JPH0550492B2 - - Google Patents

Info

Publication number
JPH0550492B2
JPH0550492B2 JP60152389A JP15238985A JPH0550492B2 JP H0550492 B2 JPH0550492 B2 JP H0550492B2 JP 60152389 A JP60152389 A JP 60152389A JP 15238985 A JP15238985 A JP 15238985A JP H0550492 B2 JPH0550492 B2 JP H0550492B2
Authority
JP
Japan
Prior art keywords
reaction
copper
oxygen
carbon monoxide
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60152389A
Other languages
Japanese (ja)
Other versions
JPS6216448A (en
Inventor
Usaji Takagi
Isamu Sudo
Toshio Matsuhisa
Retsu Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60152389A priority Critical patent/JPS6216448A/en
Priority to US06/780,838 priority patent/US4661620A/en
Priority to CA000492004A priority patent/CA1238337A/en
Priority to ES547459A priority patent/ES8707707A1/en
Priority to EP85307086A priority patent/EP0177354B1/en
Priority to DE8585307086T priority patent/DE3569519D1/en
Priority to DK455685A priority patent/DK166964B1/en
Priority to KR1019850007347A priority patent/KR870000770B1/en
Publication of JPS6216448A publication Critical patent/JPS6216448A/en
Publication of JPH0550492B2 publication Critical patent/JPH0550492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はスチレン類、一酸化炭素、アルコール
および酸素を反応させて桂皮酸エステル類を製造
する方法に関する。 桂皮酸エステル類は、それらが有する芳香のた
め香料またはその原料として広く用いられてお
り、また農薬や感光性樹脂の原料としても重要な
化合物である。 (従来の技術) 従来、桂皮酸はベンズアルデヒドと酢酸の誘導
体を主原料とした反応で小規模に生産されてい
る。しかしながら、この方法は高価な原料を使用
するので工業的には好ましい方法ではない。より
安価な原料を用いる方法として、スチレン類と一
酸化炭素、アルコールおよび酸素を触媒の存在下
に反応させて桂皮酸エステル類を製造しようとす
る方法がいくつか提案されている(例えば、特開
昭56−15242、特開昭56−22749、特開昭56−
22750、特開昭56−71039、特開昭57−21342、特
開昭57−21343、特開昭57−70836、特開昭60−
92242、特開昭60−92243、特開昭60−94940、特
開昭60−97935など)。 (発明が解決しようとする問題点) しかしながら、これらの方法は未だ触媒の活性
が低く、また反応成績も充分でないので、工業化
されるに到つていない。 本発明の目的は、スチレン類およびアルコール
と低い分圧の一酸化炭素および酸素を反応させて
高い触媒活性と高い反応成績で桂皮酸エステル類
を製造する方法を提供することである。 (問題点を解決するための手段) 本発明者らは、前記目的を達成するため鋭意検
討を続け、先に(1)従来の技術、例えば、特開昭57
−70836号公報や同56−15242号公報の多くの実施
例が示すように、塩化第二銅のみを助触媒の銅お
よび塩素の供与源化合物として使用する場合に
は、銅原子の使用量を好ましい範囲に選ぼうとす
れば、塩素原子の使用量はそれによつて制限さ
れ、任意に好ましい範囲を選ぶことができず、こ
のことが工業的に満足すべき触媒系とならない理
由の1つであること、また、(2)主触媒としてパラ
ジウム金属またはその化合物を用い、一酸化炭
素、アルコールおよび酸素を反応させて対応する
桂皮酸エステル類を製造するに際しては、助触媒
として銅および塩素が重要であり、これらの供与
源をそれぞれ別個の化合物または少くとも一部を
別個の化合物とし、各使用量を特定の範囲に選ぶ
必要があること、すなわち、主触媒としてパラジ
ウム金属またはその化合物、ならびに助触媒とし
て(1)銅の有機酸塩、(2)塩素化合物および(3)マンガ
ンまたは亜鉛の化合物を用い反応混合液1リツト
ル当りの銅原子の量を特定の範囲とし、かつ塩素
原子の銅原子に対するグラム原子比を特定の範囲
とすることにより、主触媒の高い活性が得られ高
い反応成績で桂皮酸エステル類を製造できること
を見出して既に出願した。 その後、この反応について検討を続け、前記の
主触媒と特定された助触媒とその使用範囲におけ
る反応では、低い一酸化炭素および酸素の分圧下
でも、主触媒の高い活性が得られ、高い反応成績
で桂皮酸エステル類を製造できることを見出し、
本発明を完成した。 すなわち、本発明は、スチレン類、一酸化炭
素、アルコールおよび酸素を反応させて対応する
桂皮酸エステル類を製造するに際して、主触媒と
してパラジウム金属またはその化合物、ならびに
助触媒として(1)銅の有機酸塩、(2)塩素化合物およ
び(3)マンガンまたは亜鉛の化合物を用い、反応混
合液中の銅原子を0.004〜0.4グラム原子/と
し、かつ塩素原子の銅原子に対するグラム原子比
を2未満とし、さらに、一酸化炭素の分圧を1気
圧以下および酸素の分圧を1気圧以下として反応
させることを特徴とする桂皮酸エステル類の製造
法である。 本発明の方法において使用されるスチレン類と
しては、具体的には、スチレン、α−メチルスチ
レン、β−メチルスチレン、α−エチルスチレ
ン、β−エチルスチレン、o−メチルスチレン、
m−メチルスチレン、p−メチルスチレン、m−
エチルスチレン、p−エチルスチレン、p−ター
シヤリーブチルスチレン、β−メチル−p−イソ
プロピルスチレン等のスチレンのアルキル誘導
体、あるいはp−クロロスチレン、p−メトキシ
スチレン、3,4−ジメトキシスチレン等の反応
を阻害しない置換基を芳香環に有するスチレンの
誘導体などが挙げられる。 アルコールとしては、メタノール、エタノー
ル、プロパノール、ブタノール、ペンタノール、
オクタノール、シクロペンタノール、シクロヘキ
サノール、フエノール、ベンジルアルコール、エ
チレングリコール、ポリエチレングリコール、プ
ロピレングリコール等のアルコール類であり、そ
れらはハロゲンやアルコキシ基等の反応を阻害し
ない置換基を有していてもよい。これらのアルコ
ール類の使用量は、スチレン類1モルに対して1
〜100モル部であり、反応原料としてのみならず
溶媒として使用してもよい。 本発明の方法に使用する一酸化炭素および酸素
は爆発範囲をさけるため、窒素またはアルゴン等
の不活性ガスで希釈して用いることが好ましい。
酸素源としては空気を使用することもできる。 本発明の方法で実施する一酸化炭素の分圧は、
絶対圧で1気圧以下である。好ましくは0.005〜
1気圧の範囲である。 また、酸素の分圧は1気圧以下であり、好まし
くは0.002〜1気圧の範囲である。 これらの低い分圧で一酸化炭素および酸素を使
用することは、不活性ガスで稀釈しても、反応器
内の一酸化炭素、酸素および不活性ガスの全圧が
低くなり、工業的に極めて好ましい。 これらの一酸化炭素、酸素および不活性ガスは
