JP3422262B2 - Sample cooling device - Google Patents

Sample cooling device

Info

Publication number
JP3422262B2
JP3422262B2 JP24391898A JP24391898A JP3422262B2 JP 3422262 B2 JP3422262 B2 JP 3422262B2 JP 24391898 A JP24391898 A JP 24391898A JP 24391898 A JP24391898 A JP 24391898A JP 3422262 B2 JP3422262 B2 JP 3422262B2
Authority
JP
Japan
Prior art keywords
temperature
sample
rack
cooling
control mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24391898A
Other languages
Japanese (ja)
Other versions
JP2000074802A (en
Inventor
光夫 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24391898A priority Critical patent/JP3422262B2/en
Priority to US09/354,554 priority patent/US6170267B1/en
Priority to CN99111113A priority patent/CN1114101C/en
Priority to DE19937952A priority patent/DE19937952A1/en
Publication of JP2000074802A publication Critical patent/JP2000074802A/en
Application granted granted Critical
Publication of JP3422262B2 publication Critical patent/JP3422262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、例えば液体試料を
自動的に分析する分析装置、特に液体クロマトグラフに
おいて、分析前の液体試料を冷却する試料冷却装置に関
する。 【0002】 【従来の技術】液体クロマトグラフにおける自動分析
は、予め少量の試料を封入した試料容器をラックに装架
し、このラックを自動試料注入装置にセットし、自動試
料注入装置がこのラック上の試料容器から所定プログラ
ムに従って逐次に試料を吸い上げ、液体クロマトグラフ
に注入することにより実行される。分析待ち状態にある
ラック上の試料は多くの場合は室温下に置かれるが、試
料によっては、変質を防ぐために低温に保つことが必要
な場合がある。このような場合に、試料を冷却する目的
に使われる装置が試料冷却装置である。 【0003】従来の試料冷却装置には直冷式と空冷式の
2方式がある。直冷式は、ラックを熱伝導性の良好な金
属で作り、ラックの底部に冷却器(ペルチエ素子など)
を密接させて、主として固体を通しての熱伝導により試
料の温度を調節するものである。空冷式は、ラックを含
む自動試料注入装置の要部を断熱性のケースで囲い込
み、その内部の空気を冷却して、空気を介して試料の温
度を調節するものである。次に、上記従来の2方式を図
を用いてさらに詳しく説明する。 【0004】図2は従来の直冷式試料冷却装置の一例を
示したものである。分析者は、まず液体試料4を試料容
器(通常はガラス製の小瓶)2に入れ、その口をセプタ
ム3(厳密には3はセプタムとキャップから成るが、以
下セプタムと略記する)で封じ、これを、自動試料注入
装置7から外して取り出したラック1に装架する。ラッ
ク1はアルミ製で、試料容器2を挿入する100個程の
穴5が穿設されている。この穴5の底、および穴の内壁
を通して試料容器2に熱(冷熱を含む)が伝えられる。 【0005】試料を装填し終わったラック1は装置内の
金属ブロック23の上にセットされる。金属ブロック2
3は、その下面に取り付けたペルチエ素子21によって
冷却され、その表面がラック1の底に密着して良好な熱
伝導を保つように構成された伝熱部材である。この場
合、ラック1もまた試料容器2に熱を伝える伝熱部材と
して機能する。温調回路25は、温度設定部26で設定
された制御の目標値(以下、所定温度と記す)と、金属
ブロック23に埋設され、その温度を検出する温度セン
サー24からの信号を比較して、その差をゼロに近づけ
るように電流(冷却エネルギー)をペルチエ素子21に
供給することによって、金属ブロック23の温度をコン
トロールし、最終的には伝熱部材である金属ブロック2
3やラック1と熱的に一体化している液体試料4を所定
温度に保つ。ペルチエ素子21の裏面(放熱面)には、
通風ダクト27の内側に面して放熱フィン22が取り付
けられ、金属ブロック23から吸収した熱をこのフィン
22を通してファン28による送風で放熱する構造とな
っている。 【0006】このような構成で、ラック1とその上に装
架された試料容器2、さらにはその中の試料液体4が所
定の低温に保たれる。ラック1は保冷のため断熱性のカ
バー6で覆われるが、試料容器2の頭部(セプタム3と
その周辺)は、サンプリングニードル13による試料の
取り出しを可能にするため、このカバー6から露出して
いる。 【0007】サンプリングニードル13は図示しないメ
カニズムにより、前後左右、及び上下に移動可能で、プ
ログラムに従って、セプタム3を刺通して試料容器2か
ら液体試料4を吸い上げ、液体クロマトグラフの試料注
入口12まで移動してこれに試料を注入することによっ
て自動分析が行われる。液体クロマトグラフの分析は1
回数十分を要するので、ラック1上の試料は長いもので
数十時間も分析待ち状態となるが、この間、低温に保た
れることで試料の変質が避けられる。 【0008】図3は、従来の空冷式試料冷却装置の一例
を示したものである。試料容器2を装架したラック1を
含む自動試料注入装置7の要部を断熱壁11で囲い込
み、恒温槽10を形成する。特に図示しないが、断熱壁
11の一部は扉として、ラック1の出し入れを可能にす
る。この場合のラック1は、直冷式の場合と異なり、空
気が熱媒体であることを考慮して、通気性を高め、熱容
量を小さくするために、金属の薄板等で空隙の多い形状
に作られるので、ラック1に装架された試料容器2の周
りの空間と恒温槽10内の空間とは熱的に等価である。 【0009】 【課題を解決するための手段】本発明では、上記課題を
解決するために、試料を収めた試料容器を恒温槽に収容
して室温以下に冷却する冷却装置において、前記恒温槽
の内部空間を所定温度に冷却し調節するための冷却器と
温度調節器とを備えて成る第一の温度調節機構と、伝熱
部材を介して前記試料容器を冷却し調節するための冷却
器と温度調節器とを備えて成る第二の温度調節機構と、
前記第一の温度調節機構の作動により前記恒温槽内を所
定温度に調節した後、この第二の温度調節機構の作動を
開始し制御されるようにした。 【0010】冷却された金属ブロック33の表面には空
気中の水分が凝縮して結露を生じるので、結露水を排出
するために、ドレン受け14、及びこれに連なり槽外に
通じるドレンチューブ15が設けられている。このよう
な手段により、槽内空気は除湿され、温度の低下と共に
絶対湿度が低下する。このような構成で、ラック上の試
料容器2は冷却・除湿された空気に包まれ、全周から冷
やされて所定の低温に保たれる。 【0011】 【発明が解決しようとする課題】上記の従来の2方式の
試料冷却装置のうち、直冷式は熱伝達の効率が高く、短
時間で所定温度まで冷却できるのであるが、冷却過程で
大気中の水分が試料容器やラック1の表面に凝縮して、
いわゆる結露を生じる。結露水はサンプリングに際し
て、サンプリングニードル13の先に付着して試料に混
入し、分析の精度を低下させる可能性があるほか、試料
容器2やラック1を扱う場合に、水が垂れたりして周辺
を汚すなど、取り扱い上不便である。 【0012】一方、空冷式は、除湿された空気で冷却さ
れるため、試料容器2やラック1の表面では結露する心
配はないが、熱容量の小さい空気を熱媒体として熱容量
の大きい恒温槽全体を冷却するため、冷却速度が遅い。
空冷式でも、強力な冷却器を用い、槽内にファンを設け
て槽内空気を強制循環させれば、かなりのスピードアッ
プが可能ではあるが、その効果以上にエネルギー消費が
増すので経済的でない。 【0013】このように、従来の冷却装置には一長一短
があり、結露することなく急速冷却が可能で、しかもエ
ネルギー効率の高い冷却装置は得難いものであった。本
発明は、このような事情に鑑みてなされたものであり、
従来の2方式の試料冷却装置のそれぞれの長所を合わせ
持ち、短所を改善した新しい方式による試料冷却装置を
提供することを目的とする。 【0014】 【課題を解決するための手段】本発明では、上記課題を
解決するために、試料を収めた試料容器を恒温槽に収容
して室温以下に冷却する試料冷却装置において、前記恒
温槽の内部空間を所定温度に調節するための冷却器と温
度調節器とを備えて成る第一の温度調節機構と、伝熱部
材を介して前記試料容器の温度を調節するための冷却器
と温度調節器とを備えて成る第二の温度調節機構と、こ
の第二の温度調節機構の作動が、前記槽内の温度情報ま
たは湿度情報、または第一の温度調節機構の作動開始か
らの経過時間に基づいて制御されるようにした。 【0015】換言すれば、本発明は、空冷式試料冷却装
置の恒温槽に、直冷式の温調機構を備えたラックを収容
し、除湿された環境下で直冷することで、結露を生じる
ことなく急速冷却を可能にしたもので、このために槽内
が十分に除湿されるまでの間、直冷式の温度調節機構の
作動を停止するように制御するものである。 【0016】 【発明の実施の形態】本発明の一実施の形態を図1に示
す。同図において図2、または図3と同じものには同記
号を付すことによって重複説明を避ける。 【0017】図1において、ペルチエ素子31、放熱フ
ィン32、金属ブロック33、温度センサー34、温調
回路35、温度設定部36、及びファン38等から成る
第一の温度調節機構30は、図3と同様の空冷用であっ
て、断熱壁11で囲われた恒温槽10内の空気を冷却す
る。また、ペルチエ素子21、放熱フィン22、金属ブ
ロック23、温度センサー24、温調回路25、温度設
定部26、及びファン28等から成る第二の温度調節機
構20は、図2と同様の直冷用であって、伝熱部材でも
あるラック1を介してこれに装架される試料容器2を冷
却する。 【0018】この実施例装置は以下のように動作する。
まず、第一の温度調節機構30を先に作動させる。金属
ブロック33(冷却フィン)の表面温度が下がり、付近
の空気が冷却されて露点に達するとフィンの表面に結露
する。恒温槽10内の空気が拡散、または自然対流によ
り次々にフィンに接触することにより、温度が下がると
共に、次第に水分が除かれ、絶対湿度が低下する。空気
は熱容量が小さいので、短時間で所定温度に冷却される
が、ラック1とその上の試料容器2の温度は追従が遅れ
る。 【0019】槽内空気の温度が所定温度に近づくと、温
度センサー16からの信号に基づいて制御装置29によ
り第二の温度調節機構20が作動を開始し、ラック1と
試料容器2が冷却され始める。この時点では、既に雰囲
気の絶対湿度が低下しているので急冷しても結露は生じ
ない。直冷であるから冷却速度も早く、急速に所定温度
に達する。2つの温度調節機構20、30は原則的に設
定温度は同一であり、恒温槽10の内部の空気とラック
1は最終的に同一温度になる。従って、従来の直冷式の
ように、ラック1の周囲を断熱カバーで覆う必要はない
が、カバーを使用しても差し支えない。 【0020】以上は、槽内の温度情報に基づいて制御装
置29を働かせる場合であるが、より直接的な手段とし
て、絶対湿度を検出する湿度センサーを温度センサー1
6の代わりに用い、この湿度センサーからの信号で制御
装置29を働かせるようにして、槽内の絶対湿度が下が
ったことを確認してから制御装置29を構成することも
できる。また、第一の温度調節機構30が作動開始して
から一定の時間が経過すれば、槽内の温度と絶対湿度は
