JPH0550159B2 - - Google Patents
Info
- Publication number
- JPH0550159B2 JPH0550159B2 JP416484A JP416484A JPH0550159B2 JP H0550159 B2 JPH0550159 B2 JP H0550159B2 JP 416484 A JP416484 A JP 416484A JP 416484 A JP416484 A JP 416484A JP H0550159 B2 JPH0550159 B2 JP H0550159B2
- Authority
- JP
- Japan
- Prior art keywords
- ring
- semiconductor
- laser
- light
- resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 27
- 230000010355 oscillation Effects 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 12
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 9
- 230000035559 beat frequency Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims 1
- 238000005253 cladding Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1021—Coupled cavities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/66—Ring laser gyrometers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
- H01S5/1032—Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1071—Ring-lasers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
- Optical Integrated Circuits (AREA)
- Lasers (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
3−1〔技術分野〕
本発明は、リング・ジヤイロに関するもので、
半導体レーザでリングを構成したジヤイロであ
る。[Detailed Description of the Invention] 3-1 [Technical Field] The present invention relates to a ring gyroscope,
This is a gyroscope whose ring is made of semiconductor lasers.
3−2〔背景技術〕
航空機、船舶、自動車、移動ロボツト等移動機
械においては、その回転角速度を検出する目的で
使用されるジヤイロは重要にセンサである。現在
機械式の物が実用されているが、ループ状の光路
上を伝播するレーザ光が、ループ状光路全体の回
転より、時計まわり光(cw 光)反時計まわり
光(ccw 光)に光路差が生じるサブナツク効果
を利用した光利用センサの研究がさかんである。
ループ状に巻いた光フアイバ内でのcw光ccw光
光路差を検出するものが光フアイバジヤイロであ
り、リング形状共振器を有するリングレーザ内の
cw ccw発振光の光路差を利用するのがリングレ
ーザジヤイロである。このうちリングレーザジヤ
イロでは一部実用化され航空機に搭載されている
ものもある。3-2 [Background Art] In mobile machines such as aircraft, ships, automobiles, and mobile robots, a gyroscope used for the purpose of detecting the rotational angular velocity is an important sensor. Mechanical devices are currently in use, but the laser light propagating on a loop-shaped optical path has an optical path difference between clockwise light (CW light) and counterclockwise light (CCW light) due to the rotation of the entire loop-shaped optical path. There is a lot of research going on into optical sensors that take advantage of the subnack effect that occurs.
An optical fiber coil is used to detect the optical path difference of CW light and CCW light within an optical fiber wound into a loop.
A ring laser gyroscope utilizes the optical path difference between cw and cw oscillation light. Among these, some ring laser gyroscopes have been put into practical use and are installed on aircraft.
図1にリングレーザジヤイロの略図を示す。リ
ング状に気体レーザの発振管11が構成され、リ
ングレーザ内部にはcw光12とccw光13とが
存在する。14はミラーであるが、鏡の1つを一
部透過鏡15としておき、両方向発振波を外部に
取出す。その後一方の光波をプリズムミラー16
等を用いて反射させ、もう一方の光波と重ねあわ
せ干渉させる、リングレーザ共振器内部では通常
cw光とccw光とは同一周波数で発振しているが
共振器全体が回転すると、cw光とccw光に光路
差が生じる。この光路差は光検出器17を通して
cw光ccw光の発振周波数の差として観測するこ
とが可能である。発振周波数の異なるcw光と
ccw光とを重ねあわせると、出力には周波数差に
応じたうなりが現れる。うなりの周波数を△fと
すると、その時の回転角速度Ωは、
Ω=λL/4A△f
として表わされる。ただし、λはccw光cw光の
平均波長、Lはリング共振器の周と長さ、Aはリ
ング共振器で囲まれる部分の面積である。この様
にうなりの周波数と回転角速度とは比例関係にあ
るため出力光のビート18を適当なロジツク回路
でカウントすることにより容易に回転角速度を得
ることができる。(18はロジツク・カウンタで
ある。)
しかしながら、以上述べた気体レーザによるリ
ングレーザジヤイロでは通常ポンピングを放電に
より行なうために数w〜数十wの電力を要する。
またcw光とccw光の重ねあわせを行なう光学系
は調整が難しく、さらには小型軽量化が難しいな
どの欠点がある。 Figure 1 shows a schematic diagram of a ring laser gyroscope. A gas laser oscillation tube 11 is configured in a ring shape, and a CW light 12 and a CCW light 13 exist inside the ring laser. 14 is a mirror, and one of the mirrors is partially used as a transmitting mirror 15 to extract bidirectional oscillation waves to the outside. After that, one of the light waves is transferred to the prism mirror 16
Usually, inside a ring laser resonator, the light wave is reflected using a
Although the CW light and the CCW light oscillate at the same frequency, when the entire resonator rotates, an optical path difference occurs between the CW light and the CCW light. This optical path difference passes through the photodetector 17.