必要量を反応器に一括して仕込んでもよいし、必
要な気体を連続的もしくは間欠的に追加する方
法、またはそれらの混合気体を連続的もしくは間
欠的に流通させる方法でもよい。これらのうち追
加する方法、あるいは流通させる方法がより好ま
しい。 反応に際しては、気液の接触をよくするため充
分に撹拌することが好ましい。 本発明の方法による反応では、原料のアルコー
ルを実質的に溶媒とすることができるが、反応を
阻害しないものであれば溶媒を使用することもで
きる。そのような溶媒としては、ジエチルエーテ
ル、ジプロピルエーテル、メチルエチルエーテ
ル、フエニルエチルエーテル、ジフエニルエーテ
ル、テトラヒドロフラン、ジオキサン、エチレン
グリコールジエチルエーテル、テトラエチレング
リコールジメチルエーテル等のエーテル類、アセ
トン、メチルエチルケトン、アセトフエノン等の
ケトン類、酢酸メチル、酢酸エチル、プロピオン
酸メチル等のエステル類、ベンゼン、トルエン、
p−キシレン、エチルベンゼン、クロロベンゼ
ン、ジクロロベンゼン等の芳香族炭化水素類また
はその置換化合物、n−ヘキサン、n−ペンタ
ン、シクロヘキサン等の脂肪族または脂環族の炭
化水素類、プロピレンカーボネート、炭酸ジメチ
ル等のカーボネート類、アセトニトリル、ベンゾ
ニトリル等のニトリル類、ニトロベンゼン、ニト
ロメタン等のニトロ化合物類、ジメチルホルムア
ミド等のアミド化合物類、スルホラン等のスルホ
ラン化合物などが挙げられる。 本発明の主触媒たるパラジウム金属またはその
化合物としては、パラジウム黒、あるいは活性
炭、アスベストまたはシリカアルミナ等の担体に
担持させた金属パラジウム、ジベンジリデンアセ
トン錯体あるいはテトラキス(トリフエニルホス
フイン)パラジウムのような0価のパラジウム錯
体などの0価のパラジウム金属または化合物、塩
化パラジウム、硝酸パラジウムのようなパラジウ
ムの無機酸塩、酢酸パラジウムまたは安息香酸パ
ラジウムなどの有機酸塩、ビス(アセチルアセト
ナート)パラジウム、シクロオクタジエンジクロ
ロパラジウム、塩化パラジウムベンゾニトリル錯
体、塩化パラジウムピリジン錯体または塩化パラ
ジウムアンミン錯体などのパラジウムの錯体など
の2価のパラジウムの化合物が挙げられる。 これらのパラジウム金属またはその化合物の使
用量はパラジウム金属原子として原料のスチレン
類1モルに対して0.000001〜0.1グラム原子の範
囲であり、好ましくは0.000005〜0.01グラム原子
である。 本発明の方法における助触媒は銅の有機酸
塩、塩素化合物およびマンガンまたは亜鉛の
化合物である。第1成分である銅の有機酸塩とし
ては、酢酸銅、プロピオン酸銅、ステアリン酸銅
などの銅の脂肪族カルボン酸塩、安息香酸塩など
の銅の芳香族カルボン酸塩、銅アセチルアセテー
トのような銅の有機アニオンの塩などが挙げられ
る。これらの銅の有機酸塩は単独または2種以上
を混合して使用することもできる。また、これら
の銅の有機酸塩は反応混合液に溶解していること
が好ましいが、一部が不溶のまゝであつてもさし
つかえない。これらの銅の有機酸塩の使用量は、
銅原子として反応混合液1リツトル当り0.004〜
0.4グラム原子である。ただし、助触媒である
の塩素化合物として銅の塩化物を使用する場合に
は、この化合物の銅原子も前記範囲に含めて銅の
有機酸塩を使用する。銅の量がこの範囲より少な
くなると反応はほとんど起らなくなり、この範囲
より多くなると副生物が増大する。より好ましく
は、反応混合液1リツトル当り0.008〜0.3グラム
原子である。 助触媒の第2成分である塩素化合物としては、
塩素またはその溶液、塩化水素またはその溶液、
アミンの塩酸塩などであり、さらにはターシヤリ
ーブチルクロライド、ホスゲン、五塩化リン、オ
キシ三塩化リンなどの塩素イオンを発生しやすい
含塩素化合物、あるいはチタン、バナジウム、マ
ンガン、鉄、銅、亜鉛またはアルミニウムなどの
金属のその価数に応じた塩化物またはオキシ塩化
物などが挙げられる。これらの塩素化合物は単独
または2種以上を混合して用いてもよい。これら
の塩素化合物は反応混合液中に存在する銅原子に
対して含まれる塩素原子の比で、2未満、すなわ
ち、0を越え2未満の量を使用する。ただし、主
触媒として塩化パラジウムを使用する場合には、
通常微量ではあるが、塩化パラジウムからの塩素
原子をも合せた量としての範囲である。塩素原子
の銅原子に対する比が0であると、即ち塩素原子
が存在しないと反応はほとんど起らない。この比
が2以上に大きくなると副生成物が増大し桂皮酸
エステル類の選択率および収率が低下する。好ま
しくは0.02〜1.99グラム原子比である。 本発明の方法における助触媒の第3成分である
マンガンまたは亜鉛の化合物としては、マンガン
または亜鉛の塩酸、硝酸、リン酸または炭酸等の
無機酸の塩、酢酸塩、プロピオン酸塩、あるいは
ステアリン酸塩などの脂肪族カルボン酸の塩、あ
るいは安息香酸塩などの芳香族カルボン酸の塩、
あるいはアセチルアセトナートの如き有機アニオ
ンの塩などが挙げられる。 これらの化合物は反応混合液に溶解しているこ
とが好ましいが、一部が不溶であつてもさしつか
えない。 これらのマンガンまたは亜鉛の化合物の使用量
は、マンガンまたは亜鉛の金属原子の反応混合液
中に存在する銅原子に対する比が0.05〜50であ
り、より好ましくは0.1〜10である。マンガンま
たは亜鉛の化合物は2種以上を同時に使用するこ
ともできる。マンガンまたは亜鉛の塩化物は助触
媒の第2成分である塩素化合物の一部または全部
を兼ねることができる。 本発明の方法の実施は反応型式として回分式も
しくは連続流通式いずれでも構わない。 本発明の方法における反応の全圧は、使用する
一酸化炭素および酸素あるいは不活性ガスの分圧
によるが、通常200気圧以下であり、好ましくは
1.0〜100気圧である。 反応温度は室温〜200℃、好ましくは40〜160℃
である。反応時間は反応条件により変わるが、通
常、0.01〜24時間、好ましくは0.05〜10時間であ
る。反応終了後、蒸留もしくは抽出等の常用の分
離方法により、反応生成液から桂皮酸エステル類
を分離することができる。 (作用および発明の効果) 本発明の方法によれば、助触媒たる銅原子の好
ましい量の範囲および塩素原子と銅原子の比の好
ましい範囲を反応系に与えることができ、その範
囲で反応させることにより、極めて少量のパラジ
ウム主触媒を使用し、かつ低い一酸化炭素および
酸素の分圧下で驚くべきほど高い反応成績で桂皮
酸エステル類を製造することができるようにな
り、工業的に極めて有利な桂皮酸エステルの製造
法となる。 (実施例) 以下、実施例および比較例により本発明の方法
を更に詳しく説明する。 実施例 1 ガラス製の円筒容器に、塩化パラジウム28.4ミ
リグラム(0.160ミリモル)、酢酸第二銅・1水塩
7.61グラム(38.1ミリモル)、酢酸第一マンガ
ン・4水塩12.3グラム(50.2ミリモル)を秤取
し、これに少量のメタノールを加えたのち、スチ
レン83.33グラム(800ミリモル)を秤りとり、さ
らに予め直前に濃度を測つておいた塩化水素ガス
をメタノールに吸収させた液(濃度1.5N)を15.0
ml加え塩化水素の量が22.5ミリモルとなるように
し、更にメタノールを加えて全量を400mlとした。
反応混合液1リツトル当りの銅原子の量は0.095
グラム原子であり、塩素原子の銅原子に対するグ
ラム原子比は0.60である。このガラス容器を1
のオートクレーブ反応器に挿入した。反応器には
テフロン製の撹拌翼、ガラスで保護した温度測定
管、テフロン製のガス吹込み管および還流冷却器
が設けられている。 一酸化炭素:酸素:窒素の組成比が8.8:5.4:
85.8(容量%、ガスクロマトグラフイーにより分
析)である原料混合ガスを予め耐圧容器に調製し
ておき、この混合ガスを反応器に導びき、全圧を
10気圧に保ち出口で4.2リツトル/分(標準状態)
となるよう通じながらはげしく撹拌をつづけ100
℃で3時間反応させた。反応器内の一酸化炭素お
よび酸素の分圧はそれぞれ0.88および0.54気圧で
ある。反応時、出口ガスは水冷の還流冷却器を通
して排出し、同伴される低沸物は反応器に還流さ
せた。反応終了後冷却放圧し、取り出した反応液