下がるのであるから、より簡便な方法として制御装置2
9をタイマーに置き換え、第一の温度調節機構30が作
動開始してから一定時間後に第二の温度調節機構20の
作動を開始するようにしてもよい。 【0021】さらに、湿度情報を得るセンサーの1つで
ある結露センサーを利用する方法も考えられる。結露セ
ンサーをラック1または金属ブロック23の表面に貼設
し、結露が検出されたら第二の温度調節機構の作動を停
止し、さらに槽内の除湿が進んで結露が消えたらまた作
動させる、というように制御すれば、除湿しながらでも
ラック1の冷却を進められるので、ラック1の温度をほ
ぼ露点温度に追従して低下させることが可能となり、結
露なしに最短時間で所定温度まで冷却することができ
る。 【0022】上記は、液体クロマトグラフを例として説
明したものであるが、本発明は液体試料を分析するその
他の分析装置にも適用可能であり、さらには試料前処理
装置、反応装置、或いは試料保管装置など分析装置以外
にも広く応用できる。また、冷却器としてペルチエ素子
を例示したが、この他、断熱膨張に伴う気化吸熱を利用
する冷却器、或いは系外で冷却した冷媒液をパイプで循
環させる冷却方式等も利用可能である。これらの冷却器
を含む温度調節機構についても、例示のものに限定され
ることなく、様々な変形例を考えることができるが、そ
の要件を挙げれば次の通りである。第一の温度調節機構
は、冷却器により槽内の空間を冷却し、所定温度に保つ
ように温度調節する機構であり、第二の温度調節機構
は、冷却器から伝熱部材を介して試料容器ないしはその
中の試料を冷却し温度調節する機構である。 【0023】 【発明の効果】以上詳述したように、本発明は、空冷式
試料冷却装置の恒温槽に、直冷式の温度調節機構を備え
たラックを収容して除湿された環境下で直冷するように
し、このために槽内が十分に除湿されるまでの間、直冷
式の温度調節機構の作動を停止するように制御するもの
であるから、結露を生じることなく急速冷却が可能とな
り、しかも、定常運転時には従来方式に比較して特にエ
ネルギー消費が増加することもない。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analyzer for automatically analyzing, for example, a liquid sample, and more particularly to a sample cooling device for cooling a liquid sample before analysis in a liquid chromatograph. About. 2. Description of the Related Art In an automatic analysis in a liquid chromatograph, a sample container in which a small amount of a sample has been sealed is previously mounted on a rack, and this rack is set in an automatic sample injecting apparatus. This is performed by sequentially sucking samples from the upper sample container according to a predetermined program and injecting the samples into a liquid chromatograph. Samples on racks that are waiting for analysis are often placed at room temperature, but some samples may need to be kept cool to prevent degradation. In such a case, a device used for cooling the sample is a sample cooling device. There are two conventional sample cooling devices, a direct cooling type and an air cooling type. In the direct cooling type, the rack is made of metal with good heat conductivity, and a cooler (Peltier element, etc.) is provided at the bottom of the rack.
And the temperature of the sample is adjusted mainly by heat conduction through the solid. In the air-cooled type, a main part of an automatic sample injecting apparatus including a rack is surrounded by a heat insulating case, the air inside is cooled, and the temperature of the sample is adjusted via the air. Next, the two conventional methods will be described in more detail with reference to the drawings. FIG. 2 shows an example of a conventional direct cooling type sample cooling apparatus. The analyst first puts the liquid sample 4 into a sample container (usually a small glass bottle) 2 and seals its mouth with a septum 3 (strictly 3 is composed of a septum and a cap, but is abbreviated as a septum hereinafter). This is mounted on the rack 1 removed from the automatic sample injector 7 and taken out. The rack 1 is made of aluminum and is provided with about 100 holes 5 into which the sample containers 2 are inserted. Heat (including cold) is transmitted to the sample container 2 through the bottom of the hole 5 and the inner wall of the hole. The rack 1 on which the sample has been loaded is set on a metal block 23 in the apparatus. Metal block 2
Reference numeral 3 denotes a heat transfer member which is cooled by a Peltier element 21 attached to its lower surface, and whose surface is in close contact with the bottom of the rack 1 to maintain good heat conduction. In this case, the rack 1 also functions as a heat transfer member that transmits heat to the sample container 2. The temperature control circuit 25 compares a control target value (hereinafter, referred to as a predetermined temperature) set by the temperature setting unit 26 with a signal from a temperature sensor 24 embedded in the metal block 23 and detecting the temperature. By supplying a current (cooling energy) to the Peltier element 21 so as to make the difference close to zero, the temperature of the metal block 23 is controlled, and finally the metal block 2 which is a heat transfer member is controlled.
The liquid sample 4, which is thermally integrated with the rack 3 and the rack 1, is maintained at a predetermined temperature. On the back surface (radiation surface) of the Peltier element 21,
A radiating fin 22 is attached to the inside of the ventilation duct 27 so that heat absorbed from the metal block 23 is radiated by the fan 28 through the fin 22. With such a configuration, the rack 1, the sample container 2 mounted thereon, and the sample liquid 4 therein are maintained at a predetermined low temperature. The rack 1 is covered with a heat-insulating cover 6 to keep cool, but the head of the sample container 2 (septum 3 and its surroundings) is exposed from the cover 6 to enable the sampling needle 13 to take out the sample. ing. The sampling needle 13 can be moved up and down, left and right, and up and down by a mechanism (not shown). According to a program, the sampling needle 13 penetrates the septum 3 to suck up the liquid sample 4 from the sample container 2 and moves to the sample inlet 12 of the liquid chromatograph. Automatic analysis is then performed by injecting a sample into this. Liquid chromatographic analysis is 1
