JPH05501385A - reinforced composite structure - Google Patents

reinforced composite structure

Info

Publication number
JPH05501385A
JPH05501385A JP51485190A JP51485190A JPH05501385A JP H05501385 A JPH05501385 A JP H05501385A JP 51485190 A JP51485190 A JP 51485190A JP 51485190 A JP51485190 A JP 51485190A JP H05501385 A JPH05501385 A JP H05501385A
Authority
JP
Japan
Prior art keywords
web
fibers
flange
preform
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP51485190A
Other languages
Japanese (ja)
Inventor
ヘッド.ピーター.リチャード
Original Assignee
マンセル.ストラクチュラル.プラスチックス.リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マンセル.ストラクチュラル.プラスチックス.リミテッド filed Critical マンセル.ストラクチュラル.プラスチックス.リミテッド
Publication of JPH05501385A publication Critical patent/JPH05501385A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/228Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being stacked in parallel layers with fibres of adjacent layers crossing at substantial angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Woven Fabrics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 強化複合構造体 本発明は強化複合構造体に関し、更に詳しくは最適の曲げ及び剪断特性を有する のみならず、各部材のウェブとフランジ部分間の接合部においてきわめて優れた 強度を有するように強化繊維が形成されたモールド又は引抜成形(pu 1 t  rude)された複合構造体のための繊維強化プリフォーム構成体に関するも のである。[Detailed description of the invention] reinforced composite structure The present invention relates to reinforced composite structures, and more particularly to reinforced composite structures having optimal bending and shear properties. Not only that, but the joints between the web and flange of each member are extremely superior. Mold or pultrusion molding in which reinforcing fibers are formed to have strength Regarding fiber-reinforced preform constructions for rusted composite structures It is.

モールド又は引抜成形された複合構造体は、編組強化マット、編まれた強化マッ ト、連続フィラメントマット及び多くの他の強化マットが構造体を強化するため に用いられているので公知である。これらのマットはモールド内に置かれ又は引 抜かれ且つ隅部のまわりで曲げられて強化される。強化の方向及び質はストレス レベルや方向に合致するよう部材の異なった部分で変化させることができるが、 異なった部分の接合部は満足に強化できず、例えば力がウェブからフランジを引 張っろうとする場合平面歪み曲げ強度乃至局部的引張強度から太き(外れる。こ れらの問題を克服するために、編まれ、組まれ且つ編組されたプレフォームが知 られ、フランジ及びウェブ部分の面に走る強化繊維に追加゛して、その厚さ方向 に繊維が編まれ、組まれ又は編組されてその強度を改善する。不幸にしてこれら 組まれ、編まれ且つ編組する方法は、軸方向の強度及び構造体の剛性が劣る。何 となれば繊維は構造体の面においてフランジ及び・ウェブ部分を充分に連続的に していないからである。繊維は、面において連続すると云うよりは構造体面の厚 さに亘って連続的に編み返される。繊維はこの捩れは強度を失わせ、マトリック ス特性は繊維方向の変化点でのストレス伝達によって一層重要となり、従ってマ トリックス劣化に一層敏感になる。全剛性は繊維の不連続性により減少する。Molded or pultruded composite structures include braided reinforcement mats, knitted reinforcement mats, mats, continuous filament mats and many other reinforcing mats to strengthen the structure. It is well known because it is used in These mats are placed in a mold or pulled It is drawn out and bent around the corners to strengthen it. The direction and quality of reinforcement is stress It can be varied in different parts of the member to match the level and direction, but Joints of different parts cannot be satisfactorily strengthened, e.g. when forces pull the flange away from the web. If you try to tension it, it will deviate from the plane strain bending strength or local tensile strength. To overcome these problems, knitted, braided and braided preforms are known. In addition to the reinforcing fibers that run on the surface of the flange and web portion, The fibers are knitted, braided or braided to improve their strength. Unfortunately these Braided, knitted, and braided methods have poor axial strength and structural rigidity. what If so, the fibers should be sufficiently continuous in the flange and web parts in the plane of the structure. That's because they haven't. Rather than being continuous in the plane, the fibers extend through the thickness of the structure plane. It is knitted continuously over the entire length. This twisting causes fibers to lose their strength and become matrix The stress properties become more important due to the stress transfer at the points of change in fiber direction, and therefore the Becomes more sensitive to trix deterioration. Total stiffness is reduced due to fiber discontinuities.

