JPH0452254B2 - - Google Patents

Info

Publication number
JPH0452254B2
JPH0452254B2 JP58198818A JP19881883A JPH0452254B2 JP H0452254 B2 JPH0452254 B2 JP H0452254B2 JP 58198818 A JP58198818 A JP 58198818A JP 19881883 A JP19881883 A JP 19881883A JP H0452254 B2 JPH0452254 B2 JP H0452254B2
Authority
JP
Japan
Prior art keywords
cinnamic acid
acid ester
producing
rare earth
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58198818A
Other languages
Japanese (ja)
Other versions
JPS6092242A (en
Inventor
Hirosuke Wada
Yoshimitsu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58198818A priority Critical patent/JPS6092242A/en
Publication of JPS6092242A publication Critical patent/JPS6092242A/en
Publication of JPH0452254B2 publication Critical patent/JPH0452254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は桂皮酸エステルの製法に係り、特にア
ルコールの存在下にスチレン類を酸化的にカルボ
ニル化して桂皮酸エステルを製造する方法に関す
るものである。 〔従来技術〕 桂皮酸は、桂皮アルデヒド、シクラメンアルデ
ヒド、β−アミル桂皮アルデヒドなどとともに香
料原料として使用されるばかりでなく、農薬原料
としても有用であり、実験室的規模ではPerkin
反応により製造することができる。 スチレンの酸化的カルボニル化反応により桂皮
酸エステルを得た例としては、特開昭53−40709、
特開昭56−15242、特開昭56−22749、特開昭56−
22750、特開昭56−71039、特開昭57−21342、特
開昭57−21343、特開昭57−70836等が挙げられ
る。 これらの従来例のうち、代表的な触媒系を開示
しているものとして、特開昭56−15242及び特開
昭57−70836が挙げられる。特開昭56−15242にお
いては(1)白金族金属又はその化合物(2)銅塩又は鉄
塩及び(3)アルカリ金属、アルカリ土類金属、アル
ミニウム族金属から選ばれる金属の有機酸塩から
なる触媒が開示されている。また特開昭57−
70836においては、エチレングリコールエーテル
系溶媒中、(1)白金族金属又はその塩類、(2)銅又は
鉄の塩類及び(3)アルカリ金属又はアルカリ土類金
属の水酸化物、炭酸塩、酢酸塩から選ばれる1種
以上の化合物よりなる触媒の存在下に反応を行う
ことが開示されているが、反応の選択率及び収率
は十分なものとはいえなかつた。 又前記従来例のうちの最も早い時期に出願され
た特開昭53−40709には、白金属金属又はその化
合物、銅塩及び第3アミンを触媒としてメタノー
ルの存在下にスチレンを酸化的カルボニル化して
微量の桂皮酸メチルを得たことが報告されてい
る。しかしながら、この反応においては、桂皮酸
メチルの選択性は極めて低い。 〔発明の目的〕 本発明は安価な原料を用いて、工業的有利に桂
皮酸エステルを製造するべくなされたものであ
り、その目的とすところは、高い選択率及び収率
で桂皮酸エステルを製造することができる桂皮酸
エステルの製法を提供することにある。 〔発明の構成〕 この目的を達成するために、本発明者らは、ス
チレン類の酸化的カルボニル化により桂皮酸エス
テルを製造する方法について鋭意研究を重ねた結
果、(a)パラジウム金属又はその化合物、(b)銅又は
鉄の塩類及び(c)希土類化合物よりなる触媒の存在
下に、反応を行うことにより極めて高い選択率及
び収率で桂皮酸エステルを製造できるという新規
な事実を見い出し本発明に到達したものである。 即ち、本発明は、(a)パラジウム金属又はその化
合物、(b)銅又は鉄の塩類及び(c)希土類化合物より
なる触媒の存在下にスチレン類を炭素原子数1〜
4の脂肪族アルコール、一酸化炭素及び酸素と反
応させることを特徴とする桂皮酸エステルの製法
を要旨とするものである。 以下に本発明を詳細に説明する。 本発明方法においては特定の触媒の存在下、ス
チレン類を炭素原子数1〜4の脂肪族アルコー
ル、一酸化炭素及び酸素と反応させる。 スチレン類としては一般式 (式中、R1は水素、ハロゲン、炭素原子数1
〜4のアルキル基又は炭素原子数1〜4のアルコ
キシ基を表わし、R2は水素又は炭素原子数1〜
6のアルキル基を表わす。) で示されるスチレン類、具体的には、スチレン、
β−メチルスチレン、p−メチルスチレン、p−
メトキシスチレン、p−クロルスチレン、β−メ
チル−p−イソプロピルスチレン、β−アミルス
チレン等が挙げられる。 炭素原子数1〜4の脂肪族アルコールとして
は、具体的には、メタノール、エタノール、イソ
プロピルアルコール、n−ブチルアルコール、t
−ブチルアルコール等が挙げられるが、アセター
ル、ケタール、カルボン酸のオルトエステル、ジ
アルコキシシクロアルカン、オルトホウ酸エステ
ル等の反応系内で解離して上記のアルコールを放
出し得る化合物を用いることもできる。 本発明の製法において、より高い桂皮酸エステ
ルの生成収率を得るためには、反応系中における
上記脂肪族アルコールに対するスチレン類の溶存
モル比を0.5〜1.5に保つことが好ましい。 一酸化炭素及び酸素は純粋な状態で使用するこ
ともできるが、窒素、アルゴン等の不活性ガスで
稀釈して使用することもできる。より高い桂皮酸
エステルの収率を得るためには、反応系中の一酸
化炭素分圧を0.1Kg/cm2G以上10Kg/cm2G以下に
保ちかつ反応系中の酸素分圧に対する一酸化炭素
分圧の比を1.0〜2.5に保つことが好ましい。 本発明方法において反応は、(a)パラジウム金属
又はその化合物、(b)銅又は鉄の塩類及び(c)希土類
化合物からなる触媒の存在下で実施される。 パラジウム金属又はその化合物としては、パラ
ジウム黒、担体付き金属パラジウム等の金属パラ
ジウム又はテトラキス(トリフエニルホスフイ
ン)パラジウム等の0価のパラジウム錯体;塩化
パラジウム、硝酸パラジウム等の2価のパラジウ
ムの無機塩;酢酸パラジウム、安息香酸パラジウ
ム等の2価のパラジウムのカルボン酸塩;ビス
(アセチルアセトナト)パラジウム、ビス(トリ
フエニルホスフイン)ジクロロパラジウム等の2
価のパラジウム錯体等のパラジウム化合物が挙げ
られる。これらのパラジウム金属又はその化合物
を担体に担持して用いる場合には、シリカ、アル
ミナ、シリカアルミナ、マグネシア、チタニア、
珪藻土、活性炭、グラフアイト、炭酸バリウム、
炭酸カルシウム等が担体として使用される。 銅又は鉄の塩類としては、これらの塩酸塩、硝
酸塩、硫酸塩、リン酸塩、ホウ酸塩等の無機塩
類、酢酸塩、安息香酸塩等の有機酸塩が挙げられ
る。塩類の銅の原子価は1価でも2価でも良く、
また鉄の原子価は2価でも3価でも良い。 希土類化合物としては、3a族のスカンジウム
及びイツトリウムと、ランタンからルテチウムま
でのランタノイドの計17元素の酸化物、複合酸化
物、又は塩類が挙げられる。具体的には酸化物と