Since a sufficient number of times are required, the sample on the rack 1 is long and waits for analysis for several tens of hours. During this time, the sample is prevented from being deteriorated by being kept at a low temperature. FIG. 3 shows an example of a conventional air-cooled sample cooling device. A main part of the automatic sample injector 7 including the rack 1 on which the sample container 2 is mounted is surrounded by a heat insulating wall 11 to form a thermostatic bath 10. Although not particularly shown, a part of the heat insulating wall 11 serves as a door to enable the rack 1 to be taken in and out. In this case, unlike the case of the direct cooling type, the rack 1 is made of a thin metal plate or the like in a shape having many voids in order to increase air permeability and reduce heat capacity in consideration of the fact that air is a heat medium. Therefore, the space around the sample container 2 mounted on the rack 1 and the space in the thermostat 10 are thermally equivalent. According to the present invention, in order to solve the above-mentioned problems, a cooling apparatus for accommodating a sample container containing a sample in a thermostat and cooling it to a room temperature or lower is provided. a first temperature adjusting mechanism comprising a condenser and temperature controller for adjusting cooling the internal space to a predetermined temperature, a cooler for adjusting cooling the sample container via the heat transfer member A second temperature control mechanism comprising a temperature controller;
By operating the first temperature control mechanism, the inside of the
After the temperature was adjusted to a constant temperature, the operation of the second temperature adjusting mechanism was started and controlled. Since water in the air condenses on the surface of the cooled metal block 33 to form dew, a drain receiver 14 and a drain tube 15 connected to the drain receiver and connected to the outside of the tank are provided to discharge the dew water. Is provided. By such means, the air in the tank is dehumidified, and the absolute humidity decreases as the temperature decreases. With such a configuration, the sample container 2 on the rack is wrapped in air that has been cooled and dehumidified, cooled from all around, and kept at a predetermined low temperature. [0011] Among the above two conventional types of sample cooling devices, the direct cooling type has a high heat transfer efficiency and can be cooled to a predetermined temperature in a short time. The moisture in the atmosphere condenses on the surface of the sample container or rack 1
This produces what is called dew condensation. Condensation water adheres to the tip of the sampling needle 13 and mixes with the sample during sampling, which may reduce the accuracy of the analysis. In addition, when the sample container 2 or the rack 1 is handled, water may drips around the sample container 2 or the rack 1. It is inconvenient to handle such as soiling. On the other hand, in the air-cooled type, since there is no fear of dew condensation on the surface of the sample container 2 or the rack 1 because the air is cooled by dehumidified air, the entire thermostat having a large heat capacity is heated using air having a small heat capacity as a heat medium. The cooling rate is slow due to cooling.
Even in the air-cooled type, if a powerful cooler is used and a fan is installed in the tank to forcibly circulate the air in the tank, the speed can be considerably increased, but it is not economical because energy consumption increases more than the effect . As described above, the conventional cooling device has advantages and disadvantages, and it is difficult to obtain a cooling device capable of rapid cooling without dew condensation and having high energy efficiency. The present invention has been made in view of such circumstances,
It is an object of the present invention to provide a sample cooling device using a new method in which the advantages of the conventional two types of sample cooling devices are combined and the disadvantages are improved. According to the present invention, in order to solve the above-mentioned problems, the present invention provides a sample cooling apparatus for accommodating a sample container containing a sample in a thermostat and cooling it to room temperature or lower. A first temperature control mechanism including a cooler and a temperature controller for adjusting the internal space of the sample container to a predetermined temperature, and a cooler and a temperature for adjusting the temperature of the sample container via a heat transfer member. A second temperature control mechanism comprising a controller, and the operation of the second temperature control mechanism is performed based on temperature information or humidity information in the bath, or elapsed time from the start of operation of the first temperature control mechanism. It was controlled based on. In other words, according to the present invention, a rack provided with a direct cooling type temperature control mechanism is housed in a constant temperature bath of an air-cooled sample cooling device, and is directly cooled in a dehumidified environment to reduce condensation. This allows rapid cooling without occurrence, and controls the operation of the direct cooling type temperature control mechanism until the inside of the tank is sufficiently dehumidified. FIG. 1 shows an embodiment of the present invention. In this figure, the same parts as those in FIG. 2 or FIG. In FIG. 1, a first temperature control mechanism 30 including a Peltier element 31, a radiation fin 32, a metal block 33, a temperature sensor 34, a temperature control circuit 35, a temperature setting section 36, a fan 38 and the like is shown in FIG. It cools air in the thermostatic bath 10 surrounded by the heat insulating wall 11. Further, the second temperature control mechanism 20 including the Peltier element 21, the radiation fin 22, the metal block 23, the temperature sensor 24, the temperature control circuit 25, the temperature setting unit 26, the fan 28, etc. The sample container 2 mounted on the rack 1 is cooled via a rack 1 which is a heat transfer member. The apparatus of this embodiment operates as follows.
