JPH0550339B2 - - Google Patents

Info

Publication number
JPH0550339B2
JPH0550339B2 JP8520885A JP2088585A JPH0550339B2 JP H0550339 B2 JPH0550339 B2 JP H0550339B2 JP 8520885 A JP8520885 A JP 8520885A JP 2088585 A JP2088585 A JP 2088585A JP H0550339 B2 JPH0550339 B2 JP H0550339B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
coating layer
porous coating
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8520885A
Other languages
Japanese (ja)
Other versions
JPS61181537A (en
Inventor
Motonobu Kobayashi
Kiichiro Mitsui
Akira Inoe
Tetsutsugu Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60020885A priority Critical patent/JPS61181537A/en
Publication of JPS61181537A publication Critical patent/JPS61181537A/en
Publication of JPH0550339B2 publication Critical patent/JPH0550339B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明はボイラー、火力発電所、製鉄所などを
はじめ各種工場の固定燃焼装置から排出される排
ガス中に含有される窒素酸化物(以下NOxとす
る)の浄化用触媒の製法に関する。特にNOxお
よび硫黄酸化物(主として二酸化硫黄、以下SOx
とする)を同時に含有する排ガスにアンモニアを
還元剤として加え、接触的に反応させることによ
り効率よくNOxを無害な窒素と水とに分解し、
NOx還元除去反応と同時に生じる二酸化硫黄
(SO2)の三酸化硫黄(SO3)への酸化反応を実
質的に抑制し、かつ、耐久性にすぐれた性能を有
する触媒の製法に関するものである。 <従来技術の説明> 排ガス中のNOx除去法としては、大別して吸
着法、吸収法及び接触還元法などがあるが、接触
還元法が排ガス処理量が大きく、かつ廃水処理も
不用であり、技術的、経済的にも有利である。 接触還元法には還元剤としてメタン、LPG等
の炭化水素、水素あるいは一酸化炭素を用いる非
選択的還元法と還元剤としてアンモニアを用いる
選択的還元法とがある。後者の場合高濃度の酸素
を含む排ガスでもNOxを選択的に除去でき、又
使用する還元剤も少量ですむため経済的に有利で
あり、現在最も広く利用されている。 重油焚ボイラや石炭焚ボイラからの排ガスのよ
うに、多量のダストを含有している排ガスを処理
する場合、ダストが触媒に付着または触媒間に堆
積することにより触媒性能の低下や触媒層の圧損
の増大を招き、円滑な操業を妨げるという問題点
が生じる。これ等の欠点を解決するためにダスト
が触媒層を容易に通過できる触媒形状が提案され
ている。 すなわち、パイプ状、ハニカム状、および板状
の触媒をガス流れと平行に配置する方法が広く用
いられている。 特に、接触物質(金属酸化物)を金属基材に担
持して得られた板状触媒は金属基材の厚みを薄く
しても十分使用に耐え得る強度を有するために、
触媒の単位体積当りの表面積を大きくすることが
でき、脱硝装置がコンパクトになる利点がある。 一般に、触媒物質と金属基材とでは熱膨張係数
が異なるために、熱ひずみより触媒物質に亀裂が
生じたり、また振動、衝撃に対して触媒物質層が
はく離することがある。したがつて、金属基材と
触媒物質との接着性の改良を目的とした種々の製
造方法および触媒が提案されている。例えば、金
属基材の表面部にローレツト、フライス、ロー
ル、プレス等の機械的加工や放電加工によつて針
状突起等の凹凸面を形成させ、その凹凸部に触媒
物質を定着させた触媒(特開昭53−149884号公
報)、金属基材の表面に金属または非金属を溶射
し、溶射表面に触媒物質を担持させる方法(特開
昭54−15490号公報、特開昭54−79189号公報)お
よび金属基材の表面に複合メツキによつて表面粗
さの大きい被覆層を形成させた後、触媒成分を担
持させる方法(特開昭57−19040号公報)等が開
示されている。 上記の発明はいずれも金属基材の表面粗度をあ
らくして、触媒物質と金属表面との機械的結合力
を大きくしようとするものであるが、加工費が高
くなり触媒コストが上昇するという欠点がある。 <発明の目的> 本発明は上記の点に鑑み従来技術の欠点を克服
し、安価で、触媒物質の金属基材への付着性が良
好であり、かつ、脱硝活性および耐久性の優れた
窒素酸化物洗浄化用触媒の製法を提供するもので
ある。 <発明の構成> 本発明者らは金属基材の表面にチタン、ケイ
素、ジルコニウムおよびアルミニウムよりなる群
から選ばれた少なくとも一種の元素の酸化物とバ
ナジウム酸化物とよりなる混合物を被覆し、つい
で該被覆層を700〜1000℃の高温で処理してバナ
ジウム酸化物を溶融し該金属基材上に多孔質被覆
層を形成させ、次いで該被覆層に、チタンを含む
酸化物を触媒A成分とし、バナジウム酸化物を触
媒B成分とし、並びにモリブデン、タングステ
ン、銅、クロム、錫及びセリウムよりなる群から
選ばれる少なくとも1種の元素の酸化物を触媒C
成分として含有する触媒成分を担持させて得られ
た触媒が上記目的を達成することを見い出し本発
明を完成した。 以下本発明を詳細に説明する。 本発明における多孔質被覆層のバナジウム成分
である酸化バナジウムは700℃以上に焼成するこ
とにより溶融し、チタニア、シリカ、ジルコニア
およびアルミナ等の微粒子と強く結合するととも
に、これ等の微粒子を抱き込むようにして、金属
基材表面と固相反応を起こし、この結果、金属基
材と強固に接合した多孔被覆層を形成することが
できる。 上記被覆部は表面粗度があらく、数多くの気孔
が存在し、保水性に優れた多孔質からなつている
ので本発明の触媒は先行技術の触媒に比べて触媒
物質の付着力が強く、また熱衝撃に対しても、触
媒物質の亀裂およびはく離が生じない極めて物理
的強度の優れた触媒といえる。 多孔質被覆部におけるバナジウム成分とし、酸
化バナジウムの代わりにバナジウム金属を用るこ
とは困難である。バナジウム金属の融点(m.
p.1726℃)が高いために、バナジウムを溶融させ
るのに極めて高い温度が必要となり、金属基材の
選択も含め、触媒の製造コストも高くなるので好
ましくない。 一方、本発明の触媒は該多孔質被覆部のバナジ
ウム成分が融点の比較的低い酸化バナジウムから
なつているために、触媒製造プロセスが簡単で、
かつ、強度にすぐれた安価な触媒を提供できる利
点がある。 本発明における多孔質被覆層は金属基材を脱脂
処理後、バナジウム酸化物を必須成分とし、チタ
ン、ケイ素、ジルコニウムおよびアルミニウム等
の各々の単独の酸化物もしくは二種以上の元素か
らなる複合酸化物(例えば、チタンおよびケイ素
からなる二元系酸化物)を良く混合し、適量の水
を添加して得られたスラリーまたはペーストを塗
付、浸漬、スプレー法等で付着させた後、乾燥し
次いで酸化バナジウムの融点以上の温度、好まし
くは700〜1000℃の温度で1〜60分間焼成するこ
とによつて得られる。 チタン、ケイ素、ジルコニウムおよびアルミニ
ウムの酸化物の粒度については、あまり大きいと
金属基材との付着性が悪くなるので100μm以下、
とくに50μm以下であることが好ましい。 多孔質被覆層の厚みは特に限定される必要はな
く、触媒物質の付着強度が使用可能な程度であれ
ば十分であるが、10μm以上好ましくは20〜500μ
mの範囲であることが好ましい結果を与える。 多孔質被覆層を構成する酸化バナジウム含有量
は3〜50重量%の範囲にあることが好ましい。酸
化バナジウム含有量が3重量%未満の場合、基材
と接着性が不十分となり、また50重量%を越える
と多孔質被覆層の表面が平滑化され、保水性を悪
化するために触媒物質と多孔質被覆層との付着力
が低下し好ましくない。したがつて酸化バナジウ
ム含有量は上記範囲が好適である。 本発明の触媒は上記規定した活性物質を含む触
媒物質のスラリーもしくはペーストを上記多孔質
被覆部に塗付、浸漬、スプレー法等でコーテイン
グした後乾燥し、ついで300〜650℃、好ましくは
400〜550℃で1〜10時間、好ましくは3〜6時間
焼成することにより得ることができる。 触媒物質の担持量は、触媒の単位表面積当り50
〜300g/m2の範囲が好ましい。50g/m2未満の
場合脱硝活性が悪くなり、300g/m2を越えると
脱硝活性はさら向上せず、ほぼ平衡に達するが触
媒の原料コストは高くなるために、上記の範囲が
好ましい結果を与える。 本発明の触媒物質はチタンを含む酸化物を触媒
A成分とし、バナジウム酸化物を触媒B成分とし
並びにモリブデン、タングステン、銅、クロム、
錫及びセリウムよりなる群から選ばれる少なくと
も1種の元素の酸化物を触媒C成分としてなる酸
化物の混合物からなり、該組成はA成分が80〜95