してはCeO2,Pr6O11,La2O3等の塩基性酸化物
が挙げられ、又複合酸化物としては数種類の希土
類元素の混合物(ミツシユメタルと一般に呼称さ
れている)の複合酸化物が挙げられる。又、塩類
としては、塩酸塩、硝酸塩等の無機酸塩及び酢酸
塩等の有機酸塩が挙げられる。 本発明方法で用いられる触媒における(a),(b),
(c)3成分の混合比率は、(a)パラジウム金属又はそ
の化合物と(b)銅又は鉄の塩類との割合が原子比で
1対0.1〜500、好ましくは1対10〜300の範囲と
なるように、又(b)銅又は鉄の塩類と(c)希土類化合
物との割合が原子比で1対0.01〜100、好ましく
は1対0.1〜50の範囲となるように調整するのが
好適である。 本発明において反応溶媒は特に使用しなくても
何ら支障はないが場合により操作を円滑に行う為
に適当な不活性溶媒を使用することができる。溶
媒としては例えば、ジエチルエーテル、ジフエニ
ルエーテル、ジオキサン、テトラヒドロフラン、
エチレングリコールジメチルエーテル等のエーテ
ル類;アセトン、メチルエチルケトン、ジブチル
ケトン、アセトフエノン等のケトン類;酢酸メチ
ル、酢酸エチル、プロピオン酸エチル、安息香酸
ベンジル、フエニルコハク酸ジメチル等のエステ
ル類;ベンゼン、トルエン、p−キシレン、エチ
ルベンゼン等の芳香族炭化水素類;n−ヘキサ
ン、n−オクタン、シクロヘキサン等の脂肪族又
は脂環族の炭化水素類;アセトアミド、N−メチ
ルピロリドン等のアミド類;エチレンカーボネー
ト、プロピレンカーボネート等のカーボネート類
等が挙げられる。 本発明の製法においては、反応温度を高めるこ
とにより、桂皮酸エステルの収率を向上させるこ
とができるが、あまり高くすると二酸化炭素の生
成など副反応の生起により、逆に桂皮酸エステル
の選択率が低下する。従つて、反応温度は通常は
常温〜200℃、好ましくは50〜150℃の範囲内とす
るのが適当である。 本発明の反応により得られる反応生成液は、蒸
留、抽出等の通常の分離手段を採用することによ
り、目的とする桂皮酸エステルを容易に分離取得
することができる。 本発明の方法により一般式 (式中、R1及びR2は前記定義に同じ) で示されるスチレン類の酸化的カルボニル化反応
により、一般式 (式中、R1及びR2は前記定義に同じであり、
R3は炭素原子数1〜4のアルキル基を表わす。) で示される桂皮酸エステルが得られる。 〔発明の実施例〕 以下に本発明を実施例により更に具体的に説明
するが本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。 実施例 1 内容積90mlのスピナー攪拌式ハステロイC製オ
ートクレーブにスチレン7ml、メタノール3ml、
5%Pd/A.C.(5重量%のパラジウムに活性炭に
担持したもの)0.25mmo(Pd換算)、塩化第二
銅0.5mmo、酸化ランタン(La2O3)1.5mmo
を仕込み、密封後、一酸化炭素8Kg/cm2Gを圧入
した。次いで6%O2/N2(酸素を6容量%含む窒
素)を圧入し、全圧を102Kg/cm2Gとした。しか
る後、オートクレーブを100℃に加熱し、1時間
反応を行つた。反応終了後オートクレーブを水冷
放圧して得られる反応ガス及び生成液の組成を
各々ガスクロマトグラフイーにより分析し、桂皮
酸メチルの生成量及び選択率、二酸化炭素の生成
量を求めた。 結果を表1に示す。尚、桂皮酸メチルの選択率
は下記式により計算して求めた。 桂皮酸メチル選択率=(桂皮酸メチル)÷(桂皮
酸メチル+2及び3プロピオン酸メチル+アセト
フエノン+フエニルコハク酸ジメチル)×100 実施例 2〜10 実施例1において希土類化合物及びその添加量
を表1に示すものとした以外は、実施例1と同様
に反応及び分析を行い、桂皮酸メチルの生成量及
び選択率、二酸化炭素の生成量を求めた。結果を
表1に示す。 実施例 11 実施例1において、5%Pd/A.C.を0.05mmo
(Pd換算)に、塩化第二銅を10mmoに、又
一酸化炭素の仕込み圧力を15Kg/cm2Gに変更した
こと以外は、実施例1と同様に反応及び分析を行
い、桂皮酸メチルの生成量及び選択率、二酸化炭
素の生成量を求めた。結果を表1に示す。
[Field of Application of the Invention] The present invention relates to a method for producing a cinnamic acid ester, and particularly to a method for producing a cinnamic acid ester by oxidatively carbonylating styrenes in the presence of an alcohol. [Prior art] Cinnamic acid is not only used as a raw material for fragrances, such as cinnamaldehyde, cyclamenaldehyde, and β-amylcinnamaldehyde, but also as a raw material for agricultural chemicals.
It can be produced by reaction. Examples of obtaining cinnamic acid esters by oxidative carbonylation of styrene include JP-A No. 53-40709;
JP-A-56-15242, JP-A-56-22749, JP-A-56-
22750, JP-A-56-71039, JP-A-57-21342, JP-A-57-21343, and JP-A-57-70836. Among these conventional examples, those disclosing typical catalyst systems include JP-A-56-15242 and JP-A-57-70836. In JP-A-56-15242, it consists of (1) a platinum group metal or its compound, (2) a copper salt or iron salt, and (3) an organic acid salt of a metal selected from alkali metals, alkaline earth metals, and aluminum group metals. A catalyst is disclosed. Also, JP-A-57-