First, the first temperature control mechanism 30 is operated first. When the surface temperature of the metal block 33 (cooling fin) decreases and the nearby air is cooled and reaches a dew point, dew forms on the surface of the fin. When the air in the thermostat 10 diffuses or comes into contact with the fins one after another due to natural convection, the temperature is lowered and the moisture is gradually removed, so that the absolute humidity is lowered. Since the air has a small heat capacity, it is cooled to a predetermined temperature in a short time, but the temperature of the rack 1 and the temperature of the sample container 2 thereon are delayed. When the temperature of the air in the bath approaches a predetermined temperature, the second temperature control mechanism 20 is started to operate by the control device 29 based on the signal from the temperature sensor 16, and the rack 1 and the sample container 2 are cooled. start. At this time, since the absolute humidity of the atmosphere has already been reduced, no condensation occurs even if it is rapidly cooled. Since it is directly cooled, the cooling rate is fast and reaches a predetermined temperature rapidly. The temperature settings of the two temperature control mechanisms 20 and 30 are basically the same, and the air inside the thermostat 10 and the rack 1 eventually have the same temperature. Therefore, unlike the conventional direct cooling type, it is not necessary to cover the periphery of the rack 1 with a heat insulating cover, but a cover may be used. The above is the case where the control device 29 is operated based on the temperature information in the tank. As a more direct means, a humidity sensor for detecting the absolute humidity is replaced with the temperature sensor 1.
The controller 29 may be used instead of 6 so that the controller 29 is operated by a signal from the humidity sensor, and after confirming that the absolute humidity in the tank has dropped, the controller 29 can be configured. Further, if a certain period of time has elapsed since the first temperature control mechanism 30 started to operate, the temperature and the absolute humidity in the tank will decrease.
9 may be replaced by a timer, and the operation of the second temperature control mechanism 20 may be started after a certain time from the start of operation of the first temperature control mechanism 30. Further, a method using a dew condensation sensor, which is one of sensors for obtaining humidity information, can be considered. The dew condensation sensor is stuck on the surface of the rack 1 or the metal block 23, and when the dew is detected, the operation of the second temperature control mechanism is stopped. With such control, the rack 1 can be cooled even while dehumidifying, so that the temperature of the rack 1 can be decreased substantially following the dew point temperature, and the rack 1 can be cooled to a predetermined temperature in the shortest time without dew condensation. Can be. Although the above description has been made by taking a liquid chromatograph as an example, the present invention can be applied to other analyzers for analyzing a liquid sample, and further, a sample pretreatment device, a reaction device, or a sample. It can be widely applied to devices other than analyzers such as storage devices. Further, a Peltier element has been exemplified as the cooler. In addition, a cooler utilizing vaporization heat absorption accompanying adiabatic expansion, a cooling method of circulating a refrigerant liquid cooled outside the system through a pipe, or the like can also be used. The temperature control mechanism including these coolers is not limited to the illustrated one, and various modifications can be considered. The requirements are as follows. The first temperature adjustment mechanism is a mechanism that cools the space in the tank with a cooler and adjusts the temperature so as to maintain a predetermined temperature, and the second temperature adjustment mechanism is that the sample is cooled from the cooler via a heat transfer member. This is a mechanism for cooling the container or the sample in it and adjusting the temperature. As described above in detail, the present invention is applied to a dehumidified environment in which a rack provided with a direct cooling type temperature control mechanism is accommodated in a thermostat of an air-cooled sample cooling device. Direct cooling is performed, and the operation of the direct cooling type temperature control mechanism is controlled until the inside of the tank is sufficiently dehumidified.Therefore, rapid cooling without dew condensation occurs. In addition, energy consumption is not particularly increased during the steady operation as compared with the conventional method.