It can be observed as a difference in the oscillation frequency of CW light and CCW light. CW light with different oscillation frequencies and
When combined with CCW light, a beat appears in the output according to the frequency difference. When the beat frequency is Δf, the rotational angular velocity Ω at that time is expressed as Ω=λL/4AΔf. Here, λ is the average wavelength of the ccw light and the CW light, L is the circumference and length of the ring resonator, and A is the area of the portion surrounded by the ring resonator. As described above, since the beat frequency and the rotational angular velocity are in a proportional relationship, the rotational angular velocity can be easily obtained by counting the beats 18 of the output light using a suitable logic circuit. (18 is a logic counter.) However, in the ring laser gyro using a gas laser as described above, usually several watts to several tens of watts of power are required for pumping by discharge.
Furthermore, the optical system that superimposes CW light and CCW light has drawbacks such as difficulty in adjustment and further difficulty in reducing size and weight.
3−3〔本発明の目的〕
本発明の目的は、以上述べたリングレーザジヤ
イロにおいて、小型、軽量、低消費電力さらには
高信頼性を満足する新しいジヤイロ素子を提供す
ることにある。3-3 [Object of the present invention] An object of the present invention is to provide a new gyro element that is small, lightweight, low power consumption, and highly reliable in the ring laser gyro described above.
3−4〔本発明の構成及び作用〕
本発明はリングレーザジヤイロを半導体基板上
に1チツプとして製作するものである。3-4 [Structure and operation of the present invention] According to the present invention, a ring laser gyroscope is manufactured as a single chip on a semiconductor substrate.
図2に本発明の一例としての概略図を示す。半
導体基板上21にリング型共振器22を有する半
導体レーザ、導波管23、Y型結合素子24が集
積されている。出力ビート25は、フオトデテク
タ26によつて把えられ、信号処理用電子回路2
7によつてカウントされる。 FIG. 2 shows a schematic diagram as an example of the present invention. A semiconductor laser having a ring-shaped resonator 22, a waveguide 23, and a Y-type coupling element 24 are integrated on a semiconductor substrate 21. The output beat 25 is detected by a photodetector 26 and sent to the signal processing electronic circuit 2.
Counted by 7.
以下順を追つて説明してゆく。 The following will be explained step by step.
