JPS60148185A - Semiconductor ring laser gyro - Google Patents
Semiconductor ring laser gyroInfo
- Publication number
- JPS60148185A JPS60148185A JP416484A JP416484A JPS60148185A JP S60148185 A JPS60148185 A JP S60148185A JP 416484 A JP416484 A JP 416484A JP 416484 A JP416484 A JP 416484A JP S60148185 A JPS60148185 A JP S60148185A
- Authority
- JP
- Japan
- Prior art keywords
- ring
- semiconductor
- laser
- resonator
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1021—Coupled cavities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/66—Ring laser gyrometers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
- H01S5/1032—Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1071—Ring-lasers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Integrated Circuits (AREA)
- Lasers (AREA)
- Semiconductor Lasers (AREA)
- Gyroscopes (AREA)
Abstract
Description
【発明の詳細な説明】
・3−1c、技術分野〕
本発明は、リング・ジャイロに関するもので、半導体レ
ーザでリングを構成したジャイロである。[Detailed Description of the Invention] - 3-1c, Technical Field] The present invention relates to a ring gyro, and is a gyro in which a ring is formed of a semiconductor laser.
3−2 〔背景技術〕
航空機、船舶、自動車、移動ロボット等移動機械におい
ては、その回転角速度を検出する目的で使用されるジャ
イロは重要な七ンサである。現在機械式の物が実用され
ているが、ループ状の光路上を伝播するレーザ光が、ル
ープ状光路全体の回転により、時計まわり光(cw 光
)反時計まわり光(ccw光)に光路差が生じるサブナ
ック効果を利用した光利用センサの研究がさかんである
。3-2 [Background Art] In mobile machines such as aircraft, ships, automobiles, and mobile robots, a gyro is an important sensor used for the purpose of detecting the rotational angular velocity of the machine. Mechanical devices are currently in use, but the laser light propagating on a loop-shaped optical path has an optical path difference between clockwise light (CW light) and counterclockwise light (CCW light) due to the rotation of the entire loop-shaped optical path. There is active research into optical sensors that utilize the Subnack effect that occurs.
ループ状に巻いた光フアイバ内でのcw光ccw 光光
路差を検出するものが光フアイバジャイロであり、リン
グ形状共振器を有するリングレーザ内のcw ccw
発振光の光路差を利用するのがリングレーザジャイロで
ある。このうちリングレーザジャイロでは一部実用化さ
れ航空機に搭載されているものもある。CW light ccw inside an optical fiber wound into a loop An optical fiber gyro detects the optical path difference, and CW light ccw inside a ring laser having a ring-shaped resonator
A ring laser gyro uses the optical path difference of oscillated light. Among these, some ring laser gyros have been put into practical use and are installed on aircraft.
ング状に気体レーザの発振管11が構成され、リングレ
ーザ内部にはcw光12とccw光13 とが存在する
。14はミラーであるが、鏡の1つを一部透過鏡15と
しておき、再方向発振波を外部にせ干渉させる、リング
レーザ共振器内部では通常CW光とccw 光とは同一
周波数で発振しているが共振器全体が回転すると、cw
光とccw 光に光路差が生じる。この光路差は光検出
器17を通してCW光ccw光の発振周波数の差として
観測することが可能である発振周波数の異なるcw光と
ccw光とを重ねあわせると、出力には周波数差に応
じたうなりが現れる。うなりの周波数と△f とすると
、その時の回転角速度Ωは、
λL
として表わされる。ただし、λはccw光cw光の平均
波長、Lはリング共振器の周の長さ、Aはリング共振器
で囲まれる部分の面積である。この様にうなりの周波数
と回転角速度とは比例関係にあるため出力光のビート1
8を適当なロジック回路でカウントすることにより容易
に回転角速度を得ることができる。(18はロジック・
カウンタである。)
しかしながら、以上述べた気体レーザによるリングレー
ザジャイロでは通常ポンピングを放電により行なうため
に数W〜数十Wの電力を要する。A gas laser oscillation tube 11 is configured in a ring shape, and a CW light 12 and a CCW light 13 are present inside the ring laser. Reference numeral 14 is a mirror, and one of the mirrors is partially used as a transmissive mirror 15 to allow the redirection oscillation waves to interfere with the outside. Inside the ring laser resonator, the CW light and the ccw light normally oscillate at the same frequency. However, when the entire resonator rotates, cw
An optical path difference occurs between the light and the ccw light. This optical path difference can be observed as a difference in the oscillation frequency of the CW light and the CCW light through the photodetector 17. When the CW light and the CCW light with different oscillation frequencies are superimposed, the output has a beat corresponding to the frequency difference. appears. Assuming that the beat frequency is △f, the rotational angular velocity Ω at that time is expressed as λL. Here, λ is the average wavelength of the ccw light and the cw light, L is the circumferential length of the ring resonator, and A is the area of the portion surrounded by the ring resonator. In this way, since the beat frequency and the rotational angular velocity are in a proportional relationship, the beat 1 of the output light
By counting 8 using an appropriate logic circuit, the rotational angular velocity can be easily obtained. (18 is logic
It is a counter. ) However, in the ring laser gyro using the gas laser described above, since pumping is normally performed by discharge, power of several W to several tens of W is required.