【図面の簡単な説明】 【図1】本発明の1実施形態を示す図である。 【図2】従来の試料冷却装置の一例を示す図である。 【図3】従来の試料冷却装置の他の例を示す図である。 【符号の説明】 1…ラック 2…試料容器 3…セプタム 4…液体試料 10…恒温槽 11…断熱壁 12…試料注入口 13…サンプリングニードル 16…温度(湿度)センサー 20、30…温度調節機構 21、31…ペルチエ素子 22、32…放熱フィン 23、33…金属ブロック 24、34…温度センサー 25、35…温調回路 26、36…温度設定部 27、37…通風ダクト 28、38…ファン 29…制御装置[Brief description of the drawings] FIG. 1 is a diagram showing one embodiment of the present invention. FIG. 2 is a diagram illustrating an example of a conventional sample cooling device. FIG. 3 is a diagram showing another example of a conventional sample cooling device. [Explanation of symbols] 1 ... Rack 2. Sample container 3. Septum 4: Liquid sample 10 ... constant temperature bath 11 ... thermal insulation wall 12 ... Sample inlet 13 ... Sampling needle 16. Temperature (humidity) sensor 20, 30 ... temperature control mechanism 21, 31 ... Peltier element 22, 32 ... radiation fins 23, 33 ... metal block 24, 34… Temperature sensor 25, 35 ... temperature control circuit 26, 36 ... temperature setting part 27, 37… Ventilation duct 28, 38… Fan 29 ... Control device