(1) 半導体リングレーザ
半導体リングレーザは、通常直線的な構造で
作られる半導体レーザと共振器をリング型導波
路として構成するもので公知である。何らかの
光波閉じ込め機構を持ち、レーザ発振の可能な
半導体レーザ媒質をリング状に製作する。電流
の注入により生じる自然放出光はリング状導波
路内を伝播してゆき、さらに誘導放出を起こし
ながら増幅されてゆく。導波光がリング導波路
を一周まわつた時点で導波光の振幅が同位相と
なる。すなわち、
2πr=Nλ
を満たす様な波長の光がリング導波路内で共振
状態となり、発振可能となる。ただし、rはリ
ング型共振器の半径、λは半導体レーザ媒質内
での波長、Nは整数である。リング形状の光共
振器では本質的に曲げ半径rに応じた曲げ損失
が導波光に存在する。さらに、共振器外部へ光
を取り出すための結合部分において散乱、反射
などの損失がある。また共振器を形成する導波
路にも物質の持つ吸収や導波路形状に応じて散
乱などの損失がある。レーザ発振はこれらの損
失と注入キヤリアにより生じる透導放出により
生ずる光増幅とが、平衡となる時点で生じる。
したがつてレーザ発振しきい値を低くし、低消
費電力を達成するためにはできるだけ損失の小
さい共振器とする必要がある。曲げにより生じ
る損失はrに応じて増加するためにrは許され
る範囲で大きくとる。また導波路内の光の閉じ
込めを強くするほど曲げ損失を小さくできるた
め、導波路媒質とクラツドの屈折率差は大きい
ほど良い。さらには注入電流は効率良くレーザ
発振領域に注入されることが望ましい。半導体
レーザは、レーザ発振する領域層(活性層)を
p型、n型の半導体層ではさみ、さらに活性層
のバンドギヤツプが最も小さくなる様にしたい
わゆるダブルヘテロ基板に横方向の光波および
電流の閉じ込め機構を何らかの方法で作りつけ
て製作される。種々の方法が報告されている
が、リングレーザ共振器には、横方向にも屈折
率差をつけ、さらに電流を閉じ込めるためにレ
ーザ発振層を逆向きのpn層で埋め込む埋め込
みダブルヘテロ構造が適している。これは後で
図3で詳述する。(1) Semiconductor Ring Laser A semiconductor ring laser is a well-known device in which a semiconductor laser, which is normally made in a linear structure, and a resonator are configured as a ring-shaped waveguide. A ring-shaped semiconductor laser medium that has some kind of light wave confinement mechanism and is capable of laser oscillation is manufactured. Spontaneous emission light generated by current injection propagates within the ring-shaped waveguide and is further amplified while causing stimulated emission. The amplitudes of the guided lights become in phase at the point when the guided lights go around the ring waveguide once. That is, light with a wavelength that satisfies 2πr=Nλ enters a resonance state within the ring waveguide and becomes capable of oscillation. Here, r is the radius of the ring resonator, λ is the wavelength within the semiconductor laser medium, and N is an integer. In a ring-shaped optical resonator, there is essentially a bending loss in the guided light depending on the bending radius r. Furthermore, there are losses such as scattering and reflection in the coupling portion for extracting light to the outside of the resonator. In addition, the waveguide that forms the resonator also has losses such as scattering depending on the absorption of the material and the shape of the waveguide. Laser oscillation occurs when these losses and the optical amplification caused by the transmitted emission caused by the injected carriers are balanced.
Therefore, in order to lower the laser oscillation threshold and achieve low power consumption, it is necessary to use a resonator with as little loss as possible. Since the loss caused by bending increases with r, r is set as large as possible. Furthermore, the stronger the light confinement within the waveguide, the smaller the bending loss, so the larger the difference in refractive index between the waveguide medium and the cladding, the better. Furthermore, it is desirable that the injection current be efficiently injected into the laser oscillation region. Semiconductor lasers are made by sandwiching the laser oscillation area layer (active layer) between p-type and n-type semiconductor layers, and confining light waves and current in the lateral direction in a so-called double hetero substrate that minimizes the bandgap of the active layer. It is manufactured by incorporating a mechanism in some way. Various methods have been reported, but a buried double heterostructure is suitable for a ring laser resonator, in which the laser oscillation layer is buried with a pn layer in the opposite direction to create a refractive index difference in the lateral direction and to further confine the current. ing. This will be explained in detail later in FIG.