またcw光とccw 光の重ねあゎせを行なう光学系は
調整が難しく、さらには小型軽量化が難しいなどの欠点
がある。Further, an optical system that superimposes CW light and CCW light has drawbacks such as difficulty in adjustment and further difficulty in reducing size and weight.
3−3〔本発明の目的コ
本発明の目的は、以上述べたリングレーザジャイロにお
いて、小型、軽量、低消費電力さらには高信頼性を満足
する新しいジャイロ素子を提供することにある。3-3 [Object of the present invention] An object of the present invention is to provide a new gyro element that is small, lightweight, low power consumption, and highly reliable in the ring laser gyro described above.
に1チツプとして製作するものである。It is manufactured as a single chip.
図2に本発明の一例としての概略図を示す。半導体基板
上21にリング型共振器22を有する半導体レーザ、導
波路23、Y型結合素子24が集積されている。出力ビ
ート25は、フォトデテクタ26によって把見られ、信
号処理用電子回路27によってカウントされる。FIG. 2 shows a schematic diagram as an example of the present invention. A semiconductor laser having a ring-shaped resonator 22, a waveguide 23, and a Y-type coupling element 24 are integrated on a semiconductor substrate 21. The output beats 25 are detected by a photodetector 26 and counted by a signal processing electronic circuit 27.
以下順を追って説明してゆく。The following will be explained step by step.
(1)半導体リングレーザ
半導体リングレーザは、通常直線的な構造で作られる半
導体レーザの共振器をリング型導波路として構成するも
ので公知である。何らかの光波閉じ込め機構を持ち、レ
ーザ発振の可能な半導体レーザ媒質をリング状に製作す
る。電流の注入により生じる自然放出光はリング状導波
路内を伝播してゆき、さらに誘導放出を起こしながら増
幅されてゆく。導波光がリング導波路を一周まわった時
点で導波光の振幅が同位相となる。すなわち、2πr=
Nλ
を満たす様な波長の光がリング導波路内で共振状態とな
り、発振可能となる。ただし、rはリング型共振器の半
径、λは半導体レーザ媒質内での波長、Nは整数である
。リング形状の光共振器では本質的に曲げ半径rに応じ
た曲げ損失が導波光に存在する。さらに、共振器外部へ
光を取り出すための結合部分において散乱、反射などの
損失がある。また共振器を形成する導波路にも物質の持
つ吸収や導波路形状に応じて散乱などの損失がある。(1) Semiconductor Ring Laser A semiconductor ring laser is a well-known device in which the resonator of a semiconductor laser, which is usually made with a linear structure, is configured as a ring-shaped waveguide. A ring-shaped semiconductor laser medium that has some kind of light wave confinement mechanism and is capable of laser oscillation is manufactured. Spontaneous emission light generated by current injection propagates within the ring-shaped waveguide and is further amplified while causing stimulated emission. When the guided light goes around the ring waveguide once, the amplitudes of the guided light become in phase. That is, 2πr=
Light with a wavelength that satisfies Nλ becomes resonant within the ring waveguide and becomes capable of oscillation. Here, r is the radius of the ring resonator, λ is the wavelength within the semiconductor laser medium, and N is an integer. In a ring-shaped optical resonator, there is essentially a bending loss in the guided light depending on the bending radius r. Furthermore, there are losses such as scattering and reflection in the coupling portion for extracting light to the outside of the resonator. In addition, the waveguide that forms the resonator also has losses such as scattering depending on the absorption of the material and the shape of the waveguide.
