaporizing it in the first evaporator and drawn out from the cold water piping.On the other hand, the refrigerant (refrigerant gas) evaporated in the first evaporator is transferred to the piping 12, the second evaporator D, and the piping. 1st after 13
The compressor A compresses the refrigerant gas, and the compressed refrigerant gas is
The refrigerant gas is guided to the condenser E and condensed by the cooling water flowing through the pipe 20, and the condensed refrigerant is passed through the pipe 19 and sent to the first evaporator C by the expansion valve 34.
(ii) During heating operation, the cold water flow valve 31 on the cold water pipe
valve 4 for closing the gas flow of the second compressor;
Then, by opening the hot water passage valve 32 on the hot water pipe, stopping the pump 9 on the cooling water pipe, and activating the pump 10 on the heating medium pipe, the refrigerant is introduced into the second evaporator D. After heating by exchanging heat with the heating medium flowing through the heating medium pipe 21, the refrigerant gas gasified in the second evaporator is led to the first compressor through the pipe 13 and pressurized, and the pressurized refrigerant gas is The refrigerant is led to the cushion tank through the first condenser E and piping 3, and after removing the droplet refrigerant, it is led to the second compressor through the piping 15 and further pressurized.
The refrigerant gas is condensed by exchanging heat with the hot water flowing through 7, and the hot water is heated.The heated hot water is extracted from the hot water pipe 17, while the condensed refrigerant is passed from the pipe 18 through the expansion valve 33 to the first condensation stage. Lead to machine E, and then pipe 19 and expansion valve 34
(iii) During combined cooling and heating operation, the gas flow of the second compressor is closed. While opening the valve 4, the cold water passage valve 31, and the hot water passage valve 32, and operating the pump 9 on the cooling water pipe and the pump 10 on the heating medium pipe, the refrigerant liquefied in the first evaporator is heated. A part of is evaporated, the cold water flowing through the cold water pipe 11 is cooled, the cold water is drawn out from the cold water pipe 11, and then the heating medium flows in the heating medium pipe from the heating tower in the second evaporator D. The remaining liquefied refrigerant guided through the pipe 22 is heated and evaporated, and is led to the first compressor via the pipe 13 together with the refrigerant gas introduced from the first evaporator C to the second evaporator D via the pipe 12. After being compressed, it is discharged into the first condenser E through the pipe 14, and the cooling tower 1 is discharged in the first condenser.
A part of the refrigerant gas is condensed by the refrigerant from the second condenser F, and this condensed refrigerant, together with the condensed refrigerant led from the second condenser F to the first condenser,
The pipe 19 passes through the expansion valve 34 to the first evaporator C.
On the other hand, the refrigerant gas that has not been condensed in the first condenser E is led from the first condenser E to the cushion tank 8 via the pipe 3, and then to the second compressor via the pipe 15. After being compressed, the hot water is led into the second condenser through the pipe 16, heats the hot water flowing through the hot water pipe, and condenses itself, and the heated hot water is extracted from the pipe 17, while being condensed. The cooling/heating machine is configured such that the refrigerant is guided from the second condenser F through the conduit 18 and the expansion valve 33 to the first condenser. 2. Claim 1, wherein the refrigerant gas from the first condenser is directly introduced into the suction side of the second compressor through the pipe 3 during heating operation and combined cooling/heating operation. cooling and heating equipment. 3 In combined cooling/heating operation, the second evaporator D→
First compressor A → first condenser E → second compressor B → second condenser F → first condenser E → first evaporator C → second
A heating operation in which refrigerant flows in the order of evaporator D, and a cooling operation in which refrigerant flows in the order of first evaporator C → second evaporator D → first compressor A → first condenser E → first evaporator C. 2. The cooling/heating machine according to claim 1, wherein the cooling/heating machine performs the above operations at the same time and simultaneously applies refrigeration loads at different temperatures to the two evaporators C and D. 4 In cooling operation or combined cooling/heating operation, when flowing a fluid that may freeze, such as cold water, into the first evaporator C, the first evaporator C is used to prevent freezing.
A flow rate limiting device 5 is provided on the refrigerant vapor suction pipe from the to the first compressor A, and the flow rate limiting device is controlled so that the pressure (evaporation temperature) in the first evaporator C does not fall below a specified value. A cooling/heating machine according to claim 1, which comprises: 5 Claims that include a pressure (temperature) detector and a controller for controlling the pressure (temperature) of the second evaporator D to a constant value to collect a necessary amount of heat from the air. The cooling/heating machine according to paragraph 1, paragraph 2, or paragraph 3. 6 When the outside air temperature is high and the heat collection conditions are good during heat collection in the second evaporator D, a controller that controls the pressure (temperature) of the second evaporator D is cascaded based on the temperature detected by the outside air temperature detector. The cooling/heating machine according to claim 5, which is configured to increase the steam pressure (temperature) of the second evaporator D. 7 In heating operation or combined cooling and heating operation, the second
When the required amount of hot water heat drawn from the condenser F is small, the capacity of the second compressor B is adjusted to reduce the required power. The cooling/heating machine described in paragraph 3 or paragraph 3. 8 When the required amount of hot water heat drawn from the second condenser F is small, the capacity of the second compressor B is adjusted to reduce the required power.
In the heating machine, when the capacity of the second compressor B is adjusted and the refrigerant pressure in the first condenser E increases in accordance with this adjustment, the pressure signal of the first condenser E causes the second evaporation to occur as a first step. Even if the set value of the pressure (temperature) regulator of device D is increased in a cascade manner, and the set pressure (temperature) of the regulator of second evaporator D is increased to the specified value, the pressure of first condenser E will further increase. In this case, as a second step, cooling water is passed through the first condenser E to radiate heat.
The cooling/heating machine according to item 2, item 3, item 5, item 6, or item 7.
JP21825284A 1984-10-19 1984-10-19 Refrigerator or heat pump Granted JPS6199064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21825284A JPS6199064A (en) 1984-10-19 1984-10-19 Refrigerator or heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21825284A JPS6199064A (en) 1984-10-19 1984-10-19 Refrigerator or heat pump

Publications (2)

Publication Number Publication Date
JPS6199064A JPS6199064A (en) 1986-05-17
JPH0550667B2 true JPH0550667B2 (en) 1993-07-29

Family

ID=16716973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21825284A Granted JPS6199064A (en) 1984-10-19 1984-10-19 Refrigerator or heat pump

Country Status (1)

Country Link
JP (1) JPS6199064A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038307A1 (en) 2002-10-24 2004-05-06 Showa Denko K.K. Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
JP2006207835A (en) * 2002-10-24 2006-08-10 Showa Denko Kk Refrigerating system, compressing and heat-radiating apparatus and heat radiator
JP5568838B2 (en) * 2008-03-25 2014-08-13 東京電力株式会社 Industrial drying system
JP5352399B2 (en) * 2009-09-25 2013-11-27 荏原冷熱システム株式会社 Compression refrigerator

Also Published As

Publication number Publication date
JPS6199064A (en) 1986-05-17

Similar Documents

Publication Publication Date Title
US6519967B1 (en) Arrangement for cascade refrigeration system
CN100552312C (en) The air-conditioning unit device and the air-treatment method thereof of the wet segment processing of heat
CN101221007B (en) Air source heat pump hot water units
JP2003075009A (en) Heat pump system
US10767908B2 (en) Cascading heat recovery using a cooling unit as a source
JP2000028216A (en) Heat pump type air conditioner
CN101694329A (en) Dual-working condition heat pump cold hot water machine unit of parallel evaporator
KR20100059176A (en) Storage system
CN112665226A (en) Air conditioning system and control method thereof
CN112303970A (en) Air conditioning system for defrosting by using condensation waste heat and defrosting control method thereof
CN1052939A (en) Conditioner
DK2318783T3 (en) REVERSIBLE SYSTEM FOR RECOVERY OF HEAT ENERGY BY SAMPLING AND TRANSFER OF HEAT ENERGY FROM ONE OR MORE MEDIA IN ONE OR MORE OTHER SUCH MEDIA
KR20100046365A (en) Heat pump system
JPH0550667B2 (en)
CN208222889U (en) The refrigeration system of variable-flow single stage compress circulation and two-stage compression cycle can be achieved
CN213873261U (en) Mixed refrigerating system for data center
JPH10185342A (en) Heat pump type air conditioner
CN202066256U (en) Air-cooled air conditioning system
KR20100005736U (en) Heat pump system
KR20100005735U (en) storage system
CN201225784Y (en) Heat pump plant unit
CN201093735Y (en) Instantaneous hot wind cool heat pump water heater
CN108759156A (en) Not exclusively cooling two-stage compression heat pump system among second throttle
CN216522365U (en) Cascade type variable frequency air source heat pump hot water system
CN217004720U (en) Novel direct current frequency conversion condensation reheating swimming pool dehumidification heat pump system