重量%、B成分が0.5〜20重量%、C成分が0〜
20重量%の範囲よりなつていることが好ましい。
触媒A成分はチタンを含む酸化物であればよく、
酸化チタン、チタン、ケイ素からなる二元系酸化
物、チタン、ケイ素、ジルコニウムからなる三元
系酸化物、あるいはリン酸チタンをも適用するこ
とができる。 本発明における金属の基材の材質は純鉄、銑
鉄、鋼および鉄含有合金等が使用され、また形状
としては平板状、波板状、棒状、線状、ハニカム
状および中空円筒状やこれ等の形状を組み合わせ
た任意の形状の構造物が適用される。例えば一例
としてエアーヒーターのエレメントの一部を本発
明の方法により触媒化することにより、熱交換と
脱硝の両機能を兼ね備えたエアーヒーターを提供
することができる。 以下、実施例を用いて本発明を具体的に説明す
るが、本発明はこれ等の実施例のみに限定される
ものではない。 実施例 1 シユウ酸水溶液にメタバナジン酸アンモニウム
を溶解させた溶液にアナターゼ型酸化チタン(比
表面積50m2/g、平均粒径0.3μm)を添加し、混
合した後濃縮乾固し、ついで400℃で3時間焼成
してTiO2:V2O5=85:15(重量比)の粉体を得
た。 この粉体に水を添加してホモジスパーで十分攪
拌しスラリーにした後、50mm×30mm×0.6mmtの
冷間圧延鋼板(SPCC)を浸漬し、乾燥後750℃、
10分間空気雰囲気下で焼成し、鋼板表面に多孔質
被覆層を形成せしめた。えられた被覆層の平均厚
みは50μmであつた。 次に、モノエタノールアミン12c.c.を含む水溶液
350c.c.にパラタングステン酸アンモニウム32.3g
を溶解させた後、メタバナジン酸アンモニウム
35.7gを溶解し、均一溶液とした。この溶液にア
ナターゼ型酸化チタン(比表面積50m2/g)500
gを添加し、よく混合した後乾燥し、400℃で5
時間焼成して、TiO2:V2O5:WO3=90:5:5
(重量比)の組成を有する触媒粉体を得た。この
触媒粉体500gに水800c.c.を添加し、さらに適当量
の水を添加しつつホモジスパーで攪拌して、均一
なスラリー液とした後、上記の多孔質被覆層を形
成せしめた鋼板を浸漬し、次いで100℃で5時間、
乾燥後400℃で5時間焼成した。触媒活性物質の
担体量は触媒の単位表面積当り120g/m2であつ
た。 実施例 2 実施例1において、多孔性被覆層を構成してい
る酸化チタンの代わりに酸化ジルコニウム(表面
積45m2/g、平均粒径0.3μmを用いる以外は実施
例1と同様に鋼板表面に多孔性被覆層を形成せし
めた。該被覆層の厚みは100μmであつた。 次に、実施例1において、触媒成分の一つに用
いられている酸化チタンの代わりにチタンとケイ
素からなる二元系酸化物(TiO2/SiO2=4モル
比、表面積160m2/g、以下TSと呼ぶ)を同重量
使用する以外は実施例1と同様にして触媒を調製
した。触媒活性物質の担持量は触媒の単位表面積
当り140g/m2であつた。 実施例 3 実施例2において、多孔性被覆層を構成してい
る酸化ジルコニウムの代わりにチタンとケイ素か
らなる二元系酸化物(平均粒径20μm、TiO2
SiO2=4モル比、表面積160m2/g)を用いる以
外は実施例2と同様にして触媒を調製した。得ら
れた多孔性被覆層の厚みは40μmであり、また触
媒活性物質の担持量は触媒単位表面積当り100
g/m2であつた。 実施例 4 実施例1において、多孔性被覆層を構成してい
る酸化チタンの代わりにγ−アルミナ(平均粒径
25μm)を用いる以外は実施例1と同様にして鋼
板表面に多孔性被覆層を形成せしめた。該被覆層
の厚みは150μmであつた。 次に、実施例1における触媒成分の一つである
酸化タングステンの出発原料として用いられてい
るパラタングステン酸アンモニウムの代わりにモ
リブデン酸アンモニウムを使用する以外は実施例
1と同じ方法で触媒を調製した。触媒活性物質の
担持量は触媒単位表面積当り90g/m2であつた。 実施例 5 実施例1において、多孔性被覆層に用いられて
いる酸化チタンの代わりに、硅砂(平均粒径40μ
m、SiO299%含有)を用いて、硅砂:V2O5
60:40(重量比)の組成を有する多孔性被覆層を
実施例1と同じ方法で鋼板上に形成せしめた。得
られた該被覆層の厚みは130μmであつた。 次に、実施例1で用いたのと同じ触媒活性物質
を実施例1と同じ方法で上記多孔性被覆層上に担
持して触媒を調製した。触媒活性物質の担持量は
触媒単位表面積当り180g/m2であつた。 比較例 1 実施例1で用いたのと同じ冷間圧延鋼を1規定
の硫酸水溶液に30分間浸漬した後引き上げて水洗
した後400℃で2時間焼成した。実施例1で用い
たのと同じ触媒物質を実施例1と同じ方法で上記
鋼板に担持して触媒を調製した。触媒活性物質の
担持量は触媒単位表面積当り120g/m2であつた。 実施例 6 実施例1〜5および比較例1の各触媒につき次
のような方法で脱硝率および接着強度を測定し
た。 (1) 脱硝率の測定 高さ300mmで、反応ガス接触断面が50mm×10
mm角の直方形のステンレス製のカセツトにガス
流れ方向と平行に触媒板(50mm×300mm)を充
填し、反応温度を380℃に設定してボイラー排
ガスに近似した下記合成ガスにアンモニアを下
記の通り添加しつつ、0.375Nm3/H(標準状
態)の流速で触媒カセツトに導入して脱硝率を
測定した。 ガス組成 NO 200ppm SO2 800ppm O2 4容量% CO2 10容量% H2O 10容量% N2 残部 NH3 200ppm 脱硝率は、触媒入口および出口のNO濃度を
NO×計(化学発光式、柳本製作所製ECL−
7S)により測定し、次式に従い求めた。 脱硝率(%)=(入口NO濃度)
−(出口NO濃度)/(入口NO濃度)×100 得られた結果を表1に示す。 (2) 接着強度の測定 20mm×20mmのアルミ板の片面に両面粘着テー
プを張り付け、この2枚のアルミ板で30mm×50
mmの触媒板の両面をはさんで接着させた後、ア
ルミ板をインストロンで引張りアルミ板に接着
している触媒物質が鋼板からはがれる時の引張
り強度を測定した。得られた結果を表1に示
す。 実施例 7〜11 実施例1に準じて調製された多孔性被覆層に触
媒活性物質をその成分を変えて担持し、実施例1
と同様の方法で触媒を調製した。触媒活性物質の
原料源としてバナジウムはアンモニウム塩、銅、
鉄、クロム、マンガン、セリウムは硝酸塩、スズ
は硫酸塩を用いた。各触媒において多孔性被覆層
の厚みは40〜60μmであり、触媒活性物質の担持
量は触媒単位表面積当り110〜130g/m2であつ
た。得られた各々の触媒につき実施例6に準じて
脱硝率および接着強度を測定し、その結果を表1
に示す。
<Industrial Application Field> The present invention is a catalyst for purifying nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas discharged from fixed combustion equipment of various factories including boilers, thermal power plants, steel plants, etc. Concerning the manufacturing method. In particular, NOx and sulfur oxides (mainly sulfur dioxide, hereinafter SOx)
Ammonia is added as a reducing agent to the exhaust gas that simultaneously contains the following: NOx is efficiently decomposed into harmless nitrogen and water through a catalytic reaction.
The present invention relates to a method for producing a catalyst that substantially suppresses the oxidation reaction of sulfur dioxide (SO 2 ) to sulfur trioxide (SO 3 ) that occurs simultaneously with the NOx reduction and removal reaction, and has excellent durability. <Description of Prior Art> Methods for removing NOx from exhaust gas can be broadly classified into adsorption methods, absorption methods, and catalytic reduction methods, but the catalytic reduction method has a large amount of exhaust gas to be treated and does not require wastewater treatment. It is advantageous both physically and economically. Catalytic reduction methods