フロントページの続き (56)参考文献 特開 平10−78387(JP,A) 特開 平6−323714(JP,A) 特開 平9−298225(JP,A) 特開 平8−327615(JP,A) 特開 平10−192719(JP,A) 実開 平6−16863(JP,U) 特公 昭46−12350(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01N 1/00 - 1/44 G01N 30/00 - 30/96 B01L 7/00 F25B 21/02 F25D 31/00 EUROPAT(QUESTEL) JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-10-78387 (JP, A) JP-A-6-323714 (JP, A) JP-A-9-298225 (JP, A) JP-A-8-327615 (JP) JP-A-10-192719 (JP, A) JP-A-6-16863 (JP, U) JP-B-46-12350 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB G01N 1/00-1/44 G01N 30/00-30/96 B01L 7/00 F25B 21/02 F25D 31/00 EUROPAT (QUESTEL) JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 試料を収めた試料容器を恒温槽に収容し
て室温以下に冷却する冷却装置において、前記恒温槽の
内部空間を所定温度に冷却し調節するための冷却器と温
度調節器とを備えて成る第一の温度調節機構と、伝熱部
材を介して前記試料容器を冷却し調節するための冷却器
と温度調節器とを備えて成る第二の温度調節機構と、
記第一の温度調節機構の作動により前記恒温槽内を所定
温度に調節した後、この第二の温度調節機構の作動を開
始し制御する制御装置を備えて成る試料冷却装置。
(57) [Claim 1] In a cooling device for accommodating a sample container containing a sample in a thermostat and cooling it to room temperature or lower, the internal space of the thermostat is cooled to a predetermined temperature and adjusted. A first temperature control mechanism comprising a cooler and a temperature controller for cooling the sample container via a heat transfer member, and a second temperature control device comprising a temperature controller. The temperature control mechanism and the front
The inside of the constant temperature chamber is determined by the operation of the first temperature control mechanism.
A sample cooling device comprising a control device that starts and controls the operation of the second temperature control mechanism after the temperature is controlled.
JP24391898A 1998-08-28 1998-08-28 Sample cooling device Expired - Lifetime JP3422262B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24391898A JP3422262B2 (en) 1998-08-28 1998-08-28 Sample cooling device
US09/354,554 US6170267B1 (en) 1998-08-28 1999-07-15 Sample cooling apparatus and methods
CN99111113A CN1114101C (en) 1998-08-28 1999-07-23 Sample cooling appts. and method thereof
DE19937952A DE19937952A1 (en) 1998-08-28 1999-08-11 Liquid sample cooling device, e.g. for liquid chromatography, has temperature chamber with separate cooling mechanisms for liquid sample containers and temperature chamber air temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24391898A JP3422262B2 (en) 1998-08-28 1998-08-28 Sample cooling device

Publications (2)

Publication Number Publication Date
JP2000074802A JP2000074802A (en) 2000-03-14
JP3422262B2 true JP3422262B2 (en) 2003-06-30

Family

ID=17110960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24391898A Expired - Lifetime JP3422262B2 (en) 1998-08-28 1998-08-28 Sample cooling device

Country Status (4)

Country Link
US (1) US6170267B1 (en)
JP (1) JP3422262B2 (en)
CN (1) CN1114101C (en)
DE (1) DE19937952A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004007732T2 (en) * 2003-09-09 2008-04-10 Tosoh Corp., Shunan A liquid chromatography
DE102004037341C5 (en) * 2004-08-02 2008-06-19 Dionex Softron Gmbh Apparatus for refrigerated storage and dispensing of samples for an integrated liquid cooling unit
TR200703485T1 (en) * 2004-12-15 2007-08-21 Arçeli̇k Anoni̇m Şi̇rketi̇ Thermoelectric cooling / heating device.
JP2009098006A (en) * 2007-10-17 2009-05-07 Espec Corp Volatile matter measuring apparatus
US20090113898A1 (en) * 2007-11-02 2009-05-07 Rocky Research thermoelectric water chiller and heater apparatus
DE102008023299A1 (en) * 2008-05-08 2009-11-19 Micropelt Gmbh Recording for a sample
US8512430B2 (en) 2009-05-05 2013-08-20 Cooper Technologies Company Explosion-proof enclosures with active thermal management using sintered elements
US20100288467A1 (en) 2009-05-14 2010-11-18 Cooper Technologies Company Explosion-proof enclosures with active thermal management by heat exchange
JP5103461B2 (en) * 2009-11-04 2012-12-19 株式会社日立ハイテクノロジーズ Sample rack
DE102011007768A1 (en) 2011-04-20 2012-10-25 Agilent Technologies Inc. Cooling system for cooling sample of sample container in sample injector of sample separation device, comprises primary cooling unit for adjusting primary temperature in sample chamber, which has sample container with sample
US8786860B2 (en) * 2011-10-20 2014-07-22 Schlumberger Technology Corporation Measurement of liquid fraction dropout using micropatterned surfaces
JP5737215B2 (en) 2012-03-13 2015-06-17 株式会社島津製作所 Sample cooling device and sampling device
DE102013101176B4 (en) * 2013-02-06 2018-04-05 Cybio Ag Cooling box with a rack equipped with tube-shaped vessels for automatic filling with a pipetting machine
JP5949603B2 (en) * 2013-03-08 2016-07-06 株式会社島津製作所 Sample cooling device
JPWO2014147696A1 (en) * 2013-03-18 2017-02-16 株式会社島津製作所 Sample cooling device, autosampler equipped with the same, and sample cooling method
US9851282B2 (en) 2013-03-29 2017-12-26 Shimadzu Corporation Sample cooling device, and autosampler provided with the same
JP6213667B2 (en) * 2014-04-22 2017-10-18 株式会社島津製作所 Sample rack for heating temperature control and sample temperature control apparatus using the sample rack for heating temperature control
US11209449B2 (en) * 2015-03-11 2021-12-28 Shimadzu Corporation Autosampler
EP3462159B1 (en) * 2015-09-24 2020-12-09 F. Hoffmann-La Roche AG Condensed water collector
US11185865B2 (en) 2016-07-21 2021-11-30 Siemens Healthcare Diagnostics Inc. Mechanism for storage of refrigerated calibration and quality control material
US10557810B2 (en) * 2016-10-06 2020-02-11 The Regents Of The University Of California Ice nucleating particle spectrometer
CN106770776A (en) * 2016-12-29 2017-05-31 浙江福立分析仪器股份有限公司 A kind of liquid chromatograph temperature control device and dehumidifying method
JP2017090471A (en) * 2017-02-22 2017-05-25 株式会社島津製作所 Sample cooling device, auto-sampler provided with the same, and sample cooling method
US11231399B2 (en) 2018-01-22 2022-01-25 Shimadzu Corporation Sample temperature adjustment device
JP7070129B2 (en) * 2018-06-18 2022-05-18 株式会社島津製作所 Equipment with sample temperature control function
EP3680579A1 (en) * 2019-01-09 2020-07-15 CTC Analytics AG Cooling device
CN110608565A (en) * 2019-09-03 2019-12-24 东软威特曼生物科技(沈阳)有限公司 Refrigeration cabin of in-vitro diagnosis equipment and refrigeration system thereof
EP4121754A1 (en) 2020-03-17 2023-01-25 Waters Technologies Corporation Needle drive, system and method
CN115667908A (en) 2020-03-17 2023-01-31 沃特世科技公司 Sample manager, system and method
CN111468206A (en) * 2020-05-23 2020-07-31 刘丽华 Experimental system with heat exchange and cooling functions
WO2022265624A1 (en) * 2021-06-15 2022-12-22 Prp Technologies Inc. Syringe chiller