(2) レーザ光の外部との結合
リングレーザ発振器内部には定常状態におい
ては、同一の周波数を持つcw ccw光が存在し
ている。これらを別個に外部に取り出すために
共振器に対して接線方向に導波路を作る。リン
グ共振器導波路の外部しみ出し(エバネツセン
トフイールド)を外部導波路に結合させる方向
性結合による方法も考えられるが、レーザ共振
器自体の損失を小さくするために光波の閉じ込
めを強くしみ出しを少ない構造が望ましいた
め、しみ出しによる結合は実際的でないと考え
られる。レーザ光の取出しはレーザ共振器の活
性層をそのまま延長させる方法でよい。(2) Coupling of laser light with the outside In a steady state, CW and CCW lights with the same frequency exist inside a ring laser oscillator. In order to take these out separately, a waveguide is created tangentially to the resonator. A directional coupling method in which the external seepage (evanescent field) of the ring resonator waveguide is coupled to the external waveguide is also considered, but in order to reduce the loss of the laser resonator itself, it is necessary to strongly ooze out the light wave confinement. Bonding by oozing is considered impractical because a structure with less structure is desirable. The laser beam may be extracted by extending the active layer of the laser resonator as it is.
(3) Y型結合と素子外部への導波路
上記導波路により、共振器外部に取り出され
たcw ccw発振光は通常同一周波数であるが、
リング共振器全体が回転することによりcw、
ccw光の発振波長が回転角速度に応じて変化す
る。この周波数差は両光を干渉させた場合に生
じるビート周波数として計測される。この目的
のためにcw光ccw光導波路を、Y型の結合素
子の用いて結合させる。Y型結合部分以降では
両光の干渉により生じたビートが存在する導波
光となる。外部に置いた光検出素子により、そ
の強度変化を測定する。(3) Y-type coupling and waveguide to the outside of the device The cw and ccw oscillation lights taken out to the outside of the resonator by the above waveguide usually have the same frequency.
cw due to the rotation of the entire ring resonator,
The oscillation wavelength of CCW light changes depending on the rotational angular velocity. This frequency difference is measured as the beat frequency that occurs when the two lights interfere. For this purpose, the cw light and the cw optical waveguide are coupled using a Y-type coupling element. After the Y-type coupling part, the guided light has a beat caused by interference between the two lights. The change in intensity is measured by a photodetector placed outside.
外部へ光波をとり出す端面にはARコートも
しくは散乱面とする処理を施しておく。外部出
射端面が鏡面であると、その鏡面を含めた新た
な共振器が構成され、発振が不安定となる恐れ
がある。 The end face that extracts light waves to the outside is treated with an AR coating or a scattering surface. If the external emission end face is a mirror surface, a new resonator including the mirror surface will be constructed, and oscillation may become unstable.
次に本発明について、具体的一例をもつて材
料と製作の方法について説明する。 Next, regarding the present invention, materials and manufacturing methods will be explained using a specific example.
本件の材料としてはレーザ発振の可能な材料
であれば何でもよいが、得られるビート周波数
は発振波長λ0に反比例するために、λ0は小さい
方が良いと考えられ、InP基板上にエピタキシ
ヤル成長させたInGaAsPを活性層とするもの、
GaAs基板上にエピタキシヤル成長させた
GaAlAs等が一般的である。 The material used in this case may be any material as long as it is capable of laser oscillation, but since the beat frequency obtained is inversely proportional to the oscillation wavelength λ 0 , it is thought that it is better to have a smaller λ 0 . Those with grown InGaAsP as the active layer,
Epitaxially grown on GaAs substrate
GaAlAs etc. are common.
製作方法をInGaAsP/InP埋め込みダブルヘ
テロ構造を例としてInPを例とした素子の斜視
図、図3を用いて、以下に述べる。n−InP基
板31上にn−InP下クラツド層32、ノンド
ープInGaAsP活性層33、P−InP上クラツド
層34を順次エピタキシヤル成長させる。 The manufacturing method will be described below using an InGaAsP/InP buried double heterostructure as an example and a perspective view of a device using InP as an example, shown in FIG. An n-InP lower cladding layer 32, a non-doped InGaAsP active layer 33, and a P-InP upper cladding layer 34 are epitaxially grown on an n-InP substrate 31 in this order.
この時、InGaAsP活性層33は、キヤリア
注入の効率を高めしきい値を低くするために
0.1〜0.3μm程度の厚みに制御する。エピタキ
シヤル成長としては液相法、気相法、分子ビー
ム蒸着法、有機金属気相法等が一般に用いられ
る。この様に結晶成長させた基板にリング形状
共振器部分、導波路部分、Y結合部分を図2に
示される形状そのままのマスクを使用して通常
のフオトリソグラフイ−技術によりエツチング
する。基板上には、図2に示される形状で結晶
成長させた層が残る。この時エツチングマスク
にはパターニングされたSiO2等酸化物35を
使用する。この酸化物は続いて行なわれる結晶
成長に対しても選択成長のマスクとして作用す
る。半導体レーザ、導波素子としては、この状
態で絶縁物を除去し、電極を形成すれば使用可
能であるが、p−n接合界面の両端が空気にさ
らされるため、不純物が付着しやすく特性の劣
化を招く、そのため通常はレーザ発振p−n接
合とは逆方向のp−n接合を有するInPをまわ
りに結晶成長させ、活性層への電流注入が効率
良く行なわれる様にすると同時に界面の劣化を
防ぐ。2度めの結晶成長の後、全面に酸化物を
付着させ、こんどはレーザ発振部分の酸化物を
除去し、全面に電極を蒸着し、電流は埋めこま
れた部分にのみ注入される様にする。n側オー
ミツク電極36としてはAnGeNi等でP側オー
ミツク電極としてはAuZn等で形成する。電流
阻止層として38はP−InPを39はn−InP
を示す。 At this time, the InGaAsP active layer 33 is used to increase carrier injection efficiency and lower the threshold voltage.
The thickness is controlled to about 0.1 to 0.3 μm. For epitaxial growth, liquid phase method, vapor phase method, molecular beam evaporation method, organometallic vapor phase method, etc. are generally used. A ring-shaped resonator section, a waveguide section, and a Y-coupling section are etched on the substrate on which the crystals have been grown in this manner using a mask having the same shape as shown in FIG. 2 by ordinary photolithography techniques. A layer grown with crystals in the shape shown in FIG. 2 remains on the substrate. At this time, a patterned oxide 35 such as SiO 2 is used as an etching mask. This oxide also acts as a selective growth mask for subsequent crystal growth. It can be used as a semiconductor laser or waveguide element if the insulator is removed and electrodes are formed in this state, but since both ends of the p-n junction interface are exposed to air, impurities tend to adhere and the characteristics may deteriorate. Therefore, crystals are grown around InP that has a p-n junction in the opposite direction to the laser oscillation p-n junction, so that current can be efficiently injected into the active layer, and at the same time, the interface can be prevented from deteriorating. prevent. After the second crystal growth, oxide is deposited on the entire surface, this time the oxide on the laser oscillation part is removed, and electrodes are deposited on the entire surface so that current is injected only into the buried part. do. The n-side ohmic electrode 36 is formed of AnGeNi or the like, and the p-side ohmic electrode is formed of AuZn or the like. 38 is P-InP and 39 is n-InP as the current blocking layer.
shows.
以上埋め込みダブルヘテロ構造を例にとつて述
べたが、他のレーザ構造でも製作は可能である。
他に利得導波型、リツギ導波型など考えることが
できる。 Although the buried double heterostructure has been described above as an example, it is also possible to manufacture other laser structures.
Other possibilities include gain waveguide type and tsugi waveguide type.
次に本発明についてのもう一つの具体例として
フオトダイオード集積型素子を説明する。 Next, a photodiode integrated type device will be explained as another specific example of the present invention.
以上述べてきた半導体レーザジヤイロでは光検
出器(通常フオトダイオード)を外部に置くが、
導波路部分を形成する活性層はそのままで光検出
素子としても使用可能である。図4に示す様に最
終直線導波路部分に導波路に対し直角をなす方向
にエツチングみぞ41を作製し、電気的に絶縁を
とる。導波路(活性層は42)から出射してくる
光波により(レーザ出力は43)レーザとは分離
されたp−n接合部分には光電流44が生じるた
め別途電流値を測定すればよい。 In the semiconductor laser gyroscope described above, the photodetector (usually a photodiode) is placed externally.