レーザ発振はこれらの損失と注入キャリアにより生じる
透導放出により生ずる光増幅とが、平衡となる時点で生
じる。したがってレーザ発振しきい値を低くシ、低消費
電力を達成するためにはできるだけ損失の小さい共振器
とする必要がある。曲げにより生じる損失はrに応じて
増加するためにrは許される範囲で大きくとる。また導
波路内の光の閉じ込めを強くするほど曲げ損失を小さく
できるため、導波路媒質とクラッドの屈折率差は大きい
ほど良い。さらには注入電流は効率良くレーザ発振領域
に注入されることが望ましい。半導体レーザは、レーザ
発振する領域層(活性層)をp型、n型の半導体層では
さみ、さらにバンドギャップを活性層が最も小さくなる
様にしたいわゆるダブルへテロ基板に横方向の光波およ
び電流の閉じ込め機構を何らかの方法で作りつけて製作
される。種々の方法が報告されているが、リングレーザ
共振器には、横方向にも屈折率差をっけ、さらに電流を
閉じ込めるためにレーザ発振層を逆向きノpn 層で埋
め込む埋め込みダブルへテロ構造が適している。これは
後で図3で詳述する。Laser oscillation occurs when these losses and optical amplification caused by transmissive emission caused by injected carriers reach equilibrium. Therefore, in order to achieve a low laser oscillation threshold and low power consumption, it is necessary to use a resonator with as little loss as possible. Since the loss caused by bending increases with r, r is set as large as possible. Furthermore, the stronger the light confinement within the waveguide, the smaller the bending loss, so the larger the difference in refractive index between the waveguide medium and the cladding, the better. Furthermore, it is desirable that the injection current be efficiently injected into the laser oscillation region. Semiconductor lasers are made by sandwiching a region layer (active layer) that oscillates between p-type and n-type semiconductor layers, and then creating a so-called double hetero substrate with a band gap that is the smallest in the active layer. It is manufactured by incorporating a confinement mechanism in some way. Various methods have been reported, but the ring laser resonator uses a buried double heterostructure in which the laser oscillation layer is buried with oppositely oriented nopn layers to create a refractive index difference in the lateral direction and to further confine the current. is suitable. This will be explained in detail later in FIG.
(2)レーザ光の外部との結合
リングレーザ発振器内部には定常状態においては、同一
の周波数を持つcw ccw 光が存在している。これ
らを別個に外部に取り出すために共振器に対して接線方
向に導波路を作る。リング共振器導波路の外部しみ出し
くエバネツセントフィールド)を外部導波路に結合させ
る方向性結合による方法も考えられるが、レーザ共振器
自体の損失を小さくするために光波の閉じ込めを強くし
み出しを少ない構造が望ましいため、しみ出しによる結
合は実際的でないと考えられる。レーザ光の取出しはレ
ーザ共振器の活性層をそのまま延長させる方法でよい。(2) Coupling ring of laser light with the outside In a steady state, cw ccw light having the same frequency exists inside the laser oscillator. In order to take these out separately, a waveguide is created tangentially to the resonator. A directional coupling method in which the evanescent field seeping out of the ring resonator waveguide) is coupled to the external waveguide is also considered, but in order to reduce the loss of the laser resonator itself, it is necessary to strongly Bonding by oozing is considered impractical because a structure with less structure is desirable. The laser beam may be extracted by extending the active layer of the laser resonator as it is.
(3)Y型結合と素子外部への導波路
上記導波路により、共振器外部に取り出されたcw c
cw 発振光は通常同一周波数であるが、リング共振器
全体が回転することによりcw・ccw光の発振波長が
回転角速度に応じて変化する。この周波数差は両光を干
渉させた場合に生じるビート周波数として計測される。(3) Y-type coupling and waveguide to the outside of the element The cw c taken out to the outside of the resonator by the above waveguide
The cw oscillation light usually has the same frequency, but as the entire ring resonator rotates, the oscillation wavelength of the cw/ccw light changes depending on the rotational angular velocity. This frequency difference is measured as the beat frequency that occurs when the two lights interfere.
この目的のためにCW 光ccw光導波路を、Y型の結
合素子を用いて結合させるY型結合部分以降の導波路に
は両光の干渉により生じたビートの存在する導波光とな
る。外部に置いた光検出素子により、その強度変化を測
定する。For this purpose, the CW light ccw optical waveguide is coupled using a Y-type coupling element, and the waveguide after the Y-type coupling portion becomes guided light with a beat caused by interference between the two lights. The change in intensity is measured by a photodetector placed outside.
外部へ光波をとり出す端面にはARコートもしくは散乱
面とする処置を施しておく。外部出射端面が鏡面である
と、その鏡面を含めた新たな共振器が構成され、発振が
不安定となる恐れがある。The end face from which light waves are extracted to the outside is treated with an AR coating or with a scattering surface. If the external emission end face is a mirror surface, a new resonator including the mirror surface will be constructed, and oscillation may become unstable.
次に本発明について、具体的−例をもって材料と製作の
方法について説明する。Next, the present invention will be explained with reference to materials and manufacturing methods using specific examples.
・本件の材料としてはレーザ発振の可能な材料であれば
何でもよいが、得られるビート周波数は発振波長λ0
に反比例するために、λ0は小さい方が良いと考えられ
、InP基板上にエピタキシャル成長させたInGaA
sPを活性層とするものGaAs 基板上にエピタキシ
ャル成長させたGaAlAs 等が一般的である。・The material used in this case may be any material as long as it is capable of laser oscillation, but the beat frequency obtained is based on the oscillation wavelength λ0.