include a non-selective reduction method using a hydrocarbon such as methane, LPG, hydrogen, or carbon monoxide as a reducing agent, and a selective reduction method using ammonia as a reducing agent. In the latter case, NOx can be selectively removed even from exhaust gas containing a high concentration of oxygen, and only a small amount of reducing agent is required, so it is economically advantageous and is currently the most widely used method. When processing exhaust gas that contains a large amount of dust, such as exhaust gas from heavy oil-fired boilers or coal-fired boilers, the dust may adhere to the catalyst or accumulate between the catalysts, resulting in a decrease in catalyst performance and a pressure loss in the catalyst layer. A problem arises in that this leads to an increase in the amount of water and impedes smooth operations. In order to solve these drawbacks, catalyst shapes that allow dust to easily pass through the catalyst layer have been proposed. That is, methods in which pipe-shaped, honeycomb-shaped, and plate-shaped catalysts are arranged parallel to the gas flow are widely used. In particular, the plate-shaped catalyst obtained by supporting a contact substance (metal oxide) on a metal base material has enough strength to withstand use even if the thickness of the metal base material is reduced.
This has the advantage that the surface area per unit volume of the catalyst can be increased and the denitrification device can be made more compact. Generally, the catalyst material and the metal base material have different coefficients of thermal expansion, so that the catalyst material may crack due to thermal strain, or the catalyst material layer may peel off due to vibration or impact. Therefore, various production methods and catalysts have been proposed with the aim of improving the adhesion between the metal base material and the catalyst substance. For example, a catalyst is prepared by forming an uneven surface such as needle-like protrusions on the surface of a metal base material by mechanical processing such as knurling, milling, rolling, pressing, or electrical discharge machining, and fixing a catalyst substance on the uneven surface. JP-A-53-149884), a method of thermally spraying a metal or non-metal onto the surface of a metal base material and supporting a catalyst substance on the sprayed surface (JP-A-54-15490, JP-A-54-79189) JP-A-57-19040 discloses a method in which a coating layer with a large surface roughness is formed on the surface of a metal substrate by composite plating and then a catalyst component is supported thereon. All of the above inventions aim to increase the mechanical bonding force between the catalyst substance and the metal surface by roughening the surface roughness of the metal base material, but this increases processing costs and catalyst costs. There are drawbacks. <Object of the Invention> In view of the above points, the present invention overcomes the drawbacks of the prior art, and provides a nitrogen gas that is inexpensive, has good adhesion of the catalyst substance to the metal substrate, and has excellent denitrification activity and durability. A method for producing an oxide cleaning catalyst is provided. <Structure of the Invention> The present inventors coated the surface of a metal base material with a mixture of an oxide of at least one element selected from the group consisting of titanium, silicon, zirconium, and aluminum and vanadium oxide, and then The coating layer is treated at a high temperature of 700 to 1000°C to melt vanadium oxide and form a porous coating layer on the metal substrate, and then an oxide containing titanium is added to the coating layer as a catalyst A component. , vanadium oxide is used as the catalyst component B, and an oxide of at least one element selected from the group consisting of molybdenum, tungsten, copper, chromium, tin, and cerium is used as the catalyst component C.