70836, in an ethylene glycol ether solvent, (1) platinum group metals or their salts, (2) copper or iron salts, and (3) alkali metal or alkaline earth metal hydroxides, carbonates, and acetates. Although it has been disclosed that the reaction is carried out in the presence of a catalyst consisting of one or more compounds selected from the following, the selectivity and yield of the reaction were not sufficient. Furthermore, in JP-A No. 53-40709, which was filed at the earliest of the above-mentioned conventional examples, styrene was oxidatively carbonylated in the presence of methanol using a platinum metal or its compound, a copper salt, and a tertiary amine as a catalyst. It has been reported that a trace amount of methyl cinnamate was obtained. However, in this reaction, the selectivity for methyl cinnamate is extremely low. [Object of the invention] The present invention was made to industrially advantageously produce cinnamic acid ester using inexpensive raw materials.The purpose of the present invention is to produce cinnamic acid ester with high selectivity and yield. An object of the present invention is to provide a method for producing cinnamic acid ester. [Structure of the Invention] In order to achieve this object, the present inventors have conducted extensive research on a method for producing cinnamic acid esters by oxidative carbonylation of styrenes, and have found that (a) palladium metal or its compound; , (b) salts of copper or iron, and (c) the presence of a catalyst consisting of a rare earth compound.The present invention was based on the discovery of the novel fact that cinnamic acid esters can be produced with extremely high selectivity and yield by carrying out the reaction. has been reached. That is, the present invention provides styrenes having 1 to 1 carbon atoms in the presence of a catalyst consisting of (a) palladium metal or its compound, (b) copper or iron salts, and (c) rare earth compound.
The gist of this invention is a method for producing a cinnamic acid ester, which is characterized by reacting it with an aliphatic alcohol, carbon monoxide, and oxygen. The present invention will be explained in detail below. In the method of the present invention, styrenes are reacted with an aliphatic alcohol having 1 to 4 carbon atoms, carbon monoxide, and oxygen in the presence of a specific catalyst. General formula for styrenes (In the formula, R 1 is hydrogen, halogen, carbon number 1
~4 alkyl group or an alkoxy group having 1 to 4 carbon atoms, and R 2 is hydrogen or an alkyl group having 1 to 4 carbon atoms.
6 represents an alkyl group. ), specifically, styrene,
β-methylstyrene, p-methylstyrene, p-
Examples include methoxystyrene, p-chlorostyrene, β-methyl-p-isopropylstyrene, and β-amylstyrene. Examples of aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, isopropyl alcohol, n-butyl alcohol, and t-butyl alcohol.
Examples include -butyl alcohol, but compounds that can be dissociated in the reaction system to release the above-mentioned alcohol, such as acetals, ketals, orthoesters of carboxylic acids, dialkoxycycloalkanes, and orthoboric acid esters, can also be used. In the production method of the present invention, in order to obtain a higher production yield of cinnamic acid ester, it is preferable to maintain the dissolved molar ratio of styrenes to the aliphatic alcohol in the reaction system at 0.5 to 1.5. Carbon monoxide and oxygen can be used in a pure state, but they can also be used diluted with an inert gas such as nitrogen or argon. In order to obtain a higher yield of cinnamic acid ester, it is necessary to maintain the carbon monoxide partial pressure in the reaction system between 0.1 Kg/cm 2 G and 10 Kg/cm 2 G and reduce the monoxide relative to the oxygen partial pressure in the reaction system. It is preferable to maintain the carbon partial pressure