Since λ0 is inversely proportional to
GaAlAs, which is epitaxially grown on a GaAs substrate, is generally used as an active layer of sP.
製作方法をInGaAsP/ InP 埋め込みダブル
へテロ構造を例としてInPを例とした素子の斜視図、
図3を用いて、以下に述べるn−InP基板31上にn
−InP下クラッド層32、ノンドープInGaAsP
活性層33、P−InP上クラッド層34を順次エピタ
キシャル成長させる。The manufacturing method is an example of an InGaAsP/InP embedded double heterostructure, and a perspective view of an element using InP as an example.
Using FIG. 3, an n-InP substrate 31, which will be described below, is
-InP lower cladding layer 32, non-doped InGaAsP
The active layer 33 and the P-InP upper cladding layer 34 are epitaxially grown in sequence.
この時、InGaAsP活性層38は、キャリア注入の
効率を高めしきい値を低くするために0.1〜03μm
程度の厚みに制御する。エピタキシャル成長トシては液
相法、気相法、分子ビーム蒸着法、有機金属気相法等が
一般に用いられる。この様に結晶成長させた基板にリン
グ形状共振器部分、導波路部分、Y結合部分を図2に示
される形状そのままのマスクを使用して通常のフォトリ
ソグラフィー技術によりエツチングする。基板上には、
図2に示、1される形状で結晶成長させた層が残る。こ
の時エツチングマスクにはパターニングされたSing
等酸化物35を使用する。この酸化物は続いて行なわ
れる結晶成長に対しても選択成長のマスクとして作用す
る。半導体レーザ、導波素子としては、この状態で絶縁
物を除去し、電極を形成すれば使用可能であるが、p−
n接合界面の両端が空気にさらされるため、不純物が付
着しやすく特性の劣化を招く、そのため通常はレーザ発
振p−n接合とは逆方向のp−n接合を有するInPを
まわりに結晶成長させ、活性層への電流注入が効率良く
行なわれる様にすると同時に界面の劣化を防ぐ。2度め
の結晶成長の後、全面に酸化物を付着させ、こんどはレ
ーザ発振部分の酸化物を除去し、全面に電極を蒸着し、
電流は埋めこまれた部分にのみ注入される様にする。n
側オーミック電極36としてはAnGeN i 等でP
側オーミック電極としてはAuZn等で形成する。電流
阻止層として38はP−1nPを39はn−InPを示
す。At this time, the InGaAsP active layer 38 has a thickness of 0.1 to 03 μm in order to increase carrier injection efficiency and lower the threshold voltage.
Control the thickness to a certain degree. For epitaxial growth, a liquid phase method, a vapor phase method, a molecular beam evaporation method, an organometallic vapor phase method, etc. are generally used. A ring-shaped resonator section, a waveguide section, and a Y-coupling section are etched on the substrate on which the crystals have been grown in this manner using a mask having the same shape as shown in FIG. 2 by ordinary photolithography technology. On the board,
The crystal-grown layer remains in the shape shown in FIG. At this time, the etching mask is patterned with Sing.
Isooxide 35 is used. This oxide also acts as a selective growth mask for subsequent crystal growth. It can be used as a semiconductor laser or a waveguide element if the insulator is removed in this state and electrodes are formed, but p-
Since both ends of the n-junction interface are exposed to air, impurities tend to adhere to it, leading to deterioration of characteristics. Therefore, crystals are usually grown around InP, which has a p-n junction in the opposite direction to the laser oscillation p-n junction. , to ensure efficient current injection into the active layer and at the same time prevent deterioration of the interface. After the second crystal growth, oxide is deposited on the entire surface, the oxide on the laser oscillation part is removed, and electrodes are deposited on the entire surface.
The current is injected only into the buried part. n
The side ohmic electrode 36 is made of AnGeN i etc.
The side ohmic electrodes are made of AuZn or the like. As the current blocking layer, 38 represents P-1nP, and 39 represents n-InP.
以上埋め込みダブルへテロ構造を例にとって述べたが、
他のレーザ構造でも製作は可能である。The above is an example of an embedded double heterostructure, but
Other laser structures are also possible.
他に利得導波型、リッジ導波型など考えることができる
。Other examples include gain waveguide type and ridge waveguide type.
次に本発明についてのもう一つの具体例としてフォトダ
イオード集積型素子を説明する。Next, a photodiode integrated type device will be explained as another specific example of the present invention.
