JPH0479331B2 - - Google Patents

Info

Publication number
JPH0479331B2
JPH0479331B2 JP60085508A JP8550885A JPH0479331B2 JP H0479331 B2 JPH0479331 B2 JP H0479331B2 JP 60085508 A JP60085508 A JP 60085508A JP 8550885 A JP8550885 A JP 8550885A JP H0479331 B2 JPH0479331 B2 JP H0479331B2
Authority
JP
Japan
Prior art keywords
copper
reaction
atoms
amount
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60085508A
Other languages
Japanese (ja)
Other versions
JPS61246148A (en
Inventor
Usaji Takagi
Isamu Sudo
Toshio Matsuhisa
Retsu Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60085508A priority Critical patent/JPS61246148A/en
Priority to US06/780,838 priority patent/US4661620A/en
Priority to ES547459A priority patent/ES8707707A1/en
Priority to CA000492004A priority patent/CA1238337A/en
Priority to EP85307086A priority patent/EP0177354B1/en
Priority to DE8585307086T priority patent/DE3569519D1/en
Priority to DK455685A priority patent/DK166964B1/en
Priority to KR1019850007347A priority patent/KR870000770B1/en
Publication of JPS61246148A publication Critical patent/JPS61246148A/en
Publication of JPH0479331B2 publication Critical patent/JPH0479331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はスチレン類、一酸化炭素、アルコール
および酸素を反応させて挂皮酸エステル類を製造
する方法に関する。 挂皮酸エステル類は、それらが有する芳香のた
め香料またはその原料として広く用いられてお
り、また農薬や感光性樹脂の原料としても重要な
化合物である。 (従来の技術) 従来、挂皮酸はベンズアルデヒドと酢酸の誘導
体を主原料とした反応で小規模に生産されてい
る。しかしながら、この方法は高価な原料を使用
するので工業的には好ましい方法ではない。より
安価な原料を用いる方法として、スチレン類と一
酸化炭素、アルコールおよび酸素を触媒の存在下
に反応させて挂皮酸エステル類を製造しようとす
る方法がいくつか提案されている(例えば、特開
昭57−70836、特開昭56−71039、特開昭56−
15242など)。 (発明が解決しようとする問題点) しかしながら、いずれの方法も反応成績や触媒
活性を工業的に満足させるには至つていない。 本発明の目的はスチレン類、一酸化炭素、アル
コールおよび酸素を原料とする挂皮酸エステル類
のより有利な工業的製造法、具体的には主触媒の
活性を高度に発現させ、高い反応成績で挂皮酸エ
ステル類を製造する方法を提供することである。 (問題を解決するための手段) 本発明者らは、前記目的を達成するため鋭意検
討を続けてきたところ、従来の技術、例えば、特
開昭57−70836号公報や同56−15242号公報の多く
の実施例が示すように、塩化第二銅のみを助触媒
の銅塩として使用する場合には、銅原子の使用量
を好ましい範囲に選ぼうとすれば、塩素原子の使
用量はそれによつて制限され、任意に好ましい範
囲を選ぶことができず、このことが工業的に満足
すべき触媒系とならない理由の1つであることを
見出した。さらに検討を続けた結果、主触媒とし
てパラジウム金属またはその化合物を用い、一酸
化炭素、アルコールおよび酸素を反応させて対応
する挂皮酸エステル類を製造するに際しては、助
触媒として銅および塩素が重要であり、これらの
供与源をそれぞれ別個の化合物、または少なくと
も一部を別個の化合物とし、各使用量を特定の範
囲に選ぶ必要があること、すなわち、主触媒とし
てパラジウム金属またはその化合物、ならびに助
触媒として1銅の有機酸塩、2塩素化合物および
3マンガンまたは亜鉛の化合物を用い、反応混合
液1リツトル当りの銅原子の量を特定の範囲と
し、かつ塩素原子の銅原子に対するグラム原子比
を特定の範囲とすることにより、主触媒の高い活
性が得られ高い反応成績で挂皮酸エステル類を製
造できることを見出し、本発明に到達した。 本発明はスチレン類、一酸化炭素、アルコール
および酸素を反応させて対応する挂皮酸エステル
類を製造するに際して、主触媒としてパラジウム
金属またはその化合物、ならびに助触媒として1
銅の有機酸塩、2塩素化合物および3マンガンま
たは亜鉛の化合物を用い、反応混合液中の銅原子
を0.004〜0.4グラム原子/となるようにし、か
つ塩素原子の銅原子に対するグラム原子比を2未
満として反応させることを特徴とする挂皮酸エス
テル類の製造法である。 本発明の方法において使用されるスチレン類と
しては、具体的には、スチレン、α−メチルスチ
レン、β−メチルスチレン、α−エチルスチレ
ン、β−エチルスチレン、o−メチルスチレン、
m−メチルスチレン、p−メチルスチレン、m−
エチルスチレン、p−エチルスチレン、p−タ−
シヤリ−ブチルスチレン、β−メチル−p−イソ
プロピルスチレン等のスチレンのアルキル誘導
体、あるいはp−クロロスチレン、p−メトキシ
スチレン、3,4−ジメトキシスチレン等の反応
を阻害しない置換基を芳香環に有するスチレンの
誘導体などが挙げられる。 アルコールとしては、メタノール、エタノー
ル、プロパノール、ブタノール、ぺンタノール、
オクタノール、シクロペンタノール、シクロヘキ
サノール、フエノール、ベンジルアルコール、エ
チレングリコール、ポリエチレングリコール、プ
ロピレングリコール等のアルコール類であり、そ
れらはハロゲンやアルコキシ基等の反応を阻害し
ない置換基を有していてもよい。これらのアルコ
ール類の使用量は、スチレン類1モルに対して1
〜100モル部であり、反応原料としてのみならず
溶媒として使用してもよい。 一酸化炭素の分圧は、常圧〜50Kg/cm2Gであ
り、これ以上の分圧では対応するフエニルコハク
酸ジエステル類の副生成物が増加する。より好ま
しくは、常圧〜40Kg/cm2Gである。 酸素の分圧は常圧〜50Kg/cm2であり、分圧を高
くすると副生成物が増加する。より好ましくは常
圧〜30Kg/cm2Gである。酸素源としては純粋な酸
素でも空気でも構わない。 爆発範囲をさけるため、一酸化炭素および酸素
の混合気体は窒素またはアルゴン等の不活性ガス
で稀釈して用いることが好ましい。 これらの一酸化炭素、酸素、および不活性ガス
の混合気体は必要量を反応器に一括して仕込んで
もよいし、間欠的に追加してもよい。また常時流
通させる方法でも間欠的に流通させる方法でもよ
い。 本発明の方法による反応では、原料のアルコー
ルを実質的に溶媒とすることができるが、反応を
阻害しないものであれば溶媒を使用することもで
きる。そのような溶媒としては、ジエチルエーテ
ル、ジプロピルエーテル、メチルエチルエーテ
ル、フエニルエチルエーテル、ジフエニルエーテ
ル、テトラヒドロフラン、ジオキサン、エチレン
グリコールジエチルエーテル、テトラエチレング
リコールジメチルエーテル等のエーテル類、アセ
トン、メチルエチルケトン、アセトフエノン等の
ケトン類、酢酸メチル、酢酸エチル、プロピオン
酸メチル等のエステル類、ベンゼン、トルエン、
p−キシレン、エチルベンゼン、クロロベンゼ
ン、ジクロロベンゼン等の芳香族炭化水素類また
はその置換化合物、n−ヘキサン、n−ペンタ
ン、シクロヘキサン等の脂肪族または脂環族の炭
化水素類、プロピレンカーボネート、炭酸ジメチ
ル等のカーボネート類、アセトニトリル、ベンゾ
ニトリル等のニトリル類、ニトロベンゼン、ニト
ロメタン等のニトロ化合物類、ジメチルホルムア
ミド等のアミド化合物類、スルホラン等のスルホ
ン化合物などが挙げられる。 本発明の主触媒たるパラジウム金属またはその
化合物としては、パラジウム黒、あるいは活性
炭、アスベストまたはシリカアルミナ等の担体に
担持させた金属パラジウム、ジベンジリデンアセ
トン錯体のような0価のパラジウム錯体などの0
価のパラジウム金属または化合物、塩化パラジウ
ム、硝酸パラジウムのようなパラジウムの無機酸
塩、酢酸パラジウムまたは安息香酸パラジウムな
どの有機酸塩、ビス(アセチルアセトナート)パ
ラジウム、シクロオクタジエンジクロロパラジウ
ム、塩化パラジウムベンゾニトリル錯体、塩化パ
ラジウムピリジン錯体または塩化パラジウムアン
ミン錯体などのパラジウムの錯体などの2価のパ
ラジウムの化合物が挙げられる。 これらのパラジウム金属またはその化合物の使
用量はパラジウム金属原子として原料のスチレン
類1モルに対して0.00001〜0.1グラム原子の範囲
であり、好ましくは0.00005〜0.01グラム原子で
ある。 本発明の方法における助触媒は銅の有機酸
塩、塩素化合物およびマンガンまたは亜鉛の
化合物である。第1成分である銅の有機酸塩とし
ては、酢酸銅、プロピオン酸銅、ステアリン酸銅
などの銅の脂肪族カルボン酸塩、安息香酸銅など
の銅の芳香族カルボン酸塩、銅アセチルアセトナ
ートのような銅の有機アニオンの塩などが挙げら
れる。 これらの銅の有機酸塩は単独または2種以上を混
合して使用することもできる。また、これらの銅
の有機酸塩は反応混合液に溶解していることが好
ましいが、一部が不溶のまゝであつてもさしつか
えない。これらの銅の有機酸塩の使用量は、銅原
子として反応混合液1リツトル当り0.004〜0.4グ
ラム原子である。ただし、助触媒であるの塩素
化合物として銅の塩化物を使用する場合には、こ
の化合物の銅原子も前記範囲に含めて銅の有機酸
塩を使用する。銅の量がこの範囲より少なくなる