本発明によれば、マトリックス材に埋設された請求の範囲記載の繊維強化プレフ ォームからなる複合構造体を提供できる。According to the present invention, the fiber-reinforced preform as claimed in the claims is embedded in the matrix material. A composite structure consisting of foam can be provided.

又、本発明によれば、ウェブ部分及びフランジ部分を有する強化複合構造体の製 造に用いる繊維強化プレフォームを提供でき、該プレフォームは強化繊維がプレ フォームの軸線に平行に置かれ且つ該軸線に直角に置かれた強化繊維とオーバー ラツプしたフランジ強化部分と、強化繊維が前記軸線に相対して傾斜した方向に オーバーラツプし、その相対する方向の各々が前記軸線に対して30°〜80° の角度傾斜しているウェブ強化部分と、からなる。Further, according to the present invention, a reinforced composite structure having a web portion and a flange portion can be manufactured. It is possible to provide a fiber-reinforced preform for use in construction, where the reinforcing fibers are reinforcing fibers placed parallel to the axis of the foam and at right angles to said axis. The wrapped flange reinforced portion and the reinforcing fibers are aligned in a direction inclined relative to the axis. overlapping, each of its opposing directions being between 30° and 80° with respect to said axis. consisting of a web reinforcement section that is inclined at an angle of .

かかる強化プレフォームを用いる利点は、従来技術と比べてフランジ及びウェブ 部分間の接合部において、繊維の位置の正確さが改善されることである。The advantage of using such reinforced preforms is that flanges and webs can be The accuracy of fiber positioning at the joints between sections is improved.

好ましくはグラスファイバーのような繊維の1層以上をウェブ又はフランジ部分 の少くとも一方に応用によって用いることができる。又、ウェブ強化繊維は軸線 に対ることかできる。適当な材料で作られる主強化繊維は好ましくは連続繊維で 、フランジの縁部とウェブ部分の縁部でウェブとフランジ部分の接合部において 、その直線状の所定方向から捩られるのみである。ウェブ部分における角度のつ いた直線状強化繊維はこれらの部分を選択的に上下に通過しウェブ部分に相対す るフランジ部分の外側面に最近接する90°の繊維のまわりでループを形成する 。構造体の軸線に対して0°に置かれたフランジ部分の強化繊維は各々プレフォ ームの長さに沿って連続する。Preferably one or more layers of fibers, such as glass fibers, are used in the web or flange portion. Depending on the application, it can be used for at least one of the following. In addition, the web reinforcing fiber is I can deal with it. The main reinforcing fibers made of a suitable material are preferably continuous fibers. , at the edge of the flange and the edge of the web section, at the junction of the web and the flange section. , it is only twisted from the predetermined direction of the straight line. Angle angle in web section The linear reinforcing fibers passed through these parts selectively up and down, facing the web part. Form a loop around the 90° fiber closest to the outer surface of the flange section. . The reinforcing fibers in the flange section, which are placed at 0° to the axis of the structure, are each preformed. Continuous along the length of the frame.

外方へ90°のフランジ部分のまわりで角度をもったウェブ部分強度のループは ウェブとフランジ部分の間の強い直接結合を与え、同時に全ての主構造体部分に おいて強化繊維を直線状に保つ。使用する強化繊維のタイプ、ウェブ強化の角度 及び質は各構造体の設計により変えることができる。しかし、所定の材料の内容 に対する全強度及び剛性に関する最適構造体は上述した従来技術に比べてウェブ とフランジ部分間の優れた結合強度と剛性により達成できる。この強化構成体は プラスチック及びセラミックを含むマトリックスに用いるモールド又は引抜成形 によって形成される複合構造体のいずれにも使用できる。構造体幾何学は構造体 の軸線に沿って変化でき、又より一般的な引抜成形によって一定にすることがで きる。A loop of web section strength angled around the flange section at 90° outwards is Provides a strong direct bond between the web and flange parts and at the same time all main structure parts to keep the reinforcing fibers straight. Type of reinforcing fiber used, angle of web reinforcement and quality can be varied depending on the design of each structure. However, given material content The optimal structure in terms of total strength and stiffness for This can be achieved through excellent bond strength and rigidity between the and flange parts. This reinforcement construct is Mold or pultrusion for matrices including plastics and ceramics It can be used for any composite structure formed by. Structure geometry is a structure can vary along its axis, or can be made constant by more common pultrusion. Wear.