以上述べてきた半導体レーザジャイロでは光検出器(通
常フォトダイオード)を外部に置くが、レーザ部分、導
波路部分を形成する活性層はそのままで光検出素子とし
ても使用可能である。図4に示す様に最終直線導波路部
分に導波路に対し直角をなす方向にエツチングみぞ4・
1を作製し、′屹気的に絶縁をとる。導波路(活性層は
4.2)から出射してくる光波により(レーザ出力は4
3)し −ザとは分離されたp−n接合部分には光電流
44が生じるため別途電流値を測定すればよい。In the semiconductor laser gyro described above, a photodetector (usually a photodiode) is placed outside, but the active layer forming the laser portion and waveguide portion can be used as a photodetector as is. As shown in Figure 4, a groove 4 is etched in the final straight waveguide section in a direction perpendicular to the waveguide.
1, and provide air insulation. The light wave emitted from the waveguide (active layer is 4.2) (laser output is 4.2
3) Since a photocurrent 44 is generated in the pn junction portion separated from the sensor, the current value may be measured separately.
a −5,[本発明の効果コ
本発明により、次のような効果が生じる。半導体素子上
にリングレーザジャイロを作製スルために現在少なくと
も一辺10crnの立方体程度の体積の必要なジャイロ
を数理程度のチップとすることつ;で、きる。また半導
体レーザを使用しているため現在数W〜数十Wは必要な
電力を数十〜数5 mw程度に減少させることができる
。光学装置を必要としないため信頼性、安定性に優れる
。この効果は光検出器を集積化した素子においてはさら
に増す。a-5, [Effects of the present invention] The following effects are produced by the present invention. In order to manufacture a ring laser gyro on a semiconductor device, the gyro, which currently requires a volume on the order of a cube with at least 10 crn on a side, can be made into a mathematical chip. Furthermore, since a semiconductor laser is used, the power required can be reduced from the current several watts to several tens of watts to several tens to several 5 mw. Excellent reliability and stability as no optical device is required. This effect is further enhanced in devices with integrated photodetectors.
図1は従来のリングレーザジャイロを示す図、図2本発
明の半導体リングレーザジャイロを示す図、図3はIn
P / InGaAsP を材料として構成した本発明
の一例を示す図、図4は光検出素子を集積化した半導体
リングレーザジャイロである本発明の一例を示す図であ
る。
11・・・レーザ発振管
12・・・cw光
13・・・ccw光
14・・・・ミラー
15 ・・・一部透過鏡
16・・・プリズムミラー
シ17・・・光検出器
18・・・ロジックカウンタ
19・・・ビート
21・・・半導体基板
22・・・リング共振器(リングレーザ)23・・・先
導波路
24・・・Y型結合素子
25・・・出力ビート
26・・・フォトデテクタ
27・・・信号処理用電子回路
30・・・注入電流
31 ・−n−)np基板
32 ・・・n−1nP (下クラット)33・・・ノ
ンドープInGaAsP (活性層)34−P−InP
(上クラッド)
35・・・Sing 絶縁層
36・・・n側オーミック電極
37・・・P側オーミック電極
38・・・P−InPもれ電流阻止層
39・・・n−InPもれ電流阻止層
41・・・エツチングによる溝
42・・・活性層
43・・・レーザ出力
44・・・電 流
図3
図4
手 続 補 正 書
■、事件の表示
昭和59年特許順第4164号
2 発明の名称
半導体リングレーザジャイロ
3、補正をする者
事件との関係 特許出願人
住 所 大阪市東区北浜5丁目15番地名 称(213
)住友電気工業株式会社社 長 川 上 哲 部
ル代理人
住 所 大阪市此花区島屋1丁目1番3号住友電気工業
株式会社内
(電話大阪 461−1031)
氏 名(7881)弁理士 上 代 哲 司5、補正命
令の日付
自発補正
6、補正の対象
明細書中発明の詳細な説明の欄
7、補正の内容
(11明細書第3頁第14行目
「再方向発振波」を「両方向発振波」と補正する。
■明細書第4頁第2行目
正する。
(3)明細書第4頁第4行目
「うなりの周波数と△f」を「うなりの周波数を△f」
と補正する。
(4)明細書第7頁第9行目〜第7頁第10行目「バン
ドギアンプを活性層が」をr 活性1m (7) t<
/ドギャップが」と補正する。
より生じたビートの存在する導波光となる。」を「せる
。Y型結合部分以降では両光の干渉により生じたビート
が存在する導波光となる。」と補11:。
する。
(6)明細書第9頁第13行目
「活性層とするものGaAs基板」を[活性層とするも
の、GaAs基板」と補正する。
(7)明細書第9頁第18行目
「以下に述べるn−1nP基板」を「以下に述へる。n
−1nP基板」と補正する。FIG. 1 shows a conventional ring laser gyro, FIG. 2 shows a semiconductor ring laser gyro according to the present invention, and FIG. 3 shows an In
FIG. 4 is a diagram showing an example of the present invention constructed using P/InGaAsP as a material. FIG. 4 is a diagram showing an example of the present invention which is a semiconductor ring laser gyro with integrated photodetection elements. 11... Laser oscillation tube 12... CW light 13... CCW light 14... Mirror 15... Partially transmitting mirror 16... Prism mirror 17... Photodetector 18...・Logic counter 19... Beat 21... Semiconductor substrate 22... Ring resonator (ring laser) 23... Leading waveguide 24... Y-type coupling element 25... Output beat 26... Photo Detector 27...Signal processing electronic circuit 30...Injection current 31 -n-)np substrate 32...n-1nP (lower crat) 33...Non-doped InGaAsP (active layer) 34-P-InP