と反応はほとんど起らなくなり、この範囲より多
くなると副生成物が増大する。より好ましくは、
反応混合液1リツトル当り、0.008〜0.3グラム原
子である。 助触媒の第2成分である塩素化合物としては、
塩素またはその溶液、塩化水素またはその溶液、
アミンの塩酸塩などであり、さらにはターシヤル
ブチルクロライド、ホスゲン、五塩化リン、オキ
シ三塩化リンなどの塩素イオンを発生しやすい含
塩素化合物、あるいはチタン、バナジウム、マン
ガン、鉄、銅、亜鉛またはアルミニウムなどの金
属のその価数に応じた塩化物またはオキシ塩化物
などが挙げられる。これらの塩素化合物は単独ま
たは2種以上を混合して用いてもよい。これらの
塩素化合物は反応混合液中に存在する銅原子に対
して含まれる塩素原子の比で、2未満、すなわ
ち、0を越え2未満の量を使用する。ただし、主
触媒として塩化パラジウムを使用する場合には、
通常微量ではあるが、塩化パラジウムからの塩素
原子をも合せた量としての範囲である。塩素原子
の銅原子に対する比が0であると、即ち塩素原子
が存在しないと反応はほとんど起らない。この比
が2以上に大きくなると副生成物が増大し挂皮酸
エステル類の選択率および収率が低下する。好ま
しくは0.02〜1.99グラム原子比である。 本発明の方法における助触媒の第3成分である
マンガンまたは亜鉛の化合物としては、マンガン
または亜鉛の塩化物、酢酸塩、プロピオン酸塩、
あるいはステアリン酸塩などの脂肪酸カルボン酸
の塩、あるいは安息香酸塩などの芳香族カルボン
酸の塩、あるいはアセチルアセトナートの如き有
機アニオンの塩などが挙げられる。 これらの化合物は反応混合液に溶解しているこ
とが好ましいが、一部が不溶であつてもさしつか
えない。 これらのマンガンまたは亜鉛の化合物の使用量
は、マンガンまたは亜鉛の金属原子の反応混合液
中に存在する銅原子に対する比が0.05〜50であ
り、より好ましくは0.1〜10である。マンガンま
たは亜鉛の化合物は2種以上を同時に使用するこ
ともできる。 マンガンまたは亜鉛の塩化物は助触媒の第2成
分である塩素化合物と第3成分であるマンガンま
たは亜鉛の化合物を同時に全部または一部を満足
することができる。 本発明の方法による反応の全圧は、常圧〜500
Kg/cm2G、好ましくは常圧〜300Kg/cm2Gであり、
反応温度は室温〜200℃、好ましくは40〜160℃で
ある。反応時間は反応条件により変わるが、通
常、0.01〜24時間、好ましくは0.05〜10時間であ
る。反応終了後、蒸留あるいは抽出等の常用の分
離方法により、反応生成液から挂皮酸エステル類
を分離することができる。 (作用および発明の効果) 本発明の方法によれば、助触媒たる銅原子の好
ましい量の範囲および塩素原子と銅原子の比の好
ましい範囲を反応系に与えることができ、その範
囲で反応させることにより、極めて少量のパラジ
ウム主触媒を使用して驚くべきほど高い反応成績
で挂皮酸エステル類を製造することができるよう
になり、工業的に極めて有利な挂皮酸エステルの
製造法となる。 (実施例) 次に、実施例および比較例を示し、本発明の方
法を更に詳しく説明する。 実施例 1 ガラス製の円筒容器に、酢酸パラジウム11.23
ミリグラム(0.050ミリモル)、酢酸第二銅・1水
塩2.50グラム(12.5ミリモル)、酢酸第一マンガ
ン・4水塩3.82グラム(15.6ミリモル)を秤取
し、これに少量のメタノールを加えたのちスチレ
ン26.04グラム(250.0ミリモル)を秤りとり、予
め直前に濃度を測つておいた塩化水素ガスをメタ
ノールに吸収させた液(濃度約0.5〜2N)を加え
塩化水素の量が6.25ミリモルとなるようにし、更
にメタノールを加えて全量を125mlとした。 反応混合液1リツトル当りの銅原子の量は0.10
グラム原子であり塩素原子の銅原子に対するグラ
ム原子比は0.50である。このガラス容器を500ml
のオートクレーブに入れた。オートクレーブの攪
拌翼はガラス製であり温度測定管もガラスで保護
してある。 オートクレーブに全圧50Kg/cm2Gで一酸化炭
素:酸素:窒素の分圧比が10:5:85の混合ガス
を出口で1.2/分(標準状態)となるよう通じ
ながら攪拌をつづけ100℃で3時間反応させた。
この間出口ガスは還流冷却器を通して排出され
た。反応終了後冷却放圧し、取り出した反応液を
液体クロマトグラフイーで分析したところスチレ
ンが12.25ミリモル、挂皮酸メチルが217.8ミリモ
ル、副生したフエニルコハク酸ジメチルが8.25ミ
リモル含まれていた。スチレンの転化率95.1%、
挂皮酸メチルの選択率(消費したスチレンに対す
る収率)は91.6%、挂皮酸メチルの収率(仕込み
スチレンに対する収率)は87.1%であり、フエニ
ルコハク酸ジメチルの選択率は3.5%、同収率は
3.3%であつた。主触媒のパラジウム1グラム原
子当りに生成した挂皮酸エステルのモル数(以
降、Pd回転率と略称する)は4360であつた。 実施例 2 塩化パラジウム8.87ミリグラム(0.050ミリモ
ル)、酢酸第二銅・1水塩2.19グラム(10.97ミリ
モル)、塩化第二銅0.206グラム(1.53ミリモル)
および酢酸第一マンガン・4水塩3.82グラム
(15.6ミリモル)をとり一部のメタノールを加え
た後、スチレン26.04グラム(250.0ミリモル)を
加え、更にメタノールを加えて全量を125mlとし
た。反応混合液1当り合計の銅原子の量は0.10
グラム原子であり、合計の塩素原子の合計の銅原
子に対するグラム原子比は0.25である。実施例1
と同様に反応させたところスチレンの転化率94.3
%、挂皮酸メチルの選択率および収率はそれぞれ
92.8%および87.5%であつた。Pd回転率は4380で
あつた。以下に、比較例および実施例により反応
混合液1当りの銅原子の量の範囲を示す。 比較例1および2、実施例3、4および5 実施例2における酢酸第二銅・1水塩および塩
化第二銅の使用量をそれぞれ表1に示す量にかえ
た以外は全て実施例2と同様にして反応させた。
塩素原子の銅原子に対する比は全て1.0である。
結果を表1に示す。 次に比較例および実施例により塩素原子の銅原
子に対するグラム原子比の範囲を示す。比較例
3、4および実施例6〜9 実施例2における、酢酸第二銅・1水塩および
塩化第二銅の使用量とパラジウム化合物の種類を
表2に示すようにかえた以外は全て実施例2と同
様にして反応させた。反応混合液1リツトル当り
の銅原子の量は全て0.1グラム原子である。結果
を前出の実施例2および4の結果とともに表2に
示す。
(Industrial Application Field) The present invention relates to a method for producing cinnamic acid esters by reacting styrenes, carbon monoxide, alcohol and oxygen. Cinnamic acid esters are widely used as fragrances or raw materials thereof because of their aromatic properties, and are also important compounds as raw materials for agricultural chemicals and photosensitive resins. (Prior Art) Conventionally, cinnamic acid has been produced on a small scale by a reaction using benzaldehyde and acetic acid derivatives as main raw materials. However, since this method uses expensive raw materials, it is not an industrially preferred method. As a method using cheaper raw materials, several methods have been proposed in which cinnamic acid esters are produced by reacting styrenes with carbon monoxide, alcohol, and oxygen in the presence of a catalyst (for example, 1987-70836, 1987-71039, 1987-71039, 1983-
15242 etc.). (Problems to be Solved by the Invention) However, none of these methods has achieved industrially satisfactory reaction results and catalytic activity. The purpose of the present invention is to provide a more advantageous industrial production method for cinnamic acid esters using styrenes, carbon monoxide, alcohol, and oxygen as raw materials, specifically to develop the activity of the main catalyst to a high degree and achieve high reaction results. An object of the present invention is to provide a method for producing cinnamic acid esters. (Means for Solving the Problem) In order to achieve the above object, the inventors of the present invention have continued to make intensive studies and found that conventional techniques, such as Japanese Patent Application Laid-open No. 57-70836 and Japanese Patent Application Laid-Open No. 56-15242, As shown in many examples, when using only