を液体クロマトグラフイーで分析したところスチ
レンが54.4ミリモル、桂皮酸メチルが666.4ミリ
モル、副生したフエニルコハク酸ジメチルが16.3
ミリモル含まれていた。スチレンの転化率93.2
%、桂皮酸メチルの選択率(消費スチレンに対す
る収率)は89.4%、桂皮酸メチルの収率(仕込み
スチレンに対する収率)は83.3%であり、主触媒
パラジウム1グラム原子当りに生成した桂皮酸エ
ステルのモル数(以降Pd回転率と略称する)は
4170であつた。低い分圧の一酸化炭素および酸素
を用いても高い触媒活性と高い反応成績が得られ
た。 実施例 2 酢酸パラジウム35.92ミリグラム(0.160ミリモ
ル)、酢酸第二銅・1水塩5.99グラム(30.0ミリ
モル)、塩化第二銅1.34グラム(10.0ミリモル)
および酢酸第一マンガン・4水塩12.3グラム
(50.2ミリモル)をとり一部のメタノールを加え
たのち、スチレン83.33グラム(800ミリモル)を
加え、さらにメタノールを加えて全量を400mlと
した。反応混合液1リツトル当り合計の銅原子の
量は0.10グラム原子であり、塩素原子の銅原子に
対する比は0.50である。実施例1と同様にして反
応させた。 一酸化炭素および酸素の分圧は変らずそれぞれ
0.88気圧および0.54気圧である。 スチレンの転化率93.3%、桂皮酸メチルの選択
率92.4%、桂皮酸メチルの収率86.2%であり、Pd
回転率は4310であつた。 実施例3〜6および比較例1〜4 実施例2における酢酸第二銅・1水塩および塩
化第二銅の使用量と反応時間を表1に示すように
かえた以外は全て実施例2と同様にした。一酸化
炭素および酸素の分圧は、混合ガスの調製時の組
成のばらつきにより若干変化するが、その程度は
一酸化炭素で0.80〜0.90気圧、酸素で0.50〜0.57
気圧の範囲である。結果を実施例2の結果ととも
に表1に示す。
(Industrial Application Field) The present invention relates to a method for producing cinnamic acid esters by reacting styrenes, carbon monoxide, alcohol and oxygen. Cinnamic acid esters are widely used as fragrances or raw materials thereof due to their aromatic properties, and are also important compounds as raw materials for agricultural chemicals and photosensitive resins. (Prior Art) Cinnamic acid has conventionally been produced on a small scale by a reaction using benzaldehyde and acetic acid derivatives as main raw materials. However, since this method uses expensive raw materials, it is not an industrially preferred method. As a method using cheaper raw materials, several methods have been proposed in which cinnamic acid esters are produced by reacting styrenes with carbon monoxide, alcohol, and oxygen in the presence of a catalyst (for example, 1984-15242, JP-A-56-22749, JP-A-56-
22750, JP 56-71039, JP 57-21342, JP 57-21343, JP 57-70836, JP 60-
92242, JP 60-92243, JP 60-94940, JP 60-97935, etc.). (Problems to be Solved by the Invention) However, these methods have not yet been industrialized because the catalyst activity is still low and the reaction results are not satisfactory. An object of the present invention is to provide a method for producing cinnamic acid esters with high catalytic activity and high reaction performance by reacting styrenes and alcohols with low partial pressures of carbon monoxide and oxygen. (Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention have continued to study intensively, and first (1) conventional techniques, for example, Japanese Patent Laid-Open No. 57
As shown in many examples in Publication No. 70836 and No. 56-15242, when only cupric chloride is used as a donor compound for copper and chlorine as co-catalysts, the amount of copper atoms used is If an attempt is made to select a preferable range, the amount of chlorine atoms to be used is thereby limited, and a preferable range cannot be selected arbitrarily, and this is one of the reasons why the catalyst system is not industrially satisfactory. (2) Copper and chlorine are important as co-catalysts when producing corresponding cinnamic acid esters by reacting carbon monoxide, alcohol and oxygen with palladium metal or its compounds as the main catalyst. and the need for each of these sources to be separate or at least partially separate compounds and for the amounts used of each to be selected within a specific range, i.e. palladium metal or its compound as the main catalyst and the auxiliary. As a catalyst, (1) an organic acid salt of copper, (2) a chlorine compound, and (3) a compound of manganese or zinc are used, the amount of copper atoms per liter of reaction mixture is set in a specific range, and the amount of copper atoms of chlorine