(Upper cladding) 35...Sing Insulating layer 36...N-side ohmic electrode 37...P-side ohmic electrode 38...P-InP leakage current blocking layer 39...n-InP leakage current blocking Layer 41...Groove by etching 42...Active layer 43...Laser output 44...Current diagram 3 Name of Semiconductor Ring Laser Gyro 3, Relationship with the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (213
) President Tetsu Kawakami, President of Sumitomo Electric Industries, Ltd. Address: Inside Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka (Telephone: Osaka 461-1031) Name (7881) Patent attorney (first generation) Tetsu Tsukasa 5, Date of amendment order Spontaneous amendment 6, Detailed explanation of the invention column 7 in the specification subject to amendment, Contents of amendment (11 Change "redirection oscillation wave" to "bidirectional oscillation wave" on page 3, line 14 of the specification) ■ Correct the second line of page 4 of the specification. (3) Change “beat frequency and △f” to “beat frequency and △f” on page 4, line 4 of the specification.
and correct it. (4) From page 7, line 9 to page 7, line 10 of the specification, “the active layer of the band gear amplifier” is r activity 1m (7) t<
/do gap,” he corrected. The resulting waveguide light contains beats generated by the waveguide. Complement 11: do. (6) On page 9, line 13 of the specification, "active layer: GaAs substrate" is corrected to "active layer: GaAs substrate". (7) On page 9, line 18 of the specification, "n-1nP substrate described below" is replaced with "n-1nP substrate described below.
-1nP substrate".
Claims (4)
いて、リング型状の共振器を有するレーザ発振器部分と
該リング型半導体レーザ内に生ずる時計方向及び反時計
方向発振波を共振器外部に取出すための長さの等しい2
本の直線導波路と両導波路により取出される時計まわり
、反時計まわり光を結合させるためのY型光結合部分と
結合後の導波光を素子外部に導くための直線導波路と、
リング型レーザ発振器にレーザ発振を行なわしめるため
の正側及び負側電極とから成り、リング共振器部分が回
転することにより生じる時計方向、反時計方向発振波の
発振周波数差をY型結合部分における両光の干渉による
ビート周波数として検出し、回転角速度を得るようにし
たことを特徴とする半導体リングレーザジャイロ。(1) In a semiconductor laser device fabricated on a semiconductor substrate, a laser oscillator portion having a ring-shaped resonator and clockwise and counterclockwise oscillation waves generated within the ring-shaped semiconductor laser are extracted to the outside of the resonator. 2 with equal length
A straight waveguide, a Y-shaped optical coupling part for coupling clockwise and counterclockwise light extracted by both waveguides, and a straight waveguide for guiding the coupled guided light to the outside of the element;
Consisting of positive and negative electrodes for causing a ring-shaped laser oscillator to oscillate, the oscillation frequency difference between the clockwise and counterclockwise oscillation waves caused by the rotation of the ring resonator section is absorbed by the Y-type coupling section. A semiconductor ring laser gyro characterized by detecting a beat frequency due to the interference of both lights and obtaining a rotational angular velocity.
製作し導波光検出を容易とし信頼性を高めるようにした
ことを特徴とする特許請求の範囲第1項記載の半導体リ
ングレーザジャイロ。(2) A semiconductor ring laser gyro according to claim 1, characterized in that a photodetecting element is fabricated in the straight waveguide portion after the Y-coupling portion to facilitate detection of guided light and improve reliability. .
いることを特徴とする特許請求の範囲第1項及び第2項
に記載の半導体リングレーザジャイロ。(3) The semiconductor ring laser gyro according to claims 1 and 2, characterized in that an InP--nGaAsP system is used as the semiconductor material.