cupric chloride as the cocatalyst copper salt, if the amount of copper atoms to be used is selected within a preferable range, the amount of chlorine atoms to be used should be within the same range. It was therefore found that this is one of the reasons why an industrially satisfactory catalyst system cannot be obtained, since the range is limited and it is not possible to arbitrarily select a preferable range. Further studies revealed that copper and chlorine are important co-catalysts when producing corresponding cinnamic acid esters by reacting carbon monoxide, alcohol and oxygen with palladium metal or its compounds as the main catalyst. and the need for each of these sources to be separate compounds, or at least in part separate compounds, and for the amounts used of each to be selected within a specific range, i.e., palladium metal or its compound as the main catalyst, and palladium metal or its compound as the main catalyst; An organic acid salt of copper, a dichlorine compound, and a compound of manganese or zinc are used as catalysts, the amount of copper atoms per liter of reaction mixture is set in a specific range, and the gram atomic ratio of chlorine atoms to copper atoms is The present inventors have discovered that by setting the amount within a specific range, high activity of the main catalyst can be obtained and cinnamic acid esters can be produced with high reaction results, and the present invention has been achieved. The present invention uses palladium metal or its compound as a main catalyst and 1 as a co-catalyst when producing corresponding cinnamic acid esters by reacting styrenes, carbon monoxide, alcohol and oxygen.
Using an organic acid salt of copper, a dichloride compound, and a manganese or zinc compound, the copper atoms in the reaction mixture are adjusted to 0.004 to 0.4 gram atom/g, and the chlorine atom to copper atom ratio is 2. This is a method for producing cinnamic acid esters, characterized in that the reaction is carried out as less than 100%. Specifically, the styrenes used in the method of the present invention include styrene, α-methylstyrene, β-methylstyrene, α-ethylstyrene, β-ethylstyrene, o-methylstyrene,
m-methylstyrene, p-methylstyrene, m-
Ethylstyrene, p-ethylstyrene, p-ter
Alkyl derivatives of styrene such as shari-butylstyrene and β-methyl-p-isopropylstyrene, or substituents on the aromatic ring that do not inhibit the reaction such as p-chlorostyrene, p-methoxystyrene, 3,4-dimethoxystyrene, etc. Examples include styrene derivatives. Alcohols include methanol, ethanol, propanol, butanol, pentanol,
Alcohols such as octanol, cyclopentanol, cyclohexanol, phenol, benzyl alcohol, ethylene glycol, polyethylene glycol, and propylene glycol, which may have substituents such as halogen or alkoxy groups that do not inhibit the reaction. . The amount of these alcohols used is 1 mole of styrene.
~100 mole parts, and may be used not only as a reaction raw material but also as a solvent. The partial pressure of carbon monoxide is from normal pressure to 50 kg/cm 2 G, and if the partial pressure is higher than this, the corresponding by-products of phenylsuccinic acid diesters will increase. More preferably, the pressure is normal pressure to 40 kg/cm 2 G. The partial pressure of oxygen is normal pressure to 50 Kg/cm 2 , and as the partial pressure increases, by-products increase. More preferably, the pressure is normal pressure to 30 kg/cm 2 G. The oxygen source may be pure oxygen or air. In order to avoid an explosive range, it is preferable to use the mixed gas of carbon monoxide and oxygen diluted with an inert gas such as nitrogen or argon. The required amount of the mixed gas of carbon monoxide, oxygen, and inert gas may be charged into the reactor all at once, or may be added intermittently. Further, a method of constantly circulating or a method of distributing intermittently may be used. In the reaction according to the method of the present invention, the alcohol as a raw material can essentially be used as a solvent, but any solvent can also be used as long as it does not inhibit the reaction. Examples of such solvents include ethers such as diethyl ether, dipropyl ether, methyl ethyl ether, phenylethyl ether, diphenyl ether, tetrahydrofuran, dioxane, ethylene glycol diethyl ether, and tetraethylene glycol dimethyl ether, acetone, methyl ethyl ketone, and acetophenone. Ketones such as, esters such as methyl acetate, ethyl acetate, methyl propionate, benzene, toluene,