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2360376C3 (en) * 1973-12-04 1978-09-21 Siemens Ag, 1000 Berlin Und 8000 Muenchen Circuit arrangement for receiving DC signals
DE3149624A1 (en) * 1981-12-15 1983-06-23 Georg 6050 Offenbach May DEVICE FOR REGULATING THE TEMPERATURE OF SUBSTANCES
US5504007A (en) * 1989-05-19 1996-04-02 Becton, Dickinson And Company Rapid thermal cycle apparatus
KR910005009A (en) * 1989-08-15 1991-03-29 도오하라 히로기 Electronic small refrigerator
JPH03191853A (en) * 1989-12-21 1991-08-21 Fuji Electric Co Ltd Constant temperature oven for biosensor
CN2098034U (en) * 1991-05-14 1992-03-04 海阳县标准计量局 Detecting instrument computer for false farm chemicals
CN2113449U (en) * 1992-01-31 1992-08-19 中国医学科学院血液学研究所 Refrigeration box with program-controlled pacer lower temp. function
JP3083922B2 (en) * 1992-09-30 2000-09-04 帝国ピストンリング株式会社 Control method of electronic dehumidifier
US5320162A (en) * 1992-11-05 1994-06-14 Seaman William E Single pole double throw thermostat for narrow range temperature regulation
AT401476B (en) * 1993-08-20 1996-09-25 Sy Lab Vertriebsges M B H THERMAL CHAMBER
US5881560A (en) * 1994-03-23 1999-03-16 Bielinski; George Thermoelectric cooling system
JPH09153338A (en) * 1995-11-30 1997-06-10 Jeol Ltd Sample cooling device
JP3191853B2 (en) * 1996-02-09 2001-07-23 三菱マテリアル株式会社 Punching equipment
JPH1018546A (en) * 1996-06-28 1998-01-20 Natl House Ind Co Ltd External wall structure
AU2867997A (en) * 1996-07-16 1998-01-22 Thermovonics Co., Ltd. Temperature-controlled appliance
JP4022286B2 (en) * 1997-06-19 2007-12-12 サンスター株式会社 Oral composition

Also Published As

Publication number Publication date
CN1114101C (en) 2003-07-09
CN1247309A (en) 2000-03-15
DE19937952A1 (en) 2000-03-02
JP2000074802A (en) 2000-03-14
US6170267B1 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3422262B2 (en) Sample cooling device
JP3921845B2 (en) Sample cooling device
US10852314B2 (en) Sample handling system
JP5737215B2 (en) Sample cooling device and sampling device
JP6213667B2 (en) Sample rack for heating temperature control and sample temperature control apparatus using the sample rack for heating temperature control
JP3757637B2 (en) Sample cooling device
JP6853090B2 (en) Automatic analyzer
US5563352A (en) Gas concentration and injection system for chromatographic analysis of organic trace gases
JP2004212165A (en) Sample cooling device
JP3267220B2 (en) Thermal analyzer
Edelman A dilution microcryostat-insert
CN104571185B (en) The attemperating unit and method of energy-dispersion X-ray fluorescence spectrometer
JP2000329718A (en) Method and apparatus for measurement of thermal conductivity of foam sample
CN209264654U (en) A kind of multi-channel electronic cold-trap
JPH10104182A (en) Analyzer
CN211625809U (en) Cold storage plant for specific protein reagent
CN111492237A (en) Sample temperature regulating device
CN109459520A (en) A kind of multi-channel electronic cold-trap
JPH1054813A (en) Parallax scanning calorimetry device
JP2002055094A (en) Column oven for chromatograph
JP2005265807A (en) Sample cooler unit
JPH0372948B2 (en)
JP2017090471A (en) Sample cooling device, auto-sampler provided with the same, and sample cooling method
JPH11160322A (en) Auto-injector for use at low temperature
JPS63188757A (en) Thermostatic chamber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

EXPY Cancellation because of completion of term