を用いることを特徴とする特許請求の範囲第1項及び第
2項に記載の半導体リングレーザジャイロ。(4) The semiconductor ring laser gyro according to claims 1 and 2, wherein a GaAs-GaAlAs semiconductor is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP416484A JPS60148185A (en) | 1984-01-12 | 1984-01-12 | Semiconductor ring laser gyro |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP416484A JPS60148185A (en) | 1984-01-12 | 1984-01-12 | Semiconductor ring laser gyro |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60148185A true JPS60148185A (en) | 1985-08-05 |
JPH0550159B2 JPH0550159B2 (en) | 1993-07-28 |
Family
ID=11577100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP416484A Granted JPS60148185A (en) | 1984-01-12 | 1984-01-12 | Semiconductor ring laser gyro |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60148185A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01163706A (en) * | 1987-03-26 | 1989-06-28 | Nippon Denso Co Ltd | Multi-direction optical waveguide circuit |
EP0995971A3 (en) * | 1998-10-19 | 2000-10-18 | Canon Kabushiki Kaisha | Gyro and method of operating the same |
US6275296B1 (en) | 1998-10-19 | 2001-08-14 | Canon Kabushiki Kaisha | Semiconductor laser gyro with modulated driving power source |
US6297883B1 (en) | 1998-10-19 | 2001-10-02 | Canon Kabushiki Kaisha | Ring laser gas gyro with beat signal detection from current, voltage, or impedance of the ring laser |
EP1219926A1 (en) | 2000-11-28 | 2002-07-03 | Politecnico di Bari | Integrated optical angular velocity sensor |
US6445454B1 (en) | 1998-10-19 | 2002-09-03 | Canon Kabushiki Kaisha | Gyro having modulated frequency driven laser |
US6559949B1 (en) | 1999-01-22 | 2003-05-06 | Canon Kabushiki Kaisha | Gyro apparatus and gyroscope with multiple interfering laser beams affecting an electrical signal flowing therethrough |
US6654126B1 (en) | 1999-12-01 | 2003-11-25 | Canon Kabushiki Kaisha | Optical gyro with specific clock/calculation circuit |
US6665330B1 (en) | 1999-09-14 | 2003-12-16 | Canon Kabushiki Kaisha | Semiconductor device having a semiconductor ring laser with a circularly formed ridge optical waveguide |
EP1413016A2 (en) * | 2001-08-01 | 2004-04-28 | Binoptics Corporation | Curved waveguide ring laser |
US6741354B2 (en) | 1999-01-18 | 2004-05-25 | Canon Kabushiki Kaisha | Laser device having an optical waveguide for discerning movement of an optical gyroscope and an optical gyroscope utilizing same |
WO2005085759A1 (en) * | 2004-03-03 | 2005-09-15 | Advanced Telecommunications Research Institute International | Gyro employing semiconductor laser |
JP2008002954A (en) * | 2006-06-22 | 2008-01-10 | Advanced Telecommunication Research Institute International | Optical gyroscope |
JP2008197058A (en) * | 2007-02-15 | 2008-08-28 | Japan Aviation Electronics Industry Ltd | Ring laser gyro |
WO2009054467A1 (en) * | 2007-10-25 | 2009-04-30 | Advanced Telecommunications Research Institute International | Semiconductor laser gyro |
JP2009103647A (en) * | 2007-10-25 | 2009-05-14 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
JP2009103646A (en) * | 2007-10-25 | 2009-05-14 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
WO2010004015A1 (en) * | 2008-07-10 | 2010-01-14 | Commissariat A L'energie Atomique | Device with wavelength-selective coupler for collecting the light emitted by a laser source |
CN103384950A (en) * | 2013-01-21 | 2013-11-06 | 华为技术有限公司 | Laser waveguide device |
-
1984
- 1984-01-12 JP JP416484A patent/JPS60148185A/en active Granted
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01163706A (en) * | 1987-03-26 | 1989-06-28 | Nippon Denso Co Ltd | Multi-direction optical waveguide circuit |
US6493089B2 (en) | 1998-10-19 | 2002-12-10 | Canon Kabushiki Kaisha | Gyro and method of operating the same with a modulated frequency signal |
US6275296B1 (en) | 1998-10-19 | 2001-08-14 | Canon Kabushiki Kaisha | Semiconductor laser gyro with modulated driving power source |
US6297883B1 (en) | 1998-10-19 | 2001-10-02 | Canon Kabushiki Kaisha | Ring laser gas gyro with beat signal detection from current, voltage, or impedance of the ring laser |
US6445454B1 (en) | 1998-10-19 | 2002-09-03 | Canon Kabushiki Kaisha | Gyro having modulated frequency driven laser |
EP0995971A3 (en) * | 1998-10-19 | 2000-10-18 | Canon Kabushiki Kaisha | Gyro and method of operating the same |
US6741354B2 (en) | 1999-01-18 | 2004-05-25 | Canon Kabushiki Kaisha | Laser device having an optical waveguide for discerning movement of an optical gyroscope and an optical gyroscope utilizing same |