Aromatic hydrocarbons or substituted compounds thereof such as p-xylene, ethylbenzene, chlorobenzene, dichlorobenzene, aliphatic or alicyclic hydrocarbons such as n-hexane, n-pentane, cyclohexane, propylene carbonate, dimethyl carbonate, etc. carbonates, nitriles such as acetonitrile and benzonitrile, nitro compounds such as nitrobenzene and nitromethane, amide compounds such as dimethylformamide, and sulfone compounds such as sulfolane. Palladium metal or its compound which is the main catalyst of the present invention may be palladium black, metal palladium supported on a carrier such as activated carbon, asbestos or silica alumina, or zero-valent palladium complex such as dibenzylidene acetone complex.
Palladium metal or compound with a valence of Examples include divalent palladium compounds such as palladium complexes such as nitrile complexes, palladium chloride pyridine complexes, and palladium chloride ammine complexes. The amount of palladium metal or its compound used is in the range of 0.00001 to 0.1 gram atom, preferably 0.00005 to 0.01 gram atom, per mole of styrene as a raw material. Cocatalysts in the process of the invention are organic acid salts of copper, chlorine compounds and compounds of manganese or zinc. The first component, organic acid salts of copper, include copper aliphatic carboxylates such as copper acetate, copper propionate, and copper stearate, aromatic copper carboxylates such as copper benzoate, and copper acetylacetonate. Examples include salts of organic anions of copper such as . These organic acid salts of copper can be used alone or in combination of two or more. Further, it is preferable that these organic acid salts of copper be dissolved in the reaction mixture, but it is also possible for some of them to remain insoluble. The amount of these organic acid salts of copper used is 0.004 to 0.4 gram atoms of copper per liter of the reaction mixture. However, when copper chloride is used as the chlorine compound as a co-catalyst, the copper atom of this compound is also included in the above range and an organic acid salt of copper is used. When the amount of copper is less than this range, almost no reaction occurs, and when it is more than this range, by-products increase. More preferably,
0.008 to 0.3 gram atoms per liter of reaction mixture. The chlorine compound, which is the second component of the cocatalyst, is
Chlorine or its solution, hydrogen chloride or its solution,
amine hydrochloride, and chlorine-containing compounds that tend to generate chlorine ions, such as tert-butyl chloride, phosgene, phosphorus pentachloride, phosphorus oxytrichloride, or titanium, vanadium, manganese, iron, copper, zinc, or Examples include chloride or oxychloride depending on the valence of metal such as aluminum. These chlorine compounds may be used alone or in combination of two or more. These chlorine compounds are used in an amount that is less than 2, ie, more than 0 and less than 2, in terms of the ratio of chlorine atoms to copper atoms present in the reaction mixture. However, when using palladium chloride as the main catalyst,
Although it is usually a trace amount, it is within the range of the amount including the chlorine atoms from palladium chloride. When the ratio of chlorine atoms to copper atoms is 0, that is, when no chlorine atoms are present, almost no reaction occurs. When this ratio increases to 2 or more, by-products increase and the selectivity and yield of cinnamate esters decrease. Preferably it is 0.02-1.99 gram atomic ratio. Examples of the manganese or zinc compound which is the third component of the cocatalyst in the method of the present invention include manganese or zinc chloride, acetate, propionate,
Other examples include salts of fatty acid carboxylic acids such as stearate, salts of aromatic carboxylic acids such as benzoate, and salts of organic anions such as acetylacetonate. It is preferable that these compounds are dissolved in the reaction mixture, but there is no problem even if some of them are insoluble. The amount of these manganese or zinc compounds used is such that the ratio of manganese or zinc metal atoms to copper atoms present in the reaction mixture is from 0.05 to 50, more preferably from 0.1 to 10. Two or more kinds of manganese or zinc compounds can also be used at the same time. The manganese or zinc chloride can simultaneously satisfy all or part of the chlorine compound as the second component of the cocatalyst and the manganese or zinc compound as the third component. The total pressure of the reaction according to the method of the present invention is from normal pressure to 500
Kg/cm 2 G, preferably normal pressure to 300 Kg/cm 2 G,
The reaction temperature is room temperature to 200°C, preferably 40 to 160°C. The reaction time varies depending on the reaction conditions, but is usually 0.01 to 24 hours, preferably 0.05 to 10 hours. After the reaction is completed, the cinnamic acid esters can be separated from the reaction product liquid by a commonly used separation method such as distillation or extraction. (Actions and Effects of the Invention) According to the method of the present invention, a preferable range of the amount of copper atoms serving as a cocatalyst and a preferable range of the ratio of chlorine atoms to copper atoms can be given to the reaction system, and the reaction can be carried out within these ranges. This makes it possible to produce cinnamic acid esters with surprisingly high reaction results using an extremely small amount of palladium main catalyst, making it an industrially extremely advantageous method for producing cinnamic acid esters. . (Example) Next, the method of the present invention will be explained in more detail by showing Examples and Comparative Examples. Example 1 Palladium acetate 11.23 in a glass cylindrical container
milligram (0.050 mmol), cupric acetate monohydrate 2.50 g (12.5 mmol), and manganous acetate tetrahydrate 3.82 g (15.6 mmol), add a small amount of methanol, and then styrene. Weigh out 26.04 grams (250.0 mmol) and add a solution of hydrogen chloride gas absorbed in methanol (concentration approximately 0.5 to 2N) whose concentration was measured just beforehand so that the amount of hydrogen chloride becomes 6.25 mmol. Then, methanol was further added to bring the total volume to 125 ml. The amount of copper atoms per liter of reaction mixture is 0.10
It is a gram atom, and the gram atomic ratio of chlorine atom to copper atom is 0.50. This glass container is 500ml
was placed in an autoclave. The stirring blades of the autoclave are made of glass, and the temperature measuring tube is also protected by glass. A mixed gas with a partial pressure ratio of carbon monoxide:oxygen:nitrogen of 10:5:85 was introduced into the autoclave at a total pressure of 50 kg/cm 2 G at a rate of 1.2/min (standard condition) at the outlet while stirring was continued at 100°C. The reaction was allowed to proceed for 3 hours.
During this time, the outlet gas was discharged through a reflux condenser. After the reaction was completed, the reaction solution was cooled and depressurized, and the taken out reaction solution was analyzed by liquid chromatography and found to contain 12.25 mmol of styrene, 217.8 mmol of methyl cinnamate, and 8.25 mmol of by-product dimethyl phenylsuccinate. Styrene conversion rate 95.1%,
The selectivity of methyl cinnamate (yield based on consumed styrene) was 91.6%, the yield of methyl cinnamate (yield based on charged styrene) was 87.1%, and the selectivity of dimethyl phenylsuccinate was 3.5%. The yield is
It was 3.3%. The number of moles of cinnamic acid ester produced per gram atom of palladium of the main catalyst (hereinafter abbreviated as Pd turnover) was 4,360. Example 2 Palladium chloride 8.87 mg (0.050 mmol), cupric acetate monohydrate 2.19 g (10.97 mmol), cupric chloride 0.206 g (1.53 mmol)
After taking 3.82 g (15.6 mmol) of manganous acetate tetrahydrate and adding some methanol, 26.04 g (250.0 mmol) of styrene was added, and methanol was further added to bring the total volume to 125 ml. The total amount of copper atoms per reaction mixture is 0.10
gram atoms, and the gram atomic ratio of total chlorine atoms to total copper atoms is 0.25. Example 1
When the reaction was carried out in the same manner as above, the conversion rate of styrene was 94.3.
%, selectivity and yield of methyl cinnamate are respectively
They were 92.8% and 87.5%. The Pd rotation rate was 4380. Below, the range of the amount of copper atoms per reaction mixture is shown based on comparative examples and examples. Comparative Examples 1 and 2, Examples 3, 4 and 5 All the same as Example 2 except that the amounts of cupric acetate monohydrate and cupric chloride used in Example 2 were changed to the amounts shown in Table 1. The reaction was carried out in the same manner.
The ratio of chlorine atoms to copper atoms is all 1.0.
The results are shown in Table 1. Next, the range of the gram atomic ratio of chlorine atoms to copper atoms will be shown based on comparative examples and examples. Comparative Examples 3 and 4 and Examples 6 to 9 All the same procedures as in Example 2 were carried out except that the amounts of cupric acetate monohydrate and cupric chloride and the type of palladium compound were changed as shown in Table 2. The reaction was carried out in the same manner as in Example 2. All amounts of copper atoms per liter of reaction mixture are 0.1 gram atoms. The results are shown in Table 2 together with the results of Examples 2 and 4 mentioned above.

【表】【table】

【表】 実施例 10 実施例2における塩化パラジウムの代りに5%
Pd/C(5重量%のパラジウムを活性炭に担持さ
せたもの)を180mg(パラジウム0.085ミリグラム
原子)を使用し、酢酸第二銅・1水塩を1.89グラ
ム(9.47ミリモル)、塩化第二銅を419ミリグラム
(3.12ミリモル)にした他は全て実施例2と同様
に反応させた。反応混合液1リツトル当りの銅原
子の量は0.1グラム原子であり、塩素原子の銅原
子に対する比は0.50である。 スチレン転化率は86.4%、挂皮酸メチルの選択
率は79.6%、同収率は68.8%であつた。 実施例 11 実施例2におけるスチレンの代りにパラクロロ
スチレン、メタノールの代りにエタノールを用
い、塩化パラジウムの量を0.1ミリモルとした以
外は全て実施例2と同様にした。4−クロロ挂皮
酸エチルが収率60.2%で生成していた。 実施例 12 実施例1における酢酸パラジウムの量を9.0ミ
リグラム(0.04ミリモル)にし、塩化水素ガスの
代りに塩素ガスをメタノールに吸収させた液を使
用し、塩素原子が6.26ミリグラム原子となるよう
にし、他は全て実施例1と同様にした。反応混合
液1リツトル当りの銅原子は0.10グラム原子であ
り、塩素原子の銅原子に対するグラム原子比は
0.50である。 スチレンの転化率94.8%、挂皮酸メチルの選択
率82.3%、同収率78.0%であつた。Pd回転率は
4880である。 実施例 13〜17 表3に示すパラジウム化合物を0.04ミリモル用
い、助触媒各成分の種類と量を表3に示すように
かえた他は全て実施例2と同様にして反応させ
た。結果を実施例12のそれともに表3に示す。
[Table] Example 10 5% instead of palladium chloride in Example 2
Using 180 mg (0.085 milligram atom of palladium) of Pd/C (5% by weight of palladium supported on activated carbon), 1.89 grams (9.47 mmol) of cupric acetate monohydrate, and cupric chloride. The reaction was carried out in the same manner as in Example 2, except that the amount was changed to 419 milligrams (3.12 mmol). The amount of copper atoms per liter of reaction mixture is 0.1 gram atoms and the ratio of chlorine atoms to copper atoms is 0.50. The styrene conversion rate was 86.4%, the selectivity of methyl cinnamate was 79.6%, and the yield was 68.8%. Example 11 Everything was the same as in Example 2, except that parachlorostyrene was used instead of styrene, ethanol was used instead of methanol, and the amount of palladium chloride was changed to 0.1 mmol. Ethyl 4-chloroinnamate was produced in a yield of 60.2%. Example 12 The amount of palladium acetate in Example 1 was changed to 9.0 milligrams (0.04 millimoles), and instead of hydrogen chloride gas, a liquid obtained by absorbing chlorine gas in methanol was used, so that the number of chlorine atoms was 6.26 milligram atoms. Everything else was the same as in Example 1. The copper atoms per liter of reaction mixture are 0.10 gram atoms, and the gram atomic ratio of chlorine atoms to copper atoms is
It is 0.50. The conversion rate of styrene was 94.8%, the selectivity of methyl cinnamate was 82.3%, and the yield was 78.0%. Pd rotation rate is
It is 4880. Examples 13 to 17 The reaction was carried out in the same manner as in Example 2, except that 0.04 mmol of the palladium compound shown in Table 3 was used, and the type and amount of each cocatalyst component was changed as shown in Table 3. The results are shown in Table 3 below those of Example 12.

【表】 実施例 18 塩化バラジウム8.87ミリグラム(0.050ミリモ
ル)酢酸第二銅・1水塩2.50グラム(12.5ミリモ
ル)、酢酸第一マンガン・4水塩3.82グラム
(15.6ミリモル)を秤取し、これに少量のメタノ
ールを加えたのちスチレン26.04グラム(250.0ミ
リモル)をとり、予め直前に濃度を測つておいた
塩化水素ガスをメタノールに吸収させた液(濃度
1.07N)を6.0ml加え、塩化水素の量が6.4ミリモ
ルとなるようにし、更にメタノールを加えて全量
が125mlとなるようにした。 反応混合液1リツトル当りの銅原子の量は0.10
グラム原子であり、合計の塩素原子の銅原子に対
するグラム原子比は、0.52である。実施例1と同
様の反応器を用い、全圧を35Kg/cm2Gとし一酸化
炭素:酸素:窒素の分圧比が9.9:5.1:85.0の混
合ガスを用いた以外は全て実施例1と同様にして
反応させた。 スチレンの転化率は93.7%、桂皮酸メチルの収
率および選択率はそれぞれ89.1%、および83.5%
でありPd回転率は4180であつた。 実施例 19 塩化水素ガスをメタノールに吸収させた液(濃
度1.11N)を6.0ml加え塩化水素の量が6.7ミリモ
ルとなるようにした以外は全て実施例18と同じ仕
込みとした。反応混合液1リツトル当りの銅原子
の量は変らず0.10グラム原子であり、合計の塩素
原子の銅原子に対するグラム原子比は0.54であ
る。実施例1と同様の反応器を用い、全圧を35
Kg/cm2Gとし一酸化炭素:酸素:窒素の分圧比が
8.9:5.5:85.6の混合ガスを用いた以外は全て実
施例1と同様に反応させた。 スチレンの転化率94.2%であり、桂皮酸メチル
の選択率および収率はそれぞれ91.3%および86.0
%であつた。Pd回転率は4300であつた。 実施例 20 塩化水素ガスをメタノールに吸収させた液(濃
度1.07N)を5.0ml加え、塩化水素の量が5.4ミリ
モルとなるようにした以外は全て実施例18と同じ
仕込みとした。 反応混合液1リツトル当りの銅原子の量は変ら
ず0.10グラム原子であり、合計の塩素原子の銅原
子に対するグラム原子比は0.44である。 実施例1と同様の反応器を用い、全圧を20Kg/
cm2Gとし、一酸化炭素:酸素:窒素の分圧比が
8.9:5.5:85.6の混合ガスを用いた以外は全て実
施例1と同様にして反応させた。スチレンの転化
率89.3%、桂皮酸メチルの選択率および収率はそ
れぞれ90.5%および80.8%であつた。Pd回転率は
4040であつた。
[Table] Example 18 Weigh out 8.87 milligrams (0.050 millimoles) of palladium chloride, 2.50 grams (12.5 millimoles) of cupric acetate monohydrate, and 3.82 grams (15.6 millimoles) of manganese acetate tetrahydrate. After adding a small amount of methanol, 26.04 grams (250.0 mmol) of styrene was taken, and the hydrogen chloride gas, whose concentration had been measured just beforehand, was absorbed into methanol.
1.07N) was added to make the amount of hydrogen chloride 6.4 mmol, and methanol was further added to make the total amount 125 ml. The amount of copper atoms per liter of reaction mixture is 0.10
gram atoms, and the total chlorine to copper gram atomic ratio is 0.52. Everything was the same as in Example 1 except that the same reactor as in Example 1 was used, the total pressure was 35 Kg/cm 2 G, and a mixed gas with a carbon monoxide:oxygen:nitrogen partial pressure ratio of 9.9:5.1:85.0 was used. and reacted. Styrene conversion is 93.7%, methyl cinnamate yield and selectivity are 89.1% and 83.5%, respectively
The Pd rotation rate was 4180. Example 19 All preparations were the same as in Example 18, except that 6.0 ml of a solution in which hydrogen chloride gas was absorbed in methanol (concentration 1.11N) was added so that the amount of hydrogen chloride was 6.7 mmol. The amount of copper atoms per liter of reaction mixture remains unchanged at 0.10 gram atoms, and the total chlorine to copper gram atomic ratio is 0.54. Using the same reactor as in Example 1, the total pressure was set to 35
Kg/cm 2 G and the partial pressure ratio of carbon monoxide:oxygen:nitrogen is
The reaction was carried out in the same manner as in Example 1 except that a mixed gas of 8.9:5.5:85.6 was used. The conversion rate of styrene was 94.2%, and the selectivity and yield of methyl cinnamate were 91.3% and 86.0, respectively.
It was %. The Pd rotation rate was 4300. Example 20 All preparations were the same as in Example 18, except that 5.0 ml of a solution in which hydrogen chloride gas was absorbed in methanol (concentration 1.07N) was added so that the amount of hydrogen chloride was 5.4 mmol. The amount of copper atoms per liter of reaction mixture remains unchanged at 0.10 gram atoms, and the total chlorine to copper gram atomic ratio is 0.44. Using the same reactor as in Example 1, the total pressure was 20Kg/
cm 2 G, and the partial pressure ratio of carbon monoxide:oxygen:nitrogen is
The reaction was carried out in the same manner as in Example 1 except that a mixed gas of 8.9:5.5:85.6 was used. The conversion rate of styrene was 89.3%, and the selectivity and yield of methyl cinnamate were 90.5% and 80.8%, respectively. Pd rotation rate is
It was 4040.

Claims (1)

【特許請求の範囲】[Claims] 1 スチレン類、一酸化炭素、アルコールおよび
酸素を反応させて対応する挂皮酸エステル類を製
造するに際して、主触媒としてパラジウム金属ま
たはその化合物、ならびに助触媒として1銅の有
機酸塩2塩素化合物および3マンガンまたは亜鉛
の化合物を用い、反応混合液中の銅原子を0.004
〜0.4グラム原子/とし、かつ塩素原子の銅原
子に対するグラム原子比を2未満として反応させ
ることを特徴とする挂皮酸エステル類の製造方
法。
1. When producing the corresponding cinnamic acid esters by reacting styrenes, carbon monoxide, alcohol and oxygen, palladium metal or its compound is used as the main catalyst, and a copper organic acid salt dichloride compound and a cocatalyst are used as the co-catalyst. 3 Manganese or zinc compounds are used to reduce the copper atoms in the reaction mixture to 0.004
1. A method for producing cinnamic acid esters, characterized in that the reaction is carried out at ~0.4 gram atom/g and the gram atomic ratio of chlorine atoms to copper atoms is less than 2.
JP60085508A 1984-10-05 1985-04-23 Production of cinnamic esters Granted JPS61246148A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60085508A JPS61246148A (en) 1985-04-23 1985-04-23 Production of cinnamic esters
US06/780,838 US4661620A (en) 1984-10-05 1985-09-27 Preparation process of cinnamate esters
ES547459A ES8707707A1 (en) 1984-10-05 1985-10-01 Prepn. of cinnamate ester(s)
CA000492004A CA1238337A (en) 1984-10-05 1985-10-01 Preparation process of cinnamate esters
EP85307086A EP0177354B1 (en) 1984-10-05 1985-10-03 Preparation process of cinnamate esters
DE8585307086T DE3569519D1 (en) 1984-10-05 1985-10-03 Preparation process of cinnamate esters
DK455685A DK166964B1 (en) 1984-10-05 1985-10-04 METHOD OF PREPARING CINNAM TESTERS FOR THE CONVERSION OF CARBON MONOXIDE, OXYGEN, A STEERING COMPOUND AND AN ALCOHOL WITH USING A CATALYST
KR1019850007347A KR870000770B1 (en) 1984-10-05 1985-10-05 Preparation process fo cinnamate esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085508A JPS61246148A (en) 1985-04-23 1985-04-23 Production of cinnamic esters

Publications (2)

Publication Number Publication Date
JPS61246148A JPS61246148A (en) 1986-11-01
JPH0479331B2 true JPH0479331B2 (en) 1992-12-15

Family

ID=13860871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085508A Granted JPS61246148A (en) 1984-10-05 1985-04-23 Production of cinnamic esters

Country Status (1)

Country Link
JP (1) JPS61246148A (en)

Also Published As

Publication number Publication date
JPS61246148A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US4375566A (en) Process for producing ortho-alkylated phenols from anisoles
JPS6043767B2 (en) Catalyst for alcohol carbonylation
KR870000770B1 (en) Preparation process fo cinnamate esters
JPS60169442A (en) Production of cinnamic acid ester
EP0186349B1 (en) Process for the preparation of cinnamate ester
JPH0479331B2 (en)
JPS595570B2 (en) Method for producing cinnamic acid esters
JPH0550492B2 (en)
US5466856A (en) Method of producing carbonic diesters
JPH0627101B2 (en) Method for producing cinnamic acid esters
JPH0669986B2 (en) Method for producing cinnamic acid esters
EP0108332B1 (en) Preparation of acetone dicarboxylic acid diester
JPS6277352A (en) Production of cinnamic ester
JPS6094940A (en) Production of cinnamic acid ester
US5414110A (en) Ru-Sn hetero-polynuclear complex and process for producing acetic acid or methyl acetate by using the same
JPS62286953A (en) Production of cinnamic acid ester
JPS6023661B2 (en) Manufacturing method of cinnamic acid esters
JPH03141243A (en) Production of carbonic acid diester
JPH0761982B2 (en) Method for producing cinnamic acid esters
JPH068264B2 (en) Method for producing cinnamic acid esters
JPS6219553A (en) Production of cinnamic acid ester
JPS605581B2 (en) Manufacturing method of vinyl acetate
JPH047737B2 (en)
JPS5921852B2 (en) Production method of arylacetic acid esters
JPH04139153A (en) Production of carbonate diester