atoms is set to a specific range. We have already filed an application after discovering that by setting the gram atomic ratio to a specific range, high activity of the main catalyst can be obtained and cinnamic acid esters can be produced with high reaction results. Subsequently, we continued to study this reaction, and found that the main catalyst and co-catalyst identified above and the reaction range in which they are used showed high activity of the main catalyst even under low partial pressures of carbon monoxide and oxygen, resulting in high reaction results. discovered that cinnamic acid esters could be produced using
The invention has been completed. That is, the present invention uses palladium metal or its compound as the main catalyst and (1) copper organic Using an acid salt, (2) a chlorine compound, and (3) a manganese or zinc compound, the copper atom in the reaction mixture is 0.004 to 0.4 gram atom/and the chlorine atom to copper atom ratio is less than 2. , a method for producing cinnamic acid esters, further comprising carrying out the reaction at a partial pressure of carbon monoxide of 1 atm or less and a partial pressure of oxygen of 1 atm or less. Specifically, the styrenes used in the method of the present invention include styrene, α-methylstyrene, β-methylstyrene, α-ethylstyrene, β-ethylstyrene, o-methylstyrene,
m-methylstyrene, p-methylstyrene, m-
Reaction of alkyl derivatives of styrene such as ethylstyrene, p-ethylstyrene, p-tert-butylstyrene, β-methyl-p-isopropylstyrene, or p-chlorostyrene, p-methoxystyrene, 3,4-dimethoxystyrene, etc. Examples include styrene derivatives having a substituent on the aromatic ring that does not inhibit Alcohols include methanol, ethanol, propanol, butanol, pentanol,
Alcohols such as octanol, cyclopentanol, cyclohexanol, phenol, benzyl alcohol, ethylene glycol, polyethylene glycol, and propylene glycol, which may have substituents such as halogen or alkoxy groups that do not inhibit the reaction. . The amount of these alcohols used is 1 mole of styrene.
~100 mole parts, and may be used not only as a reaction raw material but also as a solvent. The carbon monoxide and oxygen used in the method of the present invention are preferably diluted with an inert gas such as nitrogen or argon in order to avoid explosion.
Air can also be used as the oxygen source. The partial pressure of carbon monoxide carried out in the method of the invention is:
The absolute pressure is less than 1 atmosphere. Preferably 0.005~
It is in the range of 1 atm. Further, the partial pressure of oxygen is 1 atm or less, preferably in the range of 0.002 to 1 atm. Using carbon monoxide and oxygen at these low partial pressures, even when diluted with inert gas, results in a low total pressure of carbon monoxide, oxygen and inert gas in the reactor, making it extremely industrially preferable. These carbon monoxide, oxygen, and inert gases may be charged into the reactor in the required amounts all at once, or by adding the necessary gases continuously or intermittently, or by adding a mixture of these gases continuously or intermittently. It may also be possible to distribute the information publicly. Among these methods, the method of adding or the method of distributing is more preferable. During the reaction, it is preferable to stir sufficiently in order to improve gas-liquid contact. In the reaction according to the method of the present invention, the alcohol as a raw material can essentially be used as a solvent, but any solvent can also be used as long as it does not inhibit the reaction. Examples of such solvents include ethers such as diethyl ether, dipropyl ether, methyl ethyl ether, phenylethyl ether, diphenyl ether, tetrahydrofuran, dioxane, ethylene glycol diethyl ether, and tetraethylene glycol dimethyl ether, acetone, methyl ethyl ketone, and acetophenone. Ketones such as, esters such as methyl acetate, ethyl acetate, methyl propionate, benzene, toluene,
Aromatic hydrocarbons or substituted compounds thereof such as p-xylene, ethylbenzene, chlorobenzene, dichlorobenzene, aliphatic or alicyclic hydrocarbons such as n-hexane, n-pentane, cyclohexane, propylene carbonate, dimethyl carbonate, etc. carbonates, nitriles such as acetonitrile and benzonitrile, nitro compounds such as nitrobenzene and nitromethane, amide compounds such as dimethylformamide, and sulfolane compounds such as sulfolane. The main catalyst of the present invention is palladium metal or its compound, such as palladium black, metal palladium supported on a carrier such as activated carbon, asbestos, or silica alumina, dibenzylideneacetone complex, or tetrakis(triphenylphosphine)palladium. Zero-valent palladium metals or compounds such as zero-valent palladium complexes, inorganic acid salts of palladium such as palladium chloride, palladium nitrate, organic acid salts of palladium such as palladium acetate or palladium benzoate, bis(acetylacetonato)palladium, cyclo Examples include divalent palladium compounds such as palladium complexes such as octadiene dichloropalladium, palladium chloride benzonitrile complex, palladium chloride pyridine complex, or palladium chloride ammine complex. The amount of palladium metal or its compound used is in the range of 0.000001 to 0.1 gram atom, preferably 0.000005 to 0.01 gram atom, per mole of styrene as a raw material. Cocatalysts in the process of the invention are organic acid salts of copper, chlorine compounds and compounds of manganese or zinc. The organic acid salts of copper, which are the first component, include aliphatic copper carboxylates such as copper acetate, copper propionate, and copper stearate, aromatic copper carboxylates such as benzoate, and copper acetylacetate. Examples include salts of organic copper anions such as. These organic acid salts of copper can be used alone or in combination of two or more. Further, it is preferable that these organic acid salts of copper be dissolved in the reaction mixture, but it is also possible for some of them to remain insoluble. The usage amount of these organic acid salts of copper is
0.004 to 1 liter of reaction mixture as copper atoms
It is 0.4 gram atom. However, when copper chloride is used as the chlorine compound as a co-catalyst, the copper atom of this compound is also included in the above range and an organic acid salt of copper is used. When the amount of copper is less than this range, almost no reaction occurs, and when it is more than this range, by-products increase. More preferably 0.008 to 0.3 gram atoms per liter of reaction mixture. The chlorine compound, which is the second component of the cocatalyst, is
Chlorine or its solution, hydrogen chloride or its solution,
amine hydrochloride, and chlorine-containing compounds that tend to generate chlorine ions, such as tert-butyl chloride, phosgene, phosphorus pentachloride, phosphorus oxytrichloride, or titanium, vanadium, manganese, iron, copper, zinc, or Examples include chloride or oxychloride depending on the valence of metal such as aluminum. These chlorine compounds may be used alone or in combination of two or more. These chlorine compounds are used in an amount that is less than 2, ie, more than 0 and less than 2, in terms of the ratio of chlorine atoms to copper atoms present in the reaction mixture. However, when using palladium chloride as the main catalyst,
Although it is usually a trace amount, it is within the range of the amount including the chlorine atoms from palladium chloride. When the ratio of chlorine atoms to copper atoms is 0, that is, when no chlorine atoms are present, almost no reaction occurs. When this ratio increases to 2 or more, by-products increase and the selectivity and yield of cinnamic acid esters decrease. Preferably it is 0.02-1.99 gram atomic ratio. The manganese or zinc compound which is the third component of the cocatalyst in the method of the present invention may be manganese or zinc salts of inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid or carbonic acid, acetate salts, propionate salts, or stearic acid salts. salts of aliphatic carboxylic acids, such as salts, or salts of aromatic carboxylic acids, such as benzoates;
Alternatively, salts of organic anions such as acetylacetonate may be used. It is preferable that these compounds are dissolved in the reaction mixture, but there is no problem even if some of them are insoluble. The amount of these manganese or zinc compounds used is such that the ratio of manganese or zinc metal atoms to copper atoms present in the reaction mixture is from 0.05 to 50, more preferably from 0.1 to 10. Two or more kinds of manganese or zinc compounds can also be used at the same time. The manganese or zinc chloride can also serve as part or all of the chlorine compound that is the second component of the cocatalyst. The method of the present invention may be carried out using either a batch method or a continuous flow method. The total pressure of the reaction in the method of the present invention depends on the partial pressures of carbon monoxide and oxygen or inert gas used, but is usually 200 atmospheres or less, preferably
The pressure is 1.0 to 100 atmospheres. Reaction temperature is room temperature to 200℃, preferably 40 to 160℃
It is. The reaction time varies depending on the reaction conditions, but is usually 0.01 to 24 hours, preferably 0.05 to 10 hours. After the reaction is completed, the cinnamic acid esters can be separated from the reaction product liquid by a conventional separation method such as distillation or extraction. (Actions and Effects of the Invention) According to the method of the present invention, a preferable range of the amount of copper atoms serving as a cocatalyst and a preferable range of the ratio of chlorine atoms to copper atoms can be given to the reaction system, and the reaction can be carried out within these ranges. This makes it possible to produce cinnamic acid esters with surprisingly high reaction performance using an extremely small amount of palladium-based catalyst and at low partial pressures of carbon monoxide and oxygen, making it extremely advantageous industrially. This is a method for producing cinnamic acid ester. (Example) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 28.4 milligrams (0.160 mmol) of palladium chloride and cupric acetate monohydrate were placed in a glass cylindrical container.
7.61 g (38.1 mmol) and 12.3 g (50.2 mmol) of manganese acetate tetrahydrate were weighed out, a small amount of methanol was added to this, and 83.33 g (800 mmol) of styrene was weighed out. The hydrogen chloride gas whose concentration was measured just before was absorbed into methanol (concentration 1.5N) was added to 15.0
ml was added so that the amount of hydrogen chloride was 22.5 mmol, and methanol was further added to make the total volume 400 ml.
The amount of copper atoms per liter of reaction mixture is 0.095
It is a gram atom, and the gram atomic ratio of chlorine atoms to copper atoms is 0.60. 1 of this glass container
into an autoclave reactor. The reactor is equipped with a Teflon stirring blade, a glass-protected temperature measuring tube, a Teflon gas injection tube and a reflux condenser. Carbon monoxide:oxygen:nitrogen composition ratio is 8.8:5.4:
85.8 (by volume, analyzed by gas chromatography) is prepared in advance in a pressure-resistant container, and this mixed gas is introduced into the reactor to reduce the total pressure.
Maintained at 10 atm and output 4.2 liters/min (standard condition)
Continue stirring vigorously until the mixture reaches 100%.
The reaction was carried out at ℃ for 3 hours. The partial pressures of carbon monoxide and oxygen in the reactor are 0.88 and 0.54 atm, respectively. During the reaction, the outlet gas was discharged through a water-cooled reflux condenser, and the entrained low-boiling substances were refluxed to the reactor. After the reaction was completed, the reaction solution was cooled and depressurized, and the extracted reaction solution was analyzed by liquid chromatography, and found to be 54.4 mmol of styrene, 666.4 mmol of methyl cinnamate, and 16.3 mmol of by-produced dimethyl phenylsuccinate.
It contained mmol. Styrene conversion rate 93.2
%, the selectivity of methyl cinnamate (yield based on consumed styrene) was 89.4%, and the yield of methyl cinnamate (yield based on charged styrene) was 83.3%. The number of moles of ester (hereinafter abbreviated as Pd turnover rate) is
It was 4170. High catalytic activity and high reaction results were obtained even with low partial pressures of carbon monoxide and oxygen. Example 2 Palladium acetate 35.92 mg (0.160 mmol), cupric acetate monohydrate 5.99 g (30.0 mmol), cupric chloride 1.34 g (10.0 mmol)
After taking 12.3 g (50.2 mmol) of manganous acetate tetrahydrate and adding some methanol, 83.33 g (800 mmol) of styrene was added, and methanol was further added to bring the total volume to 400 ml. The total amount of copper atoms per liter of reaction mixture is 0.10 gram atoms, and the ratio of chlorine atoms to copper atoms is 0.50. The reaction was carried out in the same manner as in Example 1. The partial pressures of carbon monoxide and oxygen remain unchanged, respectively.
0.88 atm and 0.54 atm. The conversion rate of styrene was 93.3%, the selectivity of methyl cinnamate was 92.4%, the yield of methyl cinnamate was 86.2%, and Pd
The rotation rate was 4310. Examples 3 to 6 and Comparative Examples 1 to 4 All the same as Example 2 except that the amounts of cupric acetate monohydrate and cupric chloride used and reaction times were changed as shown in Table 1. I did the same. The partial pressures of carbon monoxide and oxygen vary slightly due to variations in the composition during the preparation of the mixed gas, but the extent is 0.80 to 0.90 atm for carbon monoxide and 0.50 to 0.57 for oxygen.
It is a range of atmospheric pressure. The results are shown in Table 1 together with the results of Example 2.

【表】 実施例 7 一酸化炭素:酸素:窒素の組成比が8.5:5.3:
86.2(容量%)である混合ガスを用い、反応全圧
を6気圧とした以外は全て実施例2と同様にし
た。一酸化炭素および酸素の分圧はそれぞれ0.51
気圧および0.32気圧である。スチレンの転化率
88.6%、桂皮酸メチルの選択率および収率はそれ
ぞれ90.7%および80.4%であり、Pd回転率は4020
であつた。 実施例 8 実施例2の酢酸パラジウムのかわりに5%
Pd/c(5重量%のパラジウムを活性炭に担持し
たもの)を510ミリグラム用い反応時間を3.5時間
とした以外は全て実施例2と同様にしたところ、
桂皮酸メチルが収率72.3%で得られた。 実施例9〜13および比較例5 表2に示すようにパラジウム化合物を0.13ミリ
モル用い助触媒各成分の種類と量を表2に示すよ
うにかえた以外は全て実施例2と同様にして反応
させた。一酸化炭素および酸素の分圧はそれぞれ
0.8〜0.9気圧および0.50〜0.57気圧の範囲内にあ
る。反応混合液中の銅原子は0.1グラム原子/
であり、塩素原子の銅原子に対するグラム原子比
は0.5である。結果を表2に示す。
[Table] Example 7 Carbon monoxide:oxygen:nitrogen composition ratio is 8.5:5.3:
The same procedure as in Example 2 was carried out except that a mixed gas of 86.2% (by volume) was used and the total reaction pressure was 6 atm. The partial pressures of carbon monoxide and oxygen are each 0.51
atmospheric pressure and 0.32 atmosphere. Styrene conversion rate
88.6%, the selectivity and yield of methyl cinnamate are 90.7% and 80.4% respectively, and the Pd turnover is 4020
It was hot. Example 8 5% instead of palladium acetate in Example 2
The procedure was the same as in Example 2 except that 510 mg of Pd/c (5% by weight of palladium supported on activated carbon) was used and the reaction time was 3.5 hours.
Methyl cinnamate was obtained with a yield of 72.3%. Examples 9 to 13 and Comparative Example 5 The reaction was carried out in the same manner as in Example 2 except that 0.13 mmol of the palladium compound was used and the type and amount of each cocatalyst component was changed as shown in Table 2. Ta. The partial pressures of carbon monoxide and oxygen are respectively
Within the range of 0.8-0.9 atm and 0.50-0.57 atm. Copper atoms in the reaction mixture are 0.1 gram atom/
and the gram atomic ratio of chlorine atoms to copper atoms is 0.5. The results are shown in Table 2.

【表】 トを示す
[Table] Shows

Claims (1)

【特許請求の範囲】[Claims] 1 スチレン類、一酸化炭素、アルコールおよび
酸素を反応させて対応する桂皮酸エステル類を製
造するに際して、主触媒としてパラジウム金属ま
たはその化合物、ならびに助触媒として(1)銅の有
機酸塩、(2)塩素化合物および(3)マンガンまたは亜
鉛の化合物を用い、反応混合液中の銅原子を
0.004〜0.4グラム原子/とし、かつ塩素原子の
銅原子に対するグラム原子比を2未満とし、さら
に、一酸化炭素の分圧を1気圧以下および酸素の
分圧を1気圧以下として反応させることを特徴と
する桂皮酸エステル類の製造法。
1. When producing the corresponding cinnamic acid esters by reacting styrenes, carbon monoxide, alcohol and oxygen, palladium metal or its compound is used as the main catalyst, and (1) an organic acid salt of copper as a co-catalyst, (2) ) chlorine compound and (3) manganese or zinc compound to remove copper atoms in the reaction mixture.
The reaction is carried out at 0.004 to 0.4 gram atom/, and the gram atomic ratio of chlorine atoms to copper atoms is less than 2, and the partial pressure of carbon monoxide is 1 atm or less and the partial pressure of oxygen is 1 atm or less. A method for producing cinnamic acid esters.
JP60152389A 1984-10-05 1985-07-12 Production of cinnamic ester Granted JPS6216448A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60152389A JPS6216448A (en) 1985-07-12 1985-07-12 Production of cinnamic ester
US06/780,838 US4661620A (en) 1984-10-05 1985-09-27 Preparation process of cinnamate esters
CA000492004A CA1238337A (en) 1984-10-05 1985-10-01 Preparation process of cinnamate esters
ES547459A ES8707707A1 (en) 1984-10-05 1985-10-01 Prepn. of cinnamate ester(s)
EP85307086A EP0177354B1 (en) 1984-10-05 1985-10-03 Preparation process of cinnamate esters
DE8585307086T DE3569519D1 (en) 1984-10-05 1985-10-03 Preparation process of cinnamate esters
DK455685A DK166964B1 (en) 1984-10-05 1985-10-04 METHOD OF PREPARING CINNAM TESTERS FOR THE CONVERSION OF CARBON MONOXIDE, OXYGEN, A STEERING COMPOUND AND AN ALCOHOL WITH USING A CATALYST
KR1019850007347A KR870000770B1 (en) 1984-10-05 1985-10-05 Preparation process fo cinnamate esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60152389A JPS6216448A (en) 1985-07-12 1985-07-12 Production of cinnamic ester

Publications (2)

Publication Number Publication Date
JPS6216448A JPS6216448A (en) 1987-01-24
JPH0550492B2 true JPH0550492B2 (en) 1993-07-29

Family

ID=15539445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60152389A Granted JPS6216448A (en) 1984-10-05 1985-07-12 Production of cinnamic ester

Country Status (1)

Country Link
JP (1) JPS6216448A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034554A (en) * 2012-08-09 2014-02-24 Jx Nippon Oil & Energy Corp Method for manufacturing olefin derivative

Also Published As

Publication number Publication date
JPS6216448A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
JPS6313415B2 (en)
KR870000770B1 (en) Preparation process fo cinnamate esters
JPH0550492B2 (en)
EP0186349B1 (en) Process for the preparation of cinnamate ester
EP0607943B1 (en) Catalyst and method for producing carbonic diesters
US5466856A (en) Method of producing carbonic diesters
CA1319702C (en) Process for the hydroformylation of certain acrylic acid derivatives
NL8105843A (en) PROCESS FOR PREPARING ETHYLIDENE DIACETATE.
EP0156498B1 (en) Process for producing acetic acid
JPH0479331B2 (en)
JPS6222743A (en) Production of cinnamic acid ester
JPH07138205A (en) Dialkoxycarbonylation of norbornenes
US4827023A (en) Process for the selective formation of dialkyl succinates
CA1282793C (en) Preparation process of cinnamate ester
EP0108332B1 (en) Preparation of acetone dicarboxylic acid diester
JPH0669986B2 (en) Method for producing cinnamic acid esters
JPS62126152A (en) Production of cinnamic acid ester
JPS6094940A (en) Production of cinnamic acid ester
JPS6277352A (en) Production of cinnamic ester
JPS62123151A (en) Production of cinnamic acid ester
JPS6320419B2 (en)
CN110891928A (en) Method for producing bisacyloylated exomethylene compound
JPH068264B2 (en) Method for producing cinnamic acid esters
JPS6023661B2 (en) Manufacturing method of cinnamic acid esters
JPH0452254B2 (en)