The present invention was completed by discovering that a catalyst obtained by supporting a catalyst component contained as a component achieves the above object. The present invention will be explained in detail below. Vanadium oxide, which is the vanadium component of the porous coating layer in the present invention, is melted by firing at a temperature of 700°C or higher, and strongly bonds with fine particles such as titania, silica, zirconia and alumina, and also envelops these fine particles. , a solid phase reaction occurs with the surface of the metal base material, and as a result, a porous coating layer that is firmly bonded to the metal base material can be formed. The coating has a rough surface and is porous with many pores and excellent water retention, so the catalyst of the present invention has a stronger adhesion of the catalytic material than the catalyst of the prior art. It can be said that it is a catalyst with extremely excellent physical strength, with no cracking or peeling of the catalyst material even when subjected to thermal shock. It is difficult to use vanadium metal instead of vanadium oxide as the vanadium component in the porous coating. Melting point of vanadium metal (m.
p.1726°C), an extremely high temperature is required to melt the vanadium, which is undesirable because it increases the manufacturing cost of the catalyst, including the selection of the metal base material. On the other hand, in the catalyst of the present invention, since the vanadium component of the porous coating is made of vanadium oxide having a relatively low melting point, the catalyst manufacturing process is simple.
In addition, it has the advantage of providing an inexpensive catalyst with excellent strength. The porous coating layer in the present invention is prepared by degreasing a metal base material, and then forming a composite oxide containing vanadium oxide as an essential component, or a single oxide of each of titanium, silicon, zirconium, aluminum, etc., or a composite oxide consisting of two or more elements. (For example, a binary oxide consisting of titanium and silicon) is mixed well and an appropriate amount of water is added to the resulting slurry or paste, which is applied by painting, dipping, spraying, etc., and then dried. It is obtained by firing at a temperature higher than the melting point of vanadium oxide, preferably at a temperature of 700 to 1000°C for 1 to 60 minutes. Regarding the particle size of titanium, silicon, zirconium, and aluminum oxides, if they are too large, the adhesion to the metal base material will be poor, so the particle size should be 100 μm or less.
In particular, it is preferably 50 μm or less. The thickness of the porous coating layer does not need to be particularly limited, and is sufficient as long as the adhesion strength of the catalyst substance is usable, but the thickness is 10 μm or more, preferably 20 to 500 μm.
A range of m gives preferable results. The vanadium oxide content constituting the porous coating layer is preferably in the range of 3 to 50% by weight. If the vanadium oxide content is less than 3% by weight, adhesion to the substrate will be insufficient, and if it exceeds 50% by weight, the surface of the porous coating layer will be smoothed and the water retention will be deteriorated, so that the adhesion to the substrate will be insufficient. This is not preferable because the adhesion to the porous coating layer decreases. Therefore, the vanadium oxide content is preferably within the above range. The catalyst of the present invention is coated with a slurry or paste of a catalytic material containing the active material specified above on the porous coating by coating, dipping, spraying, etc., and then dried at a temperature of 300 to 650°C, preferably.
It can be obtained by firing at 400 to 550°C for 1 to 10 hours, preferably 3 to 6 hours. The amount of catalyst material supported is 50% per unit surface area of the catalyst.
A range of ~300 g/ m2 is preferred. If it is less than 50 g/m 2 , the denitrification activity will be poor, and if it exceeds 300 g/m 2 , the denitrification activity will not improve further and will almost reach equilibrium, but the raw material cost for the catalyst will increase, so the above range will give preferable results. give. The catalyst material of the present invention has an oxide containing titanium as the catalyst A component, a vanadium oxide as the catalyst B component, and molybdenum, tungsten, copper, chromium,