好ましい実施例においては、各層が+X0及び−Xoの角度をもった強化を含む 少くとも2層からなるものであり、各ウェブ部分は、保障マットを用いて互いに 間隔をおき、保障マットはモールド又は引抜成形動作の間マトリックス材料を吸 収することができる。繊維強化は上述のように形成され、ウェブ部分強化は、フ ランジ部分において90°繊維のまわりでループを形成されるが、ウェブ強化層 がフランジ強化のまわりでループを形成される部分は保障マットを用いて間隔を おかれる。これら強化結合の保障は更に下記の場合に曲げの際ウェブ部分結合に 対するフランジの強度を向上する。即ち、局部的負荷により生ずる歪によって高 い横断方向の曲げが断面を生じ又は高い残存捩れ強度が要求される場合である。In a preferred embodiment, each layer includes reinforcements with angles of +X0 and -Xo. Consisting of at least two layers, each web section is secured to each other using a security mat. At intervals, the security mat absorbs matrix material during the molding or pultrusion operation. can be collected. The fiber reinforcement is formed as described above, and the web partial reinforcement is A loop is formed around the 90° fibers at the lunge, but the web reinforcement layer The part where the loop is formed around the flange reinforcement should be spaced using a mat to ensure be placed. The guarantee of these reinforced connections is further ensured that the web sections are joined together during bending in the following cases: Improve the strength of the flange. That is, the distortion caused by local loads causes high This is the case when a high transverse bend results in a section or high residual torsional strength is required.

ウェブとフランジ部分が上述の通り強化され、フランジ部分がフランジの上下に 連続するウェブ部分の面に結合され、フランジ部分の90°繊維がフランジ部分 に相対するウェブ部分の外側面に最近接する対角線状のウェブ繊維のまわりでル ープを形成する。The web and flange parts are reinforced as described above, and the flange parts are placed above and below the flange. The 90° fibers of the flange portion are bonded to the face of the continuous web portion, and the 90° fibers of the flange portion loops around the diagonal web fibers closest to the outer surface of the web portion opposite the form a loop.

本発明は又、マトリックス材料を埋設した上述した繊維強化プレフォームからな る複合構造体を含む。The present invention also comprises a fiber-reinforced preform as described above with embedded matrix material. Contains composite structures.

本発明の実施例を添付図面に関して説明する。Embodiments of the invention will now be described with reference to the accompanying drawings.

図1は、繊維で強化された複合構造体のウェブとフランジ部分の間のT字状接合 部の斜視図である。Figure 1 shows the T-shaped joint between the web and flange portion of a fiber-reinforced composite structure. FIG.

図2は繊維強化構成体を有するウェブ部分を示す図1に示されるフランジ部分の 断面図である。Figure 2 shows the flange section of the flange section shown in Figure 1 showing a web section with a fiber reinforced structure. FIG.

図3は、繊維で強化された複合構造体のウェブとフランジ部分の間のL字状接合 部の斜視図である。Figure 3 shows the L-shaped joint between the web and flange portion of the fiber-reinforced composite structure. FIG.

図4は、強化プレフォーム構成体の使用例として複合板材部材の断面図である。FIG. 4 is a cross-sectional view of a composite board member as an example of the use of a reinforced preform construction.

図5は、強化プレフォーム構成体の更なる使用例として複合接続部材の断面図で ある。Figure 5 is a cross-sectional view of a composite connecting member as a further example of the use of reinforced preform constructions. be.

図6は、他の複合部分の断面図である。FIG. 6 is a cross-sectional view of another composite part.

図7は、結合強度を増すため保障マットをフランジ部分に使用した複合構造体の T字状接合部分の断面図である。Figure 7 shows a composite structure using a security mat at the flange to increase bond strength. FIG. 3 is a cross-sectional view of a T-shaped joint.

図8は、ウェブがフランジの上下に連続し本発明によって部分が強化された複合 構造体のフランジ部分とウェブ部分の間の接合部の斜視図である。Figure 8 shows a composite structure in which the web continues above and below the flange and is partially reinforced by the present invention. FIG. 3 is a perspective view of the joint between the flange portion and the web portion of the structure.