The active layer forming the waveguide portion can also be used as a photodetector as it is. As shown in FIG. 4, etching grooves 41 are formed in the final straight waveguide portion in a direction perpendicular to the waveguide to provide electrical insulation. A photocurrent 44 is generated at the pn junction separated from the laser by the light wave emitted from the waveguide (the active layer is 42) (the laser output is 43), so the current value may be measured separately.
3−5〔本発明の効果〕
本発明により、次のような効果が生じる。半導
体素子上にリングレーザジヤイロを作製するため
に現在少なくとも一辺10cmの立法体程度の体積の
必要なジヤイロを数mm程度のチツプとすることが
できる。また半導体レーザを使用しているため現
在数w〜数十wは必要な電力を数十〜数百mw程
度に減少させることができる。光学装置を必要と
しないため信頼性、安定性に優れる。この効果は
光検出器を集積化した素子においてはさらに増
す。3-5 [Effects of the present invention] The present invention provides the following effects. In order to manufacture a ring laser gyroscope on a semiconductor device, the gyrium, which currently requires a volume of about the size of a cube with a side of at least 10 cm, can be made into a chip of about several mm. Furthermore, since a semiconductor laser is used, the power required can be reduced from the current several watts to several tens of watts to several tens to several hundred mw. Excellent reliability and stability as no optical device is required. This effect is further enhanced in devices with integrated photodetectors.
図1は従来のリングレーザジヤイロを示す図、
図2本発明の半導体リングレーザジヤイロを示す
図、図3はInP/InGaAsPを材料として構成した
本発明の一例を示す図、図4は光検出素子を集積
化した半導体リングレーザジヤイロである本発明
の一例を示す図である。
11……レーザ発振管、12……cw光、13
……ccw光、14……ミラー、15……一部透通
鏡、16……プリズムミラー、17……光検出
器、18……ロジツクカウンタ、19……ビー
ト、21……半導体基板、22……リング共振器
(リングレーザ)、23……光導波路、24……Y
型結合素子、25……出力ビート、26……フオ
トデテクタ、27……信号処理用電子回路、30
……注入電流、31……n−InP基板、32……
n−InP(下クラツド)、33……ノンドープ
InGaAsP(活性層)、34……P−InP(上クラツ
ド)、35……SiO2絶縁層、36……n側オーミ
ツク電極、37……P側オーミツク電極、38…
…P−InPもれ電流阻止層、39……n−InPも
れ電流阻止層、41……エツチングにより溝、4
2……活性層、43……レーザ出力、44……電
流。
Figure 1 shows a conventional ring laser gyroscope.
Figure 2 shows a semiconductor ring laser gyroscope of the present invention, Figure 3 shows an example of the present invention constructed using InP/InGaAsP, and Figure 4 shows a semiconductor ring laser gyroscope with integrated photodetection elements. It is a figure showing an example of the present invention. 11... Laser oscillation tube, 12... CW light, 13
... CCW light, 14 ... Mirror, 15 ... Partial transmission mirror, 16 ... Prism mirror, 17 ... Photodetector, 18 ... Logic counter, 19 ... Beat, 21 ... Semiconductor substrate, 22...Ring resonator (ring laser), 23...Optical waveguide, 24...Y
Type coupling element, 25... Output beat, 26... Photo detector, 27... Signal processing electronic circuit, 30
...Injection current, 31...n-InP substrate, 32...
n-InP (lower cladding), 33...non-doped
InGaAsP (active layer), 34...P-InP (upper cladding), 35...SiO 2 insulating layer, 36...n side ohmic electrode, 37...p side ohmic electrode, 38...
...P-InP leakage current blocking layer, 39...n-InP leakage current blocking layer, 41... Groove by etching, 4
2... Active layer, 43... Laser output, 44... Current.