It consists of a mixture of oxides in which the catalyst C component is an oxide of at least one element selected from the group consisting of tin and cerium, and the composition is such that the A component is 80 to 95
Weight%, B component is 0.5-20% by weight, C component is 0-20% by weight.
Preferably, the content is within the range of 20% by weight.
The catalyst A component may be an oxide containing titanium,
Titanium oxide, a binary oxide consisting of titanium and silicon, a ternary oxide consisting of titanium, silicon and zirconium, or titanium phosphate can also be applied. The material of the metal base material in the present invention is pure iron, pig iron, steel, iron-containing alloy, etc., and the shape is flat plate, corrugated plate, rod, wire, honeycomb, hollow cylinder, etc. A structure of any shape that is a combination of shapes can be applied. For example, by catalyzing a part of the air heater element by the method of the present invention, it is possible to provide an air heater that has both heat exchange and denitrification functions. EXAMPLES The present invention will be specifically described below using Examples, but the present invention is not limited to these Examples. Example 1 Anatase-type titanium oxide (specific surface area 50 m 2 /g, average particle size 0.3 μm) was added to a solution of ammonium metavanadate dissolved in an oxalic acid aqueous solution, mixed, concentrated to dryness, and then heated at 400°C. After firing for 3 hours, a powder having a TiO 2 :V 2 O 5 ratio of 85:15 (weight ratio) was obtained. Water was added to this powder and thoroughly stirred with a homodisper to form a slurry. A cold rolled steel plate (SPCC) measuring 50 mm x 30 mm x 0.6 mm was immersed in the powder, dried at 750°C,
It was fired in an air atmosphere for 10 minutes to form a porous coating layer on the surface of the steel plate. The average thickness of the resulting coating layer was 50 μm. Next, an aqueous solution containing monoethanolamine 12c.c.
Ammonium paratungstate 32.3g in 350c.c.
After dissolving ammonium metavanadate
35.7g was dissolved to form a homogeneous solution. Add 500% anatase titanium oxide (specific surface area 50m 2 /g) to this solution.
After mixing well, dry and heat at 400℃ for 5 minutes.
After firing for a time, TiO 2 :V 2 O 5 :WO 3 =90:5:5
A catalyst powder having a composition of (weight ratio) was obtained. 800 c.c. of water was added to 500 g of this catalyst powder, and after stirring with a homodisper while adding an appropriate amount of water to make a uniform slurry liquid, a steel plate on which the porous coating layer was formed was prepared. Soak, then at 100℃ for 5 hours.
After drying, it was fired at 400°C for 5 hours. The amount of catalytically active substance supported was 120 g/m 2 per unit surface area of the catalyst. Example 2 Porous steel sheets were formed on the surface of the steel sheet in the same manner as in Example 1, except that zirconium oxide (surface area 45 m 2 /g, average particle size 0.3 μm) was used instead of titanium oxide constituting the porous coating layer. The thickness of the coating layer was 100 μm. Next, in Example 1, a binary system consisting of titanium and silicon was used instead of titanium oxide, which was used as one of the catalyst components. A catalyst was prepared in the same manner as in Example 1, except that the same weight of oxide (TiO 2 /SiO 2 =4 molar ratio, surface area 160 m 2 /g, hereinafter referred to as TS) was used.The amount of catalytically active material supported was It was 140 g/m 2 per unit surface area of the catalyst. Example 3 In Example 2, a binary oxide consisting of titanium and silicon (average particle size 20 μm) was used instead of zirconium oxide constituting the porous coating layer. , TiO2 /
A catalyst was prepared in the same manner as in Example 2, except that SiO 2 =4 molar ratio, surface area 160 m 2 /g) was used. The thickness of the obtained porous coating layer was 40 μm, and the amount of catalytically active substance supported was 100 μm per unit surface area of the catalyst.
g/ m2 . Example 4 In Example 1, γ-alumina (average particle size
A porous coating layer was formed on the surface of the steel plate in the same manner as in Example 1 except that a porous coating layer (25 μm) was used. The thickness of the coating layer was 150 μm. Next, a catalyst was prepared in the same manner as in Example 1, except that ammonium molybdate was used instead of ammonium paratungstate, which was used as a starting material for tungsten oxide, one of the catalyst components in Example 1. . The amount of catalytically active material supported was 90 g/m 2 per unit surface area of the catalyst. Example 5 In Example 1, silica sand (average particle size 40μ) was used instead of titanium oxide used in the porous coating layer.
m, containing 99% SiO 2 ), silica sand: V 2 O 5 =
A porous coating layer having a composition of 60:40 (weight ratio) was formed on a steel plate in the same manner as in Example 1. The thickness of the resulting coating layer was 130 μm. Next, the same catalytically active material used in Example 1 was supported on the porous coating layer in the same manner as in Example 1 to prepare a catalyst. The amount of catalytically active material supported was 180 g/m 2 per unit surface area of the catalyst. Comparative Example 1 The same cold-rolled steel used in Example 1 was immersed in a 1N sulfuric acid aqueous solution for 30 minutes, taken out, washed with water, and then fired at 400°C for 2 hours. The same catalyst material used in Example 1 was supported on the steel plate in the same manner as in Example 1 to prepare a catalyst. The amount of catalytically active substance supported was 120 g/m 2 per unit surface area of the catalyst. Example 6 The denitrification rate and adhesive strength of each of the catalysts of Examples 1 to 5 and Comparative Example 1 were measured by the following methods. (1) Measurement of denitrification rate Height is 300mm, reaction gas contact cross section is 50mm x 10
A mm square rectangular stainless steel cassette was filled with catalyst plates (50 mm x 300 mm) parallel to the gas flow direction, and the reaction temperature was set at 380°C. The denitrification rate was measured by introducing the catalyst into the catalyst cassette at a flow rate of 0.375 Nm 3 /H (standard state) while adding the catalyst. Gas composition NO 200ppm SO 2 800ppm O 2 4% by volume CO 2 10% by volume H 2 O 10% by volume N 2 balance NH 3 200ppm The denitrification rate depends on the NO concentration at the catalyst inlet and outlet.
NO x meter (chemiluminescence type, ECL- manufactured by Yanagimoto Seisakusho)
7S) and calculated according to the following formula. Denitrification rate (%) = (inlet NO concentration)
−(Outlet NO concentration)/(Inlet NO concentration)×100 The obtained results are shown in Table 1. (2) Measurement of adhesive strength Attach double-sided adhesive tape to one side of a 20mm x 20mm aluminum plate, and use these two aluminum plates to form a 30mm x 50mm
After adhering both sides of a catalyst plate of mm size, the aluminum plate was stretched using an Instron to measure the tensile strength when the catalyst material adhered to the aluminum plate was peeled off from the steel plate. The results obtained are shown in Table 1. Examples 7 to 11 Catalytically active substances were supported on the porous coating layer prepared according to Example 1 with different components.
The catalyst was prepared in a similar manner. Vanadium is used as a raw material source for catalytically active substances, including ammonium salts, copper,
Nitrate was used for iron, chromium, manganese, and cerium, and sulfate was used for tin. In each catalyst, the thickness of the porous coating layer was 40 to 60 μm, and the amount of catalytically active substance supported was 110 to 130 g/m 2 per unit surface area of the catalyst. The denitrification rate and adhesive strength of each of the obtained catalysts were measured according to Example 6, and the results are shown in Table 1.
Shown below.