図9は、壁心用の組立と保持のための複合部分の断面図である。FIG. 9 is a cross-sectional view of a composite part for assembly and retention of a wall core.

図面の図1に関して、完全複合構造体の一部はフランジ部分1とウェブ部分2を 有する。プラスチック又はセラミックで作られたマトリックスは、図示の目的で のみ透視されて描かれている。フランジ部分は、縁部7を有し、グラスファイバ ーの3層で強化されている。第1層4Aは構造体軸線3に対して90°偏向され 、フランジ縁部7で9のまわりでループを形成している。第2層10は軸線3に 対して0°偏向され強化プレフォームの下方を走る連続繊維からなる。第3層4 Bは軸線3に対して90°偏向され、フランジ縁部7で又ループを形成されてい る。ウェブ部分2は、軸線3に対して+X0偏向された繊維5Aと軸線3に対し て−X0偏向された繊維5Bで強化されている。これら対角線状の繊維5Aと5 Bは6で示される90°フランジ強化4Aの頂層上でループを形成されている。With reference to Figure 1 of the drawings, a portion of the complete composite structure includes a flange portion 1 and a web portion 2. have Matrix made of plastic or ceramic is shown for illustration purposes. It is depicted with only transparent views. The flange portion has an edge 7 and is made of fiberglass. - It is reinforced with three layers. The first layer 4A is deflected by 90° with respect to the structure axis 3. , forming a loop around 9 at the flange edge 7. The second layer 10 is on axis 3 It consists of continuous fibers that are deflected by 0° and run under the reinforcing preform. 3rd layer 4 B is deflected by 90° with respect to the axis 3 and also forms a loop at the flange edge 7. Ru. Web portion 2 has fibers 5A deflected +X0 relative to axis 3 and -X0 deflected fibers 5B. These diagonal fibers 5A and 5 B is looped over the top layer of the 90° flange reinforcement 4A shown at 6.

図2に関して、ウェブ繊維5Aと5Bが夫々構造体の軸線に対して十X’ (即 ち3A)、−X’(即ち8B)傾斜して示されている。又、これらの繊維はフラ ンジ部分1において横断するフランジ繊維4A上でループを形成されている。ウ ェブ強化繊維5Aはフランジ繊維4Bと10の間で上方へ通過し繊維4A上でル ープを形成し、その後、繊維5Bとして再び下方へ戻って通過している。With reference to FIG. 2, web fibers 5A and 5B are each at a distance of 10 (i.e., 3A), -X' (i.e., 8B) is shown obliquely. Also, these fibers are A loop is formed on the flange fiber 4A that crosses in the flange portion 1. cormorant The web reinforcing fiber 5A passes upward between the flange fibers 4B and 10 and loops on the fiber 4A. After that, the fiber 5B passes back downward again.

この方法において、プレフォームは連続動作で連続繊維から編組される。In this method, the preform is braided from continuous fibers in a continuous motion.

図3に関して、フランジ部分11は完全複合構造体のL字状部分を形成するウェ ブ部分の線で停止する。フランジ部分は繊維強化の3つの層で強化される。第1 及び第3層13Aと13Bは夫々構造体の軸線15に対し90°偏向し、繊維は L字状部分の外側隅部17で18のまわりでループを形成されている。繊維19 の第2層は構造体の軸線に対してO0偏向している。ウェブ部分12は構造体の 軸線15に対して+X0偏向した繊維14A及び軸線15に対して−X0偏向し た繊維14Bとで強化されている。これら対角線状の繊維14Aと14Bは16 で示される90°フランジ強化13Aの頂層上でループを形成されている。With reference to Figure 3, the flange portion 11 is the wafer forming the L-shaped portion of the complete composite structure. Stop at the line in the blank section. The flange section is reinforced with three layers of fiber reinforcement. 1st and third layers 13A and 13B are each deflected by 90° with respect to the axis 15 of the structure, and the fibers are A loop is formed around 18 at the outer corner 17 of the L-shaped portion. fiber 19 The second layer of is oriented O0 with respect to the axis of the structure. The web portion 12 is of a structure. Fiber 14A with +X0 deflection with respect to axis 15 and -X0 deflection with respect to axis 15 It is reinforced with fibers 14B. These diagonal fibers 14A and 14B are 16 A loop is formed on the top layer of the 90° flange reinforcement 13A shown at .

図4に関し、複合板材部材はT字状接合部21とL字状接合部20で接続された ウェブ部分23と24によって間隔をおかれたフランジ部分22を有する断面に 示されている。この板材部材のための好ましい強化構成体は繊維強化プレフォー ムを製造することであって、フランジとウェブ部分及びT字状接合部21が図2 及び図1又は図7に示されるように強化され、L字状接合部20は図2と3に示 されるように強化される。Regarding FIG. 4, the composite plate members are connected by a T-shaped joint 21 and an L-shaped joint 20. in cross-section with a flange portion 22 spaced by web portions 23 and 24; It is shown. The preferred reinforcing structure for this board member is a fiber reinforced preform. 2, the flange, web portion and T-shaped joint 21 are shown in FIG. and reinforced as shown in FIGS. 1 or 7, and the L-shaped joint 20 is reinforced as shown in FIGS. 2 and 3. strengthened so that

図5に関して、複合接続部材がL字状接合部25と26で接続されたウェブ部分 28と29によって間隔をおかれたフランジ部分27と30を有する断面に示さ れている。この接続部材の好ましい強化構成体は繊維強化プレフォームを製造す ることであって、フランジ部分とL字状接合部25と26は図2と3に示された ように強化される。With reference to FIG. 5, the web portion where the composite connecting member is connected at L-shaped joints 25 and 26 Shown in cross section with flange portions 27 and 30 spaced apart by 28 and 29. It is. The preferred reinforcing structure of this connecting member is for manufacturing fiber reinforced preforms. The flange portion and L-shaped joints 25 and 26 are shown in FIGS. 2 and 3. strengthened as such.

図6に関して、新しい複合部分がウェブ部分33からフランジ部分34Aを引き ちぎろうとするように強く力をかける部分をフランジ部分34Aが有する断面で 示されている。この部分の好ましい強化構成体はフランジ部分34Aとウェブ部 分33とT字状接合部31が図2及び図1又は図7に示されるように強化された 繊維強化プレフォームを製造することである。又、L字状接合部32は図2と図 3に示されるように強化され且つ他の接合部32Aは図8に示されるように強化 される。6, the new composite section pulls the flange section 34A from the web section 33. The flange portion 34A has a cross section where a strong force is applied as if it is about to be torn off. It is shown. Preferred reinforcement structures for this section include the flange section 34A and the web section. The portion 33 and the T-shaped joint 31 are reinforced as shown in FIGS. 2 and 1 or 7. The purpose is to produce fiber-reinforced preforms. In addition, the L-shaped joint 32 is shown in FIG. 3 and the other joint 32A is reinforced as shown in FIG. be done.

図7に関して、フランジ部分35はウェブ部分36に接続している。この場合、 ウェブ強化繊維40と42の2つの層があり、各々は示されるように構造体の軸 線に対して+x0及び−Xoの角度をもつ繊維を有する。これらウェブ繊維は繊 維38と39間でフランジを通って上方へ通過し、90°フランジ強化繊維上で ループを形成される。ウェブ繊維層40と42は保障マット41を用いて間隔を おかれ、フランジでのウェブ繊維の固定部間でのレバーアームを増加する。この ことは接続の性能を向上して平面曲げ効果に抵抗する。With reference to FIG. 7, flange portion 35 connects to web portion 36. in this case, There are two layers of web reinforcing fibers 40 and 42, each attached to the axis of the structure as shown. It has fibers at angles of +x0 and -Xo with respect to the line. These web fibers are It passes upward through the flange between fibers 38 and 39 and on the 90° flange reinforcing fiber. A loop is formed. Web fiber layers 40 and 42 are spaced apart using a security mat 41. This increases the lever arm between the web fibers and the anchoring part at the flange. this This improves the performance of the connection and resists plane bending effects.

図8に関して、完全複合構造体はフランジ部分の上下に延長するウェブ部分44 とフランジ部分43を有するよう示されている。フランジ部分は繊維強化の3つ の層で強化されている。第1層45A及び第3層45Bは構造体の軸線49に対 して90°偏向され48のまわりでループを形成され、対角線状ウェブ部分は層 47Aで強化されて外方ウェブ面に再近接している。フランジ部分の第2層は軸 線49に対してO0偏向し、強化プレフォームの下方を走る連続繊維からなる。8, the complete composite structure includes a web portion 44 extending above and below the flange portion. and a flange portion 43. The flange part has three fiber reinforced parts. It is reinforced with a layer of The first layer 45A and the third layer 45B are aligned with the axis 49 of the structure. deflected 90° to form a loop around 48, and the diagonal web portions 47A and is re-approximated to the outer web surface. The second layer of the flange part is the shaft It consists of continuous fibers with O0 deflection relative to line 49 and running underneath the reinforcing preform.

ウェブ部分44は軸線49に夫々+X0及び−X0偏向している繊維47Aと4 7Bで強化されている。Web portion 44 has fibers 47A and 4 having a +X0 and -X0 deflection, respectively, to axis 49. It has been strengthened with 7B.

図9に関して、複合部分は建築用梁や保持壁用の構造物として適当な構造体を接 続するためフランジ部分49.51.52、ウェブ部分53.54.58.59 .60を有する断面で示されている。この部分のための好ましい強化構成体はフ ランジとウェブ部分及びT字状接合部57と60が図2及び図1又は図7に示さ れるように強化され、L字状接合部55が図2と3に示されるように強化され、 他の接合部56が図8に示されるように強化される。With respect to Figure 9, the composite part can be connected to suitable structures such as architectural beams or retaining wall structures. For connecting flange part 49.51.52, web part 53.54.58.59 .. 60 is shown in cross section. The preferred reinforcing structure for this part is The langes and web portions and T-junctions 57 and 60 are shown in FIGS. 2 and 1 or 7. the L-shaped joint 55 is reinforced as shown in FIGS. 2 and 3; Other joints 56 are reinforced as shown in FIG.

上記の記載は、構造体の軸線に対して+X0及び−X0の角度をもってウェブ部 分における繊維の偏向に関し、Xは30〜80°の範囲から選択される。選択さ れた角度は各応用において、各ウェブ部分の異なった設計上の力の相対的大きさ による。この選択に影響を与える力はウェブ部分の面における剪断力及び構造体 の軸線に平行若しくは該軸線に直角に置かれたウェブ面において前記軸線のまわ りの曲げ面からの剪断力である。剪断が支配する場合、好ましい角度は45°に 近く、構造体の軸線に平行な軸のまわりの曲げが支配する場合、好ましい角度は 30°に近く、且つ構造体の軸線に直角な軸のまわりの曲げが支配する場合、好 ましい角度は8°に近い。The above description indicates that the web portions have angles of +X0 and -X0 with respect to the axis of the structure. Regarding the deflection of the fibers in minutes, X is selected from the range 30-80°. selected The angles determined in each application are determined by the relative magnitude of the different design forces on each web section. by. The forces that influence this selection are shear forces in the plane of the web section and structural around said axis in a web plane parallel to or perpendicular to said axis. This is the shear force from the bending surface. If shear is dominant, the preferred angle is 45° If the bending prevails about an axis close to and parallel to the axis of the structure, the preferred angle is It is preferred if the bending predominates around an axis close to 30° and perpendicular to the axis of the structure. A desirable angle is close to 8°.

自発手続補正書 平成4年7月8日 &Voluntary procedure amendment July 8, 1992 &

Claims (14)

【特許請求の範囲】[Claims] 1.ウエブ部分とフランジ部分とを有する強化複合構造体の製造に用いる繊維強 化プレフォームにおいて、強化繊維がプレフォームの軸線に対して平行に置かれ 且つ該軸線に直角に置かれた強化繊維をオーバーラップするフランジ強化部分と 、前記軸線に対して相対して傾斜する方向にオーバーラップされたウエブ強化部 分と、からなり、前記相対する方向の各々が前記軸線に対して30〜80°の角 度傾斜している繊維強化プレフォーム。1. Fiber reinforcement used to produce reinforced composite structures with web and flange parts In reinforced preforms, reinforcing fibers are placed parallel to the axis of the preform. and a flange reinforcement portion overlapping reinforcing fibers placed perpendicular to the axis. , overlapping web reinforcements in a direction oblique relative to said axis; and, each of said opposing directions being at an angle of 30 to 80° with respect to said axis. degree-sloped fiber-reinforced preform. 2.フランジ部分及び/又はウエブ部分の強化繊維は編組される請求項1記載の プレフォーム。2. The reinforcing fibