JPH055060B2 - - Google Patents

Info

Publication number
JPH055060B2
JPH055060B2 JP16880383A JP16880383A JPH055060B2 JP H055060 B2 JPH055060 B2 JP H055060B2 JP 16880383 A JP16880383 A JP 16880383A JP 16880383 A JP16880383 A JP 16880383A JP H055060 B2 JPH055060 B2 JP H055060B2
Authority
JP
Japan
Prior art keywords
temperature
column oven
column
gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16880383A
Other languages
Japanese (ja)
Other versions
JPS6060556A (en
Inventor
Yoshiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16880383A priority Critical patent/JPS6060556A/en
Publication of JPS6060556A publication Critical patent/JPS6060556A/en
Publication of JPH055060B2 publication Critical patent/JPH055060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3084Control of physical parameters of the fluid carrier of temperature ovens

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、ガスクロマトグラフのカラムオーブ
ンに関し、特にカラム温度を低温から高温に一定
速度で上昇させ、試料を分離させる場合に使用す
るガスクロマトグラフのカラムオーブンに関する
ものである。
Detailed Description of the Invention (Technical field to which the invention pertains) The present invention relates to a column oven for a gas chromatograph, and in particular to a column oven for a gas chromatograph used when the column temperature is raised from a low temperature to a high temperature at a constant rate to separate a sample. It concerns column ovens.

(従来技術) 原油などのように広い沸点範囲を持つ混合物の
成分分離を行なう場合に、試料中の低沸点成分の
分離のため適当なカラム温度で操作すると、高沸
点成分の保持容量は非常に大きくなり、シヤープ
な波形を得ることができない。一方、高沸点成分
の分離のため適当なカラム温度で操作すると、低
沸点成分は十分に分離されずに非常に早く流出し
てしまう。そこで、最初は低沸点成分の分離のた
めにカラムオーブン内のカラム温度を低温に設定
し、試料気化室に試料の注入を行なつた後にカラ
ムオーブン内のヒータに与えられる電力を制御
し、一定速度で昇温させ、低沸点成分から高沸点
成分に至る成分を順次分離して行く方策が採用さ
れている。低沸点成分の分離を行なうカラム温度
を設定するには、通常はカラムオーブン内に液体
炭酸などを噴射させ、その気化熱により低温にし
ている。カラムオーブン内に噴射された液体炭酸
が気化すると、炭酸ガスとなり、カラムオーブン
内に設けられたフアンモータの貫通軸孔やケーシ
ングの間隙から排出されるが、外部から見て見ば
えがよくないものであり、更に液体炭酸の噴射に
よりカラムオーブンを冷却しているときに、カラ
ムオーブンにう配設された試料気化室と検出器を
備える加熱ブロツクからの温度の影響を受けてい
るため、その冷却効率が悪く、液体炭酸の消費量
が多くなるという欠点があつた。
(Prior art) When separating the components of a mixture with a wide boiling point range such as crude oil, if the column is operated at an appropriate column temperature to separate the low boiling point components in the sample, the retention capacity for the high boiling point components will be very small. It becomes large and it is not possible to obtain a sharp waveform. On the other hand, if the column is operated at an appropriate column temperature for the separation of high-boiling components, the low-boiling components will not be sufficiently separated and will flow out very quickly. Therefore, the column temperature in the column oven is initially set to a low temperature in order to separate low-boiling components, and after the sample is injected into the sample vaporization chamber, the power given to the heater in the column oven is controlled to maintain a constant temperature. The method used is to raise the temperature at a rapid rate and sequentially separate components from low boiling point components to high boiling point components. To set the column temperature for separating low-boiling components, liquid carbonic acid or the like is usually injected into the column oven, and the heat of vaporization lowers the temperature. When the liquid carbon dioxide injected into the column oven vaporizes, it becomes carbon dioxide gas and is discharged through the shaft hole of the fan motor installed inside the column oven and the gap in the casing, but it does not look good from the outside. Furthermore, when the column oven is being cooled by injection of liquid carbon dioxide, it is affected by the temperature from the heating block that includes the sample vaporization chamber and detector located in the column oven. The disadvantages were that the cooling efficiency was poor and the amount of liquid carbonate consumed was large.

(発明の目的) 本発明は、前述の従来技術の有する欠点を解消
するもので、カラムオーブン内の試料気化室と検
出器を備える加熱ブロツク側に流通通路を設け、
カラムオーブン内の気体を外部に排気する排気路
を設け、そしてその流通通路と排気路との連通又
は遮断を行なう排気弁を設け、排気弁の開閉によ
りカラムオーブン内の気体の一部を流通通路と排
気路を介して外部に排出し、又はその流通通路を
介してカラムオーブン内の気体の一部を循環させ
ることのできるガスカロマトグラフのカラムオー
ブンを提供することを目的とする。
(Object of the Invention) The present invention solves the drawbacks of the prior art described above, and includes providing a flow passage on the side of the heating block that includes the sample vaporization chamber and the detector in the column oven.
An exhaust path is provided to exhaust the gas in the column oven to the outside, and an exhaust valve is provided to communicate or shut off the communication path with the exhaust path.By opening and closing the exhaust valve, a part of the gas in the column oven is released into the circulation path. An object of the present invention is to provide a column oven for a gas calomatograph that can exhaust gas to the outside through an exhaust passage or circulate a part of the gas inside the column oven through its circulation passage.

(発明の構成) 本発明は、カラムオーブン外に貫通する排気路
と、加熱ブロツクの下面と仕切板とにより形成さ
れる流通路との間に位置する排気弁を、カラムオ
ーブンの温度に従つて開、閉させ、排気弁開の場
合はカラムオーブン内の気体の一部を流通通路と
排気路を介して外部に排出させ、排気弁閉の場合
は排気路を遮断し、その流通通路をカラムオーブ
ン内の気体の一部の循環通路とすることにより、
冷却効率と加熱効率を高めるものであり、また加
熱ブロツクとカラムオーブンの境界部分を解消す
る効果もある。
(Structure of the Invention) The present invention provides an exhaust valve located between an exhaust path penetrating to the outside of the column oven and a flow path formed by the lower surface of the heating block and the partition plate, according to the temperature of the column oven. When the exhaust valve is open, part of the gas in the column oven is discharged to the outside through the circulation passage and exhaust passage, and when the exhaust valve is closed, the exhaust passage is shut off and the circulation passage is connected to the column. By creating a circulation path for some of the gas in the oven,
This increases cooling efficiency and heating efficiency, and also has the effect of eliminating the boundary between the heating block and column oven.

以下図面を参照して、本発明のガスクロマトグ
ラフのカラムオーブンの実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of a column oven for a gas chromatograph according to the present invention will be described below with reference to the drawings.

(実施例) (第1図〜第4図) 第1図は、本発明のガスクロマトグラフのカラ
ムオーブンの実施例の側断面図を示す。
(Example) (Figures 1 to 4) Figure 1 shows a side sectional view of an example of a column oven for a gas chromatograph of the present invention.

同図において、Cはカラムオーブンとその付属
装置を囲むケーシングである。1は試料気化室
で、キヤリアガスと試料が注入され、試料の気化
が行なわれる。2は検出器で、カラムから分離送
出される成分の定量検出をする検出器で、例えば
熱電導型の検出器が使用される。3は加熱ブロツ
クで、試料気化室1と検出器2が配設されてい
る。この加熱ブロツク3は不図示の加熱装置によ
り、例えば原油など高沸点成分を含む試料の分析
においては常時400℃の温度に加熱されている。
4はカラムオーブンで、その周囲は断熱材で構成
される断熱部Sで囲まれている。5はカラムで、
カラム5の入口側は試料気化室1に、その出口側
は検出器2に接続されている。6は、カラムオー
ブン扉である。7はカラムオーブン4の外部に設
けられたモータ、8はフアンであり、両者は軸結
合されている。このフアン8はモータ7により回
転駆動され、カラムオーブン4内の加熱された気
体をカラムオーブン4内を循環させ、その内部を
一様な温度にする。9はニクローム線などの電熱
線よりなるヒータで不図示の温度制御装置に接続
されており、ヒータ9に加えられる加熱電力の制
御を行なつて、カラムオーブン4の温度を一定速
度で上昇させて行く。10は液体炭酸噴射ノズ
ル、11は液体炭酸制御用電磁弁で、両者は接続
されており、液体炭酸制御用電磁弁11は不図示
の液体炭酸容器に接続されている。液体炭酸制御
用電磁弁11はリード線を介して不図示の温度制
御装置に接続されており、この不図示の温度制御
装置からの制御信号を受けて電磁弁11を開き、
液体炭酸噴射ノズル10から所定量の液体炭酸を
カラムオーブン4内に噴射させ、その気化熱によ
りカラムオーブン4を低温にする。12は温度制
御用センサで、カラムオーブン4内の温度を検出
し、その検出信号を不図示の温度制御装置に加え
る。13は排気弁、13′はその軸支点である。
Pはカラムオーブン4内の気体をケーシングCを
介して外部に排気する排気路である。16は仕切
板で、加熱ブロツク3が埋設されている上部断熱
部Suの下面に対し間隙を隔てて対設され、カラ
ムオーブン4内の気体の一部に対する流通通路1
7を形成する。カラムオーブン4内の気体の一部
はカラムオーブン扉6の上部から流通通路17を
通り、排気弁13が排気路Pに対して開いている
場合は、直接排気路Pを経て外部に連通し、排気
弁13が排気路Pに対して閉じている場合は、カ
ラムオーブン4の後部に配置されているヒータ9
側への循環流路を形成する。前述の排気弁13
は、液体炭酸噴射時の温度から約60℃までの温度
幅においては開となり、排気路Pと流通通路17
とを連通させ、フアン8によりカラムオーブン4
内を循環される気体の一部を流通通路17と排気
路Pを介して外部に排出させる。そしてカラムオ
ーブン4の温度が約60℃以上になると、排気弁1
3は軸支点13′を中心として反時計方向に回動
されて排気路Pと流通通路17との連通を遮断
し、流通通路17をカラムオーブン4内の気体の
一部の循環流路に形成し、フアン8によりカラム
オーブン4内を循環させられている気体の一部を
流通通路17を介しヒータ9側に流入させる。1
4はフアン8とヒータ9に対する保護用金網、1
5は気体整流用案内板でフアン8により送られて
カラムオーブン4の周辺を通る気体をヒータ9に
案内する。
In the figure, C is a casing surrounding the column oven and its attached equipment. 1 is a sample vaporization chamber into which a carrier gas and a sample are injected, and the sample is vaporized. 2 is a detector which quantitatively detects the components separated and sent out from the column; for example, a thermoconductive type detector is used. 3 is a heating block in which a sample vaporization chamber 1 and a detector 2 are disposed. This heating block 3 is constantly heated to a temperature of 400° C. by a heating device (not shown) when analyzing samples containing high boiling point components such as crude oil.
4 is a column oven, which is surrounded by a heat insulating section S made of a heat insulating material. 5 is a column,
The inlet side of the column 5 is connected to the sample vaporization chamber 1, and the outlet side thereof is connected to the detector 2. 6 is a column oven door. 7 is a motor provided outside the column oven 4, and 8 is a fan, both of which are axially coupled. This fan 8 is rotationally driven by a motor 7 to circulate heated gas within the column oven 4 to maintain a uniform temperature inside the column oven 4. A heater 9 is made of a heating wire such as a nichrome wire and is connected to a temperature control device (not shown), which controls the heating power applied to the heater 9 to raise the temperature of the column oven 4 at a constant rate. go. 10 is a liquid carbonic acid injection nozzle, and 11 is a liquid carbonic acid control electromagnetic valve, both of which are connected.The liquid carbonic acid control electromagnetic valve 11 is connected to a liquid carbonic acid container (not shown). The liquid carbonic acid control solenoid valve 11 is connected to a temperature control device (not shown) via a lead wire, and upon receiving a control signal from the temperature control device (not shown), the solenoid valve 11 is opened.
A predetermined amount of liquid carbonic acid is injected into the column oven 4 from the liquid carbonic acid injection nozzle 10, and the column oven 4 is brought to a low temperature by the heat of vaporization. Reference numeral 12 denotes a temperature control sensor that detects the temperature inside the column oven 4 and applies its detection signal to a temperature control device (not shown). 13 is an exhaust valve, and 13' is its pivot point.
P is an exhaust path for exhausting gas in the column oven 4 to the outside via the casing C. Reference numeral 16 denotes a partition plate, which is disposed opposite to the lower surface of the upper heat insulating section Su in which the heating block 3 is buried, with a gap in between, and has a distribution passage 1 for a part of the gas in the column oven 4.
form 7. A part of the gas in the column oven 4 passes through the circulation passage 17 from the upper part of the column oven door 6, and when the exhaust valve 13 is open to the exhaust passage P, it directly communicates with the outside through the exhaust passage P. When the exhaust valve 13 is closed to the exhaust path P, the heater 9 located at the rear of the column oven 4
Form a circulation flow path to the side. The aforementioned exhaust valve 13
is open in a temperature range from the temperature at the time of liquid carbon dioxide injection to approximately 60°C, and the exhaust passage P and the circulation passage 17
The column oven 4 is connected by the fan 8.
A part of the gas circulated inside is discharged to the outside via the circulation passage 17 and the exhaust passage P. When the temperature of column oven 4 reaches approximately 60°C or higher, exhaust valve 1
3 is rotated counterclockwise around the pivot point 13' to cut off communication between the exhaust passage P and the circulation passage 17, forming the circulation passage 17 as a circulation passage for part of the gas in the column oven 4. A part of the gas being circulated within the column oven 4 by the fan 8 is caused to flow into the heater 9 side via the circulation passage 17. 1
4 is a protective wire mesh for the fan 8 and the heater 9, 1
Reference numeral 5 denotes a gas rectification guide plate that guides the gas sent by the fan 8 and passing around the column oven 4 to the heater 9.

第2図は、横軸に加熱時間を、縦軸に加熱温度
をとりカラムオーブン4の温度変化を示すグラフ
である。
FIG. 2 is a graph showing temperature changes in the column oven 4, with the horizontal axis representing heating time and the vertical axis representing heating temperature.

同図において、の点においてカラムオーブン
4内に液体炭酸噴射ノズル10から液体炭酸を所
定量噴射させ、その気化熱によりカラムオーブン
4内の温度を降温させ、の点において一定の低
温状態となる。の点において試料気化室1に試
料を注入し、ヒータ9に加熱電力を制御しながら
加え、一定速度で昇温させる。約60℃のの点に
おいて、前述の排気弁13はその軸支点13′を
中心として反時計方向に回動して排気路Pを遮断
し、流通通路17をカラムオーブン4における気
体の一部の循環流路にする。ヒータ9に加熱電力
を制御しながら加え、一定速度での昇温を続行す
る。の点において、ヒータ9には一定の加熱電
力を加え、の点までカラムオーブン4内を一定
温度に維持する。試料気化室1に注入された試料
は、の点からと点に至るまでの間にカラム5
により各成分に分離される。その後は、カラムオ
ーブン4内の温度を降温させ、次の分析に備え
る。なお、で示す線は、試料気化室1と検出器
2が設けられている加熱ブロツク3の温度を示
す。
In the same figure, a predetermined amount of liquid carbonic acid is injected from the liquid carbonic acid injection nozzle 10 into the column oven 4 at the point , and the temperature inside the column oven 4 is lowered by the heat of vaporization, resulting in a constant low temperature state at the point . At this point, a sample is injected into the sample vaporization chamber 1, and heating power is applied to the heater 9 in a controlled manner to raise the temperature at a constant rate. At a temperature of approximately 60° C., the exhaust valve 13 rotates counterclockwise around its pivot point 13' to block the exhaust path P and allow the flow path 17 to pass through a portion of the gas in the column oven 4. Create a circulation flow path. Heating power is applied to the heater 9 while being controlled, and the temperature continues to rise at a constant rate. At point , a constant heating power is applied to the heater 9 to maintain the inside of the column oven 4 at a constant temperature until point . The sample injected into the sample vaporization chamber 1 passes through the column 5 between the points
It is separated into each component by Thereafter, the temperature inside the column oven 4 is lowered in preparation for the next analysis. Note that the line indicated by indicates the temperature of the heating block 3 in which the sample vaporization chamber 1 and the detector 2 are installed.

第3図は液体炭酸噴射時の温度から約60℃の温
度に達するまで排気弁13が開となつている状態
の、第4図は約60℃以上の温度から約350℃の温
度に達するまで排気弁13が閉じている状態の、
カラムオーブンの要部の側断面図を示す。
Figure 3 shows the exhaust valve 13 remaining open until the temperature reaches approximately 60°C from the temperature at the time of liquid carbon dioxide injection, and Figure 4 shows the state in which the exhaust valve 13 remains open from the temperature at the time of liquid carbon dioxide injection until the temperature reaches approximately 350°C. With the exhaust valve 13 closed,
A side sectional view of the main parts of the column oven is shown.

第3図において、排気弁13は開となつてお
り、流通通路17と排気路Pは連通している。フ
アン8により送られる気体はカラム5を通過し、
カラムオーブン扉6の近傍で上方に立上る気体の
一部は流通通路17を通り、排気路Pを経て外部
に排出される。第4図において、排気弁13は軸
支点13′を中心として反時計方向に回動し排気
路Pへの連通を遮断し、流通通路17をカラムオ
ーブン4内の気体の一部の循環流路とする。フア
ン8により送られる気体はカラム5を通過し、カ
ラムオーブン扉6の近傍で上方に立上る気体の一
部は流通通路17を通り、気体整流用案内板15
の後部に位置するヒータ9に送られる。
In FIG. 3, the exhaust valve 13 is open, and the circulation passage 17 and the exhaust passage P are in communication. The gas sent by fan 8 passes through column 5;
A portion of the gas rising upward in the vicinity of the column oven door 6 passes through the circulation passage 17 and is discharged to the outside via the exhaust passage P. In FIG. 4, the exhaust valve 13 rotates counterclockwise about the pivot point 13' to cut off communication with the exhaust path P and transform the circulation path 17 into a circulation flow path for part of the gas in the column oven 4. shall be. The gas sent by the fan 8 passes through the column 5, and a part of the gas rising upward near the column oven door 6 passes through the circulation passage 17 and passes through the gas rectification guide plate 15.
is sent to a heater 9 located at the rear of the vehicle.

第1図に示す実施例の作用を第2図から第4図
を参照しながら説明する。
The operation of the embodiment shown in FIG. 1 will be explained with reference to FIGS. 2 to 4.

試料気化室1に試料を注入する前に、温度制御
用センサ12により検出されたカラムオーブン4
内の温度信号を不図示の温度制御装置に加える。
この不図示の温度制御装置からの制御信号により
排気弁13を開き、モータ7を回転駆動させてフ
アン8を回転させると共に、液体炭酸制御用電磁
弁11を開き所定量の液体炭酸を液体炭酸噴射ノ
ズル10から噴射させ、その後に電磁弁11を閉
じる。噴射された液体炭酸は気化され、その気化
熱によりカラムオーブン4内の温度を降温させ
る。所定の低温度に達すると、第2図のの点に
おいて試料気化室1に試料を注入し、ヒータ9に
加熱電力を制御しながら加える。温度制御用セン
サ12はカラムオーブン4内の温度を検出し、こ
れを不図示の温度制御装置に加える。この不図示
の温度制御装置により制御される加熱電力を加え
られたヒータ9は、一定速度でカラムオーブン4
の温度を昇温させて行く。排気弁13は開となつ
ているから、第3図に示すように排気路Pと流通
通路17とは連通している。従つて、フアン8に
より送られた低温気体はカラム5を通過し、カラ
ムオーブン扉6の近傍で上方に立上つた低温気体
の一部は流通通路17を通り、排気路Pを経て外
部に排出される。流通通路17を通過する低温気
体は、流通通路17に面する加熱ブロツク3を埋
設する上部断熱部Suと流通通路17中に露出し
ている試料気化室1、検出器2とからの発生熱を
外部に排出する。前述したように加熱ブロツク3
は常時400℃の温度で加熱されており、その伝熱、
輻射作用により上部断熱部Suは約200℃に仕切板
16は約60℃となつているが、前記した発生熱は
外部に排出されるため、低温時のカラムオーブン
4に対する熱の影響を少なくすることができ、従
つて冷却効率を高めることができそして液体炭酸
の消費量が少なくてすむという利点を生じる。ヒ
ータ9に加熱電力を制御しながら加え、一定速度
で昇温させ、カラムオーブン温度が約60℃に達す
ると、この温度を温度制御用センサ12が検出
し、その検出信号を不図示の温度制御装置に加え
る。排気弁13には不図示の温度制御装置からの
制御信号が与えられ、第4図に示すように軸支点
13′を中心として反時計方向に回動され、排気
路Pと流通通路17との連通を遮断し、流通通路
17はカラムオーブン4内の気体の一部に対し循
環流路となる。フアン8により送られた気体はカ
ラム5を通過し、カラムオーブン扉6の近傍で上
方に立上つた気体の一部は流通通路17を通り、
気体整流用案内板15の後部に位置するヒータ9
に送られる。この循環流路の形成により、流通通
路17に面する加熱ブロツク3を埋設する上部断
熱部Suと流通通路17中に露出する試料気化室
1、検出器2とからの発生熱をカラムオーブン4
内に循環させてカラムオーブン4内の昇温効率を
高めると共に、カラムの加熱ブロツクとの境界部
分の昇温遅れをなくすことができる。
Before injecting the sample into the sample vaporization chamber 1, the column oven 4 detected by the temperature control sensor 12
The temperature signal within is applied to a temperature control device (not shown).
The exhaust valve 13 is opened by a control signal from this temperature control device (not shown), the motor 7 is driven to rotate and the fan 8 is rotated, and the liquid carbonic acid control solenoid valve 11 is opened to inject a predetermined amount of liquid carbonic acid. The liquid is injected from the nozzle 10, and then the solenoid valve 11 is closed. The injected liquid carbonic acid is vaporized, and the temperature inside the column oven 4 is lowered by the heat of vaporization. When a predetermined low temperature is reached, the sample is injected into the sample vaporization chamber 1 at point 2 in FIG. 2, and heating power is applied to the heater 9 while controlling it. The temperature control sensor 12 detects the temperature inside the column oven 4 and applies it to a temperature control device (not shown). The heater 9 to which heating power is applied is controlled by the temperature control device (not shown), and the column oven 4 is heated at a constant speed.
The temperature is increased. Since the exhaust valve 13 is open, the exhaust passage P and the circulation passage 17 are in communication as shown in FIG. Therefore, the low-temperature gas sent by the fan 8 passes through the column 5, and a part of the low-temperature gas rising upward near the column oven door 6 passes through the circulation passage 17 and is discharged to the outside via the exhaust passage P. be done. The low-temperature gas passing through the circulation passage 17 absorbs heat generated from the upper heat insulation section Su in which the heating block 3 facing the circulation passage 17 is buried, and the sample vaporization chamber 1 and the detector 2 exposed in the circulation passage 17. Discharge outside. Heating block 3 as mentioned above.
is constantly heated at a temperature of 400℃, and the heat transfer,
Due to the radiation effect, the temperature of the upper heat insulating section Su is approximately 200°C and the temperature of the partition plate 16 is approximately 60°C, but since the above-mentioned generated heat is discharged to the outside, the influence of heat on the column oven 4 at low temperatures is reduced. This results in the advantage that the cooling efficiency can be increased and the consumption of liquid carbon dioxide can be reduced. Heating power is applied to the heater 9 in a controlled manner to raise the temperature at a constant rate, and when the column oven temperature reaches approximately 60°C, the temperature control sensor 12 detects this temperature, and the detection signal is used for temperature control (not shown). Add to device. A control signal is given to the exhaust valve 13 from a temperature control device (not shown), and as shown in FIG. The communication is cut off, and the circulation passage 17 becomes a circulation passage for a part of the gas in the column oven 4. The gas sent by the fan 8 passes through the column 5, and part of the gas rising upward near the column oven door 6 passes through the circulation passage 17.
Heater 9 located at the rear of the gas rectification guide plate 15
sent to. By forming this circulation flow path, heat generated from the upper heat insulating section Su in which the heating block 3 is buried facing the flow path 17 and the sample vaporization chamber 1 and the detector 2 exposed in the flow path 17 is transferred to the column oven 4.
This makes it possible to increase the efficiency of temperature rise within the column oven 4 and eliminate the delay in temperature rise at the boundary between the column and the heating block.

なお、液体炭酸の噴射による冷却手段に加え
て、別設した冷却器からの冷却空気又は室温空気
を送り込む手段を併用することにより、室温付近
の温度でも制御可能にするなどカラムオーブン温
度の制御の範囲を広めることができる。
In addition to the cooling method using liquid carbon dioxide injection, the column oven temperature can be controlled even at temperatures near room temperature by using a method for feeding cooling air from a separate cooler or room temperature air. The range can be expanded.

また、冷却媒体として液体炭酸に代えて液体窒
素を用いても同様の効果を得ることができる。
Furthermore, the same effect can be obtained by using liquid nitrogen instead of liquid carbon dioxide as the cooling medium.

(発明の効果) 以上説明したように本発明によると、試料気化
室と検出器とを有する加熱ブロツクを埋設した上
部断熱部と仕切板とによるカラムオーブン内の空
気の一部を流通させる流通通路を形成し、この流
通通路とカラムオーブン外に開口する排気路との
間に排気弁を設け、冷却装置によりカラムオーブ
ンを冷却してから所定の温度に達する迄はその排
気弁を開き、流通通路と排気路を連通させ、所定
のカラムオーブン温度に達したときに排気弁を閉
じて排気路と流通通路との連通を遮断し、その流
通通路をカラムオーブン内の気体の一部の循環流
路とする構成としたから、カラムオーブン温度を
低温にし所定のカラムオーブン温度に達するまで
は上部断熱部と流通通路中に露出している試料気
化室1、検出器2とからの発生熱を排気路を開し
て外部に排出させることができ、従つて低温時の
カラムオーブンに対する熱の影響を少なくし、も
つて冷却効率を高めることができると共に冷却装
置から噴出される冷媒の消費量を少なくすること
ができる。そしてカラムオーブン温度が所定温度
に達した後は流通通路に面する上部断熱部と流通
通路中に露出している試料気化室、検出器とから
の発生熱をその流通通路を循環する気体によりカ
ラムオーブン内に送り込んで昇温させ、カラムの
昇温の遅れをなくすことができる。
(Effects of the Invention) As explained above, according to the present invention, a distribution passageway through which a part of the air in the column oven circulates is formed by an upper insulating section in which a heating block having a sample vaporization chamber and a detector is buried, and a partition plate. An exhaust valve is provided between this circulation passage and an exhaust passage opening outside the column oven, and after the column oven is cooled by a cooling device, the exhaust valve is opened until a predetermined temperature is reached. When a predetermined column oven temperature is reached, the exhaust valve is closed to cut off the communication between the exhaust passage and the circulation passage, and the circulation passage is used as a circulation passage for part of the gas in the column oven. Because of this configuration, the column oven temperature is kept low and until the predetermined column oven temperature is reached, the heat generated from the sample vaporization chamber 1 and the detector 2 exposed in the upper insulation part and the circulation path is transferred to the exhaust path. The column oven can be opened and discharged to the outside, thus reducing the effect of heat on the column oven at low temperatures, thereby increasing cooling efficiency and reducing the consumption of refrigerant ejected from the cooling device. be able to. After the column oven temperature reaches a predetermined temperature, the heat generated from the upper insulating part facing the circulation passage, the sample vaporization chamber exposed in the circulation passage, and the detector is transferred to the column by the gas circulating through the circulation passage. By feeding the column into an oven and raising the temperature, it is possible to eliminate the delay in raising the temperature of the column.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明のガスクロマトグラ
フのカラムオーブンの実施例を示し、第1図はそ
の側断面図、第2図はカラムオーブンの温度上昇
を示すグラフ、第3図および第4図は排気弁が開
および閉となつている場合のカラムオーブンの要
部の側断面図を示す。 図中、1は試料気化室、2は検出器、3は加熱
ブロツク、4はカラムオーブン、5はカラム、7
はモータ、8はフアン、9はヒータ、10は液体
炭酸噴射ノズル、11は液体炭酸制御用電磁弁、
13は排気弁、16は仕切板、17は流通通路、
Pは排気路を示す。
1 to 4 show an embodiment of a column oven for a gas chromatograph of the present invention, FIG. 1 is a side sectional view thereof, FIG. 2 is a graph showing the temperature rise of the column oven, and FIGS. The figure shows a side sectional view of the main parts of the column oven when the exhaust valve is open and closed. In the figure, 1 is a sample vaporization chamber, 2 is a detector, 3 is a heating block, 4 is a column oven, 5 is a column, and 7
is a motor, 8 is a fan, 9 is a heater, 10 is a liquid carbon dioxide injection nozzle, 11 is a solenoid valve for controlling liquid carbon dioxide,
13 is an exhaust valve, 16 is a partition plate, 17 is a circulation passage,
P indicates an exhaust path.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱ブロツクの下面に間隙を隔てて配設され
た仕切板により形成される流通通路と、カラムオ
ーブンの後部を貫通して設けられていてそして外
部に連通する排気路と、前記排気路と流通通路と
の間に配置された排気弁とを備え、前記排気弁は
カラムオーブンの温度に従つて前記排気路と流通
通路とを連通させ又は遮断させうることができる
ガスクロマトグラフのカラムオーブン。
1. A circulation passage formed by a partition plate arranged at a gap on the lower surface of the heating block, an exhaust passage provided through the rear part of the column oven and communicating with the outside, and a communication passage with the exhaust passage. a gas chromatograph column oven, comprising: an exhaust valve disposed between the exhaust passage and the flow passage, the exhaust valve being able to connect or shut off the exhaust passage and the circulation passage depending on the temperature of the column oven.
JP16880383A 1983-09-13 1983-09-13 Column oven for gas chromatograph Granted JPS6060556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16880383A JPS6060556A (en) 1983-09-13 1983-09-13 Column oven for gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16880383A JPS6060556A (en) 1983-09-13 1983-09-13 Column oven for gas chromatograph

Publications (2)

Publication Number Publication Date
JPS6060556A JPS6060556A (en) 1985-04-08
JPH055060B2 true JPH055060B2 (en) 1993-01-21

Family

ID=15874771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16880383A Granted JPS6060556A (en) 1983-09-13 1983-09-13 Column oven for gas chromatograph

Country Status (1)

Country Link
JP (1) JPS6060556A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634961A (en) * 1995-11-07 1997-06-03 Hewlett-Packard Company Gas chromatography system with thermally agile oven
JP6493034B2 (en) * 2015-07-06 2019-04-03 株式会社島津製作所 Gas chromatograph and refrigerant introduction method used therefor
FR3130988A1 (en) * 2021-12-17 2023-06-23 Apix Analytics Cooling device for a gas analysis apparatus by gas phase chromatography

Also Published As

Publication number Publication date
JPS6060556A (en) 1985-04-08

Similar Documents

Publication Publication Date Title
US4420679A (en) Gas chromatographic oven using symmetrical flow of preheated - premixed ambient air
US4181613A (en) Venting method for a chromatograph oven
JP4634444B2 (en) Chromatography oven with heat exchange function and usage
CA1127094A (en) Gas chromatographic chamber
JP3422262B2 (en) Sample cooling device
USH229H (en) Environmental test chamber
US3077036A (en) Temperature responsive freeze drying method and apparatus
US20140319119A1 (en) Combination oven with peak power control
US5830262A (en) Gas chromatograph oven with improved regulation of the air temperature
US7984638B2 (en) Gas chromatograph oven
JPH055060B2 (en)
US4979896A (en) Cooling device of heating furnace in thermal analyzer
JPH0587793A (en) Temperature-raising oven for gas chromatograph
US5942675A (en) Oven cavity insert in an analytical instrument
JPH02259561A (en) Gas chromatograph
JP3757637B2 (en) Sample cooling device
US2011881A (en) Cooling unit
JPS5842952A (en) Thermal atmosphere testing device
CN115015455A (en) Gas chromatograph for detecting and analyzing mixture and using method thereof
JPS585249Y2 (en) Gas chromatograph
JP2570375B2 (en) Sample vaporizer
JP2766586B2 (en) Method and apparatus for roasting granular processed products
JPH03195944A (en) Thermal shock tester
KR100330734B1 (en) An apparatus for a vacuum concentration of a rotating type
JP6493034B2 (en) Gas chromatograph and refrigerant introduction method used therefor