US6559949B1 (en) | 1999-01-22 | 2003-05-06 | Canon Kabushiki Kaisha | Gyro apparatus and gyroscope with multiple interfering laser beams affecting an electrical signal flowing therethrough |
US6665330B1 (en) | 1999-09-14 | 2003-12-16 | Canon Kabushiki Kaisha | Semiconductor device having a semiconductor ring laser with a circularly formed ridge optical waveguide |
US6654126B1 (en) | 1999-12-01 | 2003-11-25 | Canon Kabushiki Kaisha | Optical gyro with specific clock/calculation circuit |
EP1219926A1 (en) | 2000-11-28 | 2002-07-03 | Politecnico di Bari | Integrated optical angular velocity sensor |
EP1413016B1 (en) * | 2001-08-01 | 2008-09-17 | Binoptics Corporation | Curved waveguide ring laser |
EP1413016A2 (en) * | 2001-08-01 | 2004-04-28 | Binoptics Corporation | Curved waveguide ring laser |
WO2005085759A1 (en) * | 2004-03-03 | 2005-09-15 | Advanced Telecommunications Research Institute International | Gyro employing semiconductor laser |
JP2005249547A (en) * | 2004-03-03 | 2005-09-15 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
US7835008B2 (en) | 2004-03-03 | 2010-11-16 | Advanced Telecommunications Research Institute International | Gyro employing semiconductor laser |
JP2008002954A (en) * | 2006-06-22 | 2008-01-10 | Advanced Telecommunication Research Institute International | Optical gyroscope |
JP2008197058A (en) * | 2007-02-15 | 2008-08-28 | Japan Aviation Electronics Industry Ltd | Ring laser gyro |
WO2009054467A1 (en) * | 2007-10-25 | 2009-04-30 | Advanced Telecommunications Research Institute International | Semiconductor laser gyro |
JP2009103647A (en) * | 2007-10-25 | 2009-05-14 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
JP2009103646A (en) * | 2007-10-25 | 2009-05-14 | Advanced Telecommunication Research Institute International | Semiconductor laser gyro |
WO2010004015A1 (en) * | 2008-07-10 | 2010-01-14 | Commissariat A L'energie Atomique | Device with wavelength-selective coupler for collecting the light emitted by a laser source |
US8483527B2 (en) | 2008-07-10 | 2013-07-09 | Commissariat à l'énergie atomique et aux énergies alternatives | Device with wavelength selective coupler for collecting light emitted by a laser source |
CN103384950A (en) * | 2013-01-21 | 2013-11-06 | 华为技术有限公司 | Laser waveguide device |
WO2014110830A1 (en) * | 2013-01-21 | 2014-07-24 | 华为技术有限公司 | Laser waveguide device |
CN103384950B (en) * | 2013-01-21 | 2015-09-30 | 华为技术有限公司 | Laser waveguide device |
Also Published As
Publication number | Publication date |
---|---|
JPH0550159B2 (en) | 1993-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60148185A (en) | Semiconductor ring laser gyro | |
US4658403A (en) | Optical element in semiconductor laser device having a diffraction grating and improved resonance characteristics | |
JPH0682863B2 (en) | Light emitting diode | |
JPH04174317A (en) | Semiconductor laser gyro | |
JP3099921B2 (en) | Surface emitting semiconductor laser device with light receiving element | |
US4297651A (en) | Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power | |
JPH10125989A (en) | Optical integrated device | |
JPS62150895A (en) | Distributed feedback type semiconductor laser with monitor | |
JP3531917B2 (en) | Ring laser | |
US4644552A (en) | Semiconductor laser | |
JPH05167197A (en) | Optical semiconductor device | |
JPS6232680A (en) | Integrated type semiconductor laser | |
JP2002344079A (en) | Semiconductor ring laser and manufacturing method therefor | |
JPS63228795A (en) | Distributed feedback type semiconductor laser | |
JP3685925B2 (en) | Super luminescent diode | |
JP2574806B2 (en) | Semiconductor laser device | |
JPH03195076A (en) | External resonator type variable wavelength semiconductor laser | |
JP2006108641A (en) | Semiconductor laser and semiconductor laser gyro using same | |
JPS5992592A (en) | Semiconductor light emitting element | |
JPS627186A (en) | Semiconductor laser device | |
JPS62140488A (en) | Semiconductor laser device | |
JP2001124565A (en) | Optical gyro and method using the same for detecting rotation direction | |
JP2002033550A (en) | Ring laser, ring waveguide device, its manufacturing method and optical gyro using ring waveguide device, optical interconnection | |
JP2002340564A (en) | Semiconductor ring laser device optical gyroscope using the same | |
JPH0656905B2 (en) | Optical heterodyne receiver |