Claims (1)
において、リング型状の共振器を有するレーザ発
振器部分と該リング型半導体レーザ内に生ずる時
計方向及び反時計方向発振波を共振器外部に取出
すための長さの等しい2本の直線導波路と両導波
路により取出される時計まわり、反時計まわり光
を結合させるためのY型光結合部分と結合後の導
波光を素子外部に導くための直線導波路と、リン
グ型レーザ発振器にレーザ発振を行なわしめるた
めの正側及び負側電極とから成り、リング共振器
部分が回転することにより生じる時計方向、反時
計方向発振波の発振周波数差をY型結合部分にお
ける両光の干渉によるビート周波数として検出
し、回転角速度を得るようにしたことを特徴とす
る半導体リングレーザジヤイロ。 2 Y結合部分以降の直線導波路部分に光検出素
子を製作し導波光検出を容易とし信頼性を高める
ようにしたことを特徴とする特許請求の範囲第1
項記載の半導体リングレーザジヤイロ。 3 半導体材料としてInP−InGaAsP系を用いる
ことを特徴とする特許請求の範囲第1項及び第2
項に記載の半導体リングレーザジヤイロ。 4 使用する半導体としてGaAs−GaAlAs系を
用いることを特徴とする特許請求の範囲第1項及
び第2項に記載の半導体リングレーザジヤイロ。[Scope of Claims] 1. In a semiconductor laser device manufactured on a semiconductor substrate, a laser oscillator portion having a ring-shaped resonator and clockwise and counterclockwise oscillation waves generated within the ring-shaped semiconductor laser are transmitted to the resonator. Two straight waveguides of equal length to take out to the outside, a Y-shaped optical coupling part to combine the clockwise and counterclockwise light taken out by both waveguides, and the combined guided light to the outside of the element. It consists of a straight waveguide for guiding the laser, and positive and negative electrodes for causing the ring-shaped laser oscillator to oscillate, and oscillates clockwise and counterclockwise oscillation waves generated by the rotation of the ring resonator. A semiconductor ring laser gyroscope characterized in that a frequency difference is detected as a beat frequency due to interference of both lights at a Y-shaped coupling part to obtain a rotational angular velocity. 2. Claim 1 characterized in that a photodetecting element is manufactured in the straight waveguide portion after the Y-coupling portion to facilitate the detection of guided light and improve reliability.
Semiconductor ring laser gyroscope described in Section 1. 3 Claims 1 and 2 characterized in that InP-InGaAsP system is used as the semiconductor material.
The semiconductor ring laser gyroscope described in . 4. The semiconductor ring laser gyroscope according to claims 1 and 2, characterized in that a GaAs-GaAlAs semiconductor is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP416484A JPS60148185A (en) | 1984-01-12 | 1984-01-12 | Semiconductor ring laser gyro |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP416484A JPS60148185A (en) | 1984-01-12 | 1984-01-12 | Semiconductor ring laser gyro |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60148185A JPS60148185A (en) | 1985-08-05 |
JPH0550159B2 true JPH0550159B2 (en) | 1993-07-28 |
Family
ID=11577100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP416484A Granted JPS60148185A (en) | 1984-01-12 | 1984-01-12 | Semiconductor ring laser gyro |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60148185A (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01163706A (en) * | 1987-03-26 | 1989-06-28 | Nippon Denso Co Ltd | Multi-direction optical waveguide circuit |
EP0995969A3 (en) | 1998-10-19 | 2000-10-18 | Canon Kabushiki Kaisha | Semiconductor device, semiconductor laser and gyro |
US6445454B1 (en) | 1998-10-19 | 2002-09-03 | Canon Kabushiki Kaisha | Gyro having modulated frequency driven laser |
EP0995971A3 (en) * | 1998-10-19 | 2000-10-18 | Canon Kabushiki Kaisha | Gyro and method of operating the same |
US6297883B1 (en) | 1998-10-19 | 2001-10-02 | Canon Kabushiki Kaisha | Ring laser gas gyro with beat signal detection from current, voltage, or impedance of the ring laser |
JP3323844B2 (en) | 1999-01-18 | 2002-09-09 | キヤノン株式会社 | gyro |