【表】 表1から実施例の触媒は優れた脱硝活性を示
し、また触媒物質の接着強度についても比較例の
触媒に比較して良好であることがわかる。
[Table] From Table 1, it can be seen that the catalysts of Examples exhibit excellent denitrification activity, and the adhesive strength of the catalyst material is also better than that of the catalysts of Comparative Examples.

Claims (1)

【特許請求の範囲】 1 金属基材の表面に、チタン、ケイ素、ジルコ
ニウムおよびアルミニウムよりなる群から選ばれ
た少くとも1種の元素の酸化物とバナジウム酸化
物とよりなる混合物を被覆し、ついで該被覆層を
700〜1000℃の高温で処理してバナジウム酸化物
を溶融し、該金属基材上に多孔性の被覆層を形成
させ、さらに該多孔性被覆層に、チタンを含む酸
化物を触媒A成分とし、バナジウム酸化物を触媒
B成分とし、並びにモリブデン、タングステン、
銅、クロム、錫及びセリウムよりなる群から選ば
れる少なくとも1種の元素の酸化物を触媒C成分
として含有する触媒活性物質を担持させることを
特徴とする窒素酸化物浄化用触媒の製造方法。 2 該多孔質被覆層形成混合物中のバナジウム酸
化物含量が3〜50重量%の範囲であることを特徴
とする特許請求の範囲1記載の方法。
[Claims] 1 The surface of a metal base material is coated with a mixture of an oxide of at least one element selected from the group consisting of titanium, silicon, zirconium, and aluminum and vanadium oxide, and then The coating layer
The vanadium oxide is melted by treatment at a high temperature of 700 to 1000°C to form a porous coating layer on the metal substrate, and an oxide containing titanium is further added to the porous coating layer as a catalyst A component. , vanadium oxide is used as the catalyst B component, and molybdenum, tungsten,
A method for producing a catalyst for nitrogen oxide purification, comprising supporting a catalytically active material containing an oxide of at least one element selected from the group consisting of copper, chromium, tin, and cerium as a catalyst C component. 2. The method according to claim 1, wherein the vanadium oxide content in the porous coating layer-forming mixture is in the range of 3 to 50% by weight.
JP60020885A 1985-02-07 1985-02-07 Preparation of purification catalyst for nitrogen oxides Granted JPS61181537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020885A JPS61181537A (en) 1985-02-07 1985-02-07 Preparation of purification catalyst for nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020885A JPS61181537A (en) 1985-02-07 1985-02-07 Preparation of purification catalyst for nitrogen oxides

Publications (2)

Publication Number Publication Date
JPS61181537A JPS61181537A (en) 1986-08-14
JPH0550339B2 true JPH0550339B2 (en) 1993-07-28

Family

ID=12039655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020885A Granted JPS61181537A (en) 1985-02-07 1985-02-07 Preparation of purification catalyst for nitrogen oxides

Country Status (1)

Country Link
JP (1) JPS61181537A (en)

Also Published As

Publication number Publication date
JPS61181537A (en) 1986-08-14

Similar Documents

Publication Publication Date Title
EP1212135B1 (en) Catalyst for the selective oxidation of carbon monoxide and its preparation
KR101096302B1 (en) Layered ammonia oxidation catalyst
CN103648617B (en) For purifying metallic filter and the manufacture method thereof of marine exhaust
CN104338545A (en) Effective SCR (selective catalytic reduction) catalyst applied to purification of nitrogen oxide in tail gas of diesel engine
JP4989545B2 (en) Nitrogen oxide catalytic reduction catalyst
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
TW200303781A (en) Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
JPS63274455A (en) Plate-shaped catalyst for removing nitrogen oxide from exhaust gas and its production
JPS63143941A (en) Catalyst for nitrogen oxide removal
JP5241277B2 (en) Exhaust gas treatment equipment
JPH0550339B2 (en)
EP1246697A1 (en) Method of forming catalyst structure with catalyst particles forged into substrate surface
JP5022697B2 (en) Method for producing denitration catalyst
JP2020062627A (en) Ammonia cleaning catalyst
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP2725800B2 (en) Method for producing denitration catalyst
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JPS5811253B2 (en) Method for producing catalyst or carrier
KR20020058179A (en) Catalyst for selective catalytic reduction of nitrogen oxides including sulfur dioxide at low temperature
JPH03154637A (en) Flat catalyst
JP3507538B2 (en) Exhaust gas purification catalyst and purification method
JPS6147576B2 (en)
JPH06246176A (en) Production of plate catalyst and processing solution of metal substrate for the catalyst
JPH11114420A (en) Catalyst for cleaning exhaust gas and method
JP4918241B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device