ratio between 1.0 and 2.5. In the method of the present invention, the reaction is carried out in the presence of a catalyst consisting of (a) palladium metal or a compound thereof, (b) a salt of copper or iron, and (c) a rare earth compound. Examples of palladium metal or its compounds include palladium black, metal palladium such as supported metal palladium, or zero-valent palladium complexes such as tetrakis(triphenylphosphine)palladium; inorganic salts of divalent palladium such as palladium chloride and palladium nitrate. ; Divalent palladium carboxylates such as palladium acetate and palladium benzoate; Bis(acetylacetonato)palladium, bis(triphenylphosphine)dichloropalladium, etc.
Examples include palladium compounds such as valent palladium complexes. When using these palladium metals or their compounds supported on a carrier, silica, alumina, silica alumina, magnesia, titania,
Diatomaceous earth, activated carbon, graphite, barium carbonate,
Calcium carbonate and the like are used as carriers. Examples of copper or iron salts include inorganic salts such as hydrochlorides, nitrates, sulfates, phosphates, borates, and organic acid salts such as acetates and benzoates. The valence of copper in salts may be monovalent or divalent,
Further, the valence of iron may be divalent or trivalent. Examples of rare earth compounds include oxides, composite oxides, or salts of a total of 17 elements, including scandium and yttrium of Group 3a, and lanthanoids from lanthanum to lutetium. Specifically, oxides include basic oxides such as CeO 2 , Pr 6 O 11 , La 2 O 3 , etc. Complex oxides include mixtures of several types of rare earth elements (generally called Mitsushi metal). ) complex oxides. Examples of salts include inorganic acid salts such as hydrochloride and nitrate, and organic acid salts such as acetate. (a), (b) in the catalyst used in the method of the present invention,
(c) The mixing ratio of the three components is such that the atomic ratio of (a) palladium metal or its compound and (b) copper or iron salt is in the range of 1:0.1 to 500, preferably 1:10 to 300. It is preferable to adjust the ratio of (b) copper or iron salts and (c) rare earth compound so that the atomic ratio is in the range of 1:0.01 to 100, preferably 1:0.1 to 50. It is. In the present invention, there is no problem even if no reaction solvent is used, but in some cases, an appropriate inert solvent may be used to facilitate the operation. Examples of solvents include diethyl ether, diphenyl ether, dioxane, tetrahydrofuran,
Ethers such as ethylene glycol dimethyl ether; Ketones such as acetone, methyl ethyl ketone, dibutyl ketone, acetophenone; Esters such as methyl acetate, ethyl acetate, ethyl propionate, benzyl benzoate, dimethyl phenylsuccinate; benzene, toluene, p-xylene , aromatic hydrocarbons such as ethylbenzene; aliphatic or alicyclic hydrocarbons such as n-hexane, n-octane, and cyclohexane; amides such as acetamide and N-methylpyrrolidone; ethylene carbonate, propylene carbonate, etc. Examples include carbonates. In the production method of the present invention, the yield of cinnamic acid ester can be improved by increasing the reaction temperature, but if it is too high, side reactions such as the production of carbon dioxide may occur, resulting in a decrease in the selectivity of cinnamic acid ester. decreases. Therefore, it is appropriate that the reaction temperature is usually within the range of room temperature to 200°C, preferably 50 to 150°C. The desired cinnamic acid ester can be easily separated and obtained from the reaction product liquid obtained by the reaction of the present invention by employing ordinary separation means such as distillation and extraction. By the method of the present invention, the general formula (In the formula, R 1 and R 2 are the same as defined above) Through the oxidative carbonylation reaction of styrenes, the general formula (wherein R 1 and R 2 are the same as defined above,
R 3 represents an alkyl group having 1 to 4 carbon atoms. ) is obtained. [Examples of the Invention] The present invention will be explained in more detail by Examples below, but the present invention is not limited to the following Examples unless the gist of the invention is exceeded. Example 1 Styrene 7 ml, methanol 3 ml,
5% Pd/AC (5% by weight palladium supported on activated carbon) 0.25 mmo (Pd equivalent), cupric chloride 0.5 mmo, lanthanum oxide (La 2 O 3 ) 1.5 mmo
After the container was sealed, 8 kg/cm 2 G of carbon monoxide was press-injected. Next, 6% O 2 /N 2 (nitrogen containing 6% by volume of oxygen) was injected to make the total pressure 102 Kg/cm 2 G. Thereafter, the autoclave was heated to 100°C and reaction was carried out for 1 hour. After the reaction was completed, the autoclave was water-cooled and depressurized, and the compositions of the reaction gas and product liquid obtained were analyzed by gas chromatography to determine the amount and selectivity of methyl cinnamate produced and the amount of carbon dioxide produced. The results are shown in Table 1. Note that the selectivity of methyl cinnamate was calculated using the following formula. Methyl cinnamate selectivity = (methyl cinnamate) ÷ (methyl cinnamate + methyl 2 and 3 propionate + acetophenone + dimethyl phenylsuccinate) x 100 Examples 2 to 10 The rare earth compounds and their addition amounts in Example 1 are shown in Table 1. The reaction and analysis were carried out in the same manner as in Example 1 except as shown, and the amount and selectivity of methyl cinnamate produced and the amount of carbon dioxide produced were determined. The results are shown in Table 1. Example 11 In Example 1, 0.05 mmo of 5% Pd/AC
(in terms of Pd), the reaction and analysis were carried out in the same manner as in Example 1, except that the cupric chloride was changed to 10 mmo, and the charging pressure of carbon monoxide was changed to 15 kg/cm 2 G. The production amount, selectivity, and carbon dioxide production amount were determined. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明の桂皮酸エステルの製法に
よれば、(a)パラジウム金属又はその化合物、(b)銅
又は鉄の塩類及び(c)希土類化合物からなる触媒の
存在下、スチレン類の酸化的カルボニル化により
高い選択率及び収率で桂皮酸エステルを製造する
ことができる。しかも本発明の方法においては安
価な原料及び触媒系により桂皮酸エステルを製造
することができ、工業的に極めて有利である。
According to the method for producing cinnamic acid esters of the present invention detailed above, styrenes are oxidized in the presence of a catalyst consisting of (a) palladium metal or its compound, (b) salts of copper or iron, and (c) rare earth compounds. Cinnamic acid esters can be produced with high selectivity and yield by selective carbonylation. Furthermore, the method of the present invention allows the production of cinnamic acid esters using inexpensive raw materials and catalyst systems, which is extremely advantageous industrially.

Claims (1)

【特許請求の範囲】 1 (a)パラジウム金属又はその化合物、(b)銅又は
鉄の塩類及び(c)希土類化合物とからなる触媒の存
在下に、スチレン類を炭素原子数1〜4の脂肪族
アルコール、一酸化炭素及び酸素と反応させるこ
とを特徴とする桂皮酸エステルの製法。 2 特許請求の範囲第1項に記載の桂皮酸エステ
ルの製法において、スチレン類が一般式 (式中、R1は水素、ハロゲン、炭素原子数1
〜4のアルキル基又は炭素原子数1〜4のアルコ
キシ基を表わし、R2は水素又は炭素原子数1〜
6のアルキル基を表わす。) で示されるスチレン類であることを特徴とする製
法。 3 特許請求の範囲第2項に記載の桂皮酸エステ
ルの製法において、スチレン類がスチレンである
ことを特徴とする製法。 4 特許請求の範囲第1項ないし第3項のいずれ
か1項に記載の桂皮酸エステルの製法において、
希土類化合物が希土類酸化物であることを特徴と
する製法。 5 特許請求の範囲第1項ないし第3項のいずれ
か1項に記載の桂皮酸エステルの製法において、
希土類化合物が希土類元素の有機酸塩であること
を特徴とする製法。 6 特許請求の範囲第1項ないし第5項のいずれ
か1項に記載の桂皮酸エステルの製法において、
(a)パラジウム金属又はその化合物と(b)銅又は鉄の
塩類との割合が原子比で1対0.1〜500であること
を特徴とする製法。 7 特許請求の範囲第1項ないし第6項のいずれ
か1項に記載の桂皮酸エステルの製法において、
(b)銅又は鉄の塩類と(c)希土類化合物との割合が原
子比で1対0.01〜100であることを特徴とする製
法。
[Scope of Claims] 1. Styrenes are mixed with a fatty acid having 1 to 4 carbon atoms in the presence of a catalyst consisting of (a) palladium metal or its compound, (b) copper or iron salts, and (c) a rare earth compound. A method for producing a cinnamic acid ester, characterized by reacting it with a group alcohol, carbon monoxide and oxygen. 2. In the method for producing a cinnamic acid ester according to claim 1, styrenes have the general formula (In the formula, R 1 is hydrogen, halogen, carbon number 1
~4 alkyl group or an alkoxy group having 1 to 4 carbon atoms, and R 2 is hydrogen or an alkyl group having 1 to 4 carbon atoms.
6 represents an alkyl group. ) A manufacturing method characterized by using styrenes represented by 3. The method for producing a cinnamic acid ester according to claim 2, characterized in that the styrene is styrene. 4. In the method for producing a cinnamic acid ester according to any one of claims 1 to 3,
A manufacturing method characterized in that the rare earth compound is a rare earth oxide. 5. In the method for producing a cinnamic acid ester according to any one of claims 1 to 3,
A manufacturing method characterized in that the rare earth compound is an organic acid salt of a rare earth element. 6. In the method for producing a cinnamic acid ester according to any one of claims 1 to 5,
A manufacturing method characterized in that the ratio of (a) palladium metal or its compound to (b) copper or iron salts is in an atomic ratio of 1:0.1 to 500. 7. In the method for producing a cinnamic acid ester according to any one of claims 1 to 6,
A manufacturing method characterized in that the ratio of (b) copper or iron salts to (c) rare earth compound is in an atomic ratio of 1:0.01 to 100.
JP58198818A 1983-10-24 1983-10-24 Preparation of cinnamic ester Granted JPS6092242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58198818A JPS6092242A (en) 1983-10-24 1983-10-24 Preparation of cinnamic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198818A JPS6092242A (en) 1983-10-24 1983-10-24 Preparation of cinnamic ester

Publications (2)

Publication Number Publication Date
JPS6092242A JPS6092242A (en) 1985-05-23
JPH0452254B2 true JPH0452254B2 (en) 1992-08-21

Family

ID=16397416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198818A Granted JPS6092242A (en) 1983-10-24 1983-10-24 Preparation of cinnamic ester

Country Status (1)

Country Link
JP (1) JPS6092242A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761982B2 (en) * 1985-11-21 1995-07-05 三井東圧化学株式会社 Method for producing cinnamic acid esters
US5179224A (en) * 1986-04-11 1993-01-12 Mitsui Toatsu Chemicals, Incorporated Preparation process of cinnamate ester

Also Published As

Publication number Publication date
JPS6092242A (en) 1985-05-23

Similar Documents

Publication Publication Date Title
WO2020022365A1 (en) Method for producing 1-acyloxy-2-methyl-2-propene
EP0152075B1 (en) Process for the production of cinnamic acid esters
JPH0452254B2 (en)
JPS595570B2 (en) Method for producing cinnamic acid esters
EP0186349B1 (en) Process for the preparation of cinnamate ester
JPH0452255B2 (en)
JPS6323984B2 (en)
JPH0515503B2 (en)
JPH0452256B2 (en)
KR810000379B1 (en) Process for the preparation of an anhydride of a mono carboxylic acid
JPS60126245A (en) Production of cinnamic acid ester
JP2000119225A (en) Production of carbonic ester
JPS6023661B2 (en) Manufacturing method of cinnamic acid esters
JPS6314698B2 (en)
JPS5833213B2 (en) Production method of “shiyu” acid ester
JPH0627101B2 (en) Method for producing cinnamic acid esters
JPS5826901B2 (en) Method for producing 3-pentenoic acid ester
JPH0784406B2 (en) Process for producing 2- (substituted aryl) propionic acid or ester
JPS6094940A (en) Production of cinnamic acid ester
JPS6314699B2 (en)
JPH0834762A (en) Production of alpha-ketonic acid ester
JPH01301645A (en) Production of carboxylic acid aryl esters and catalyst used in said production process
JPH0669986B2 (en) Method for producing cinnamic acid esters
JPS61205233A (en) Production of cinnamic acid ester
JPS6097935A (en) Production of cinnamic acid ester