JP3363862B2 (en) | 1999-01-22 | 2003-01-08 | キヤノン株式会社 | Gyro, camera, lens and automobile having the same |
US6665330B1 (en) | 1999-09-14 | 2003-12-16 | Canon Kabushiki Kaisha | Semiconductor device having a semiconductor ring laser with a circularly formed ridge optical waveguide |
JP2001159521A (en) | 1999-12-01 | 2001-06-12 | Canon Inc | Angular velocity detecting device |
EP1219926B1 (en) | 2000-11-28 | 2010-10-20 | Politecnico di Bari | Integrated optical angular velocity sensor |
US6680961B2 (en) * | 2001-08-01 | 2004-01-20 | Binoptics, Inc. | Curved waveguide ring laser |
JP2005249547A (en) * | 2004-03-03 | 2005-09-15 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
JP2008002954A (en) * | 2006-06-22 | 2008-01-10 | Advanced Telecommunication Research Institute International | Optical gyroscope |
JP2008197058A (en) * | 2007-02-15 | 2008-08-28 | Japan Aviation Electronics Industry Ltd | Ring laser gyro |
WO2009054467A1 (en) * | 2007-10-25 | 2009-04-30 | Advanced Telecommunications Research Institute International | Semiconductor laser gyro |
JP2009103646A (en) * | 2007-10-25 | 2009-05-14 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
JP2009103647A (en) * | 2007-10-25 | 2009-05-14 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
FR2933816B1 (en) | 2008-07-10 | 2015-08-21 | Commissariat Energie Atomique | WAVELENGTH SELECTIVE COUPLING DEVICE FOR COLLECTING THE LIGHT EMITTED BY A LASER SOURCE. |
CN103384950B (en) * | 2013-01-21 | 2015-09-30 | 华为技术有限公司 | Laser waveguide device |
-
1984
- 1984-01-12 JP JP416484A patent/JPS60148185A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60148185A (en) | 1985-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0550159B2 (en) | ||
US7106448B1 (en) | Integrated resonant micro-optical gyroscope and method of fabrication | |
US10530126B2 (en) | External cavity laser | |
US4658403A (en) | Optical element in semiconductor laser device having a diffraction grating and improved resonance characteristics | |
JPH0682863B2 (en) | Light emitting diode | |
JPH04254380A (en) | Monolithic integrated photoamplifier and photodetector | |
US20070291273A1 (en) | Laser gyro and electronic device using the same | |
JPH09500720A (en) | Optical ring laser rotation sensor for solid medium | |
JP3099921B2 (en) | Surface emitting semiconductor laser device with light receiving element | |
JPH08250821A (en) | Semiconductor light source | |
US4297651A (en) | Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power | |
JP3531917B2 (en) | Ring laser | |
JPH10125989A (en) | Optical integrated device | |
JPS62150895A (en) | Distributed feedback type semiconductor laser with monitor | |
US4644552A (en) | Semiconductor laser | |
JPH06268196A (en) | Optical integrated device | |
JPH05167197A (en) | Optical semiconductor device | |
JP2002344079A (en) | Semiconductor ring laser and manufacturing method therefor | |
JP3685925B2 (en) | Super luminescent diode | |
US6603113B2 (en) | Gyro comprising a ring laser in which beams of different oscillation frequencies coexist and propagate in mutually opposite circulation directions, driving method of gyro, and signal detecting method | |
JP2002033550A (en) | Ring laser, ring waveguide device, its manufacturing method and optical gyro using ring waveguide device, optical interconnection | |
JPH084179B2 (en) | Semiconductor laser | |
JP2002340564A (en) | Semiconductor ring laser device optical gyroscope using the same | |
JPS5880887A (en) | Semiconductor laser photodiode photointegrated element | |
JPS627186A (en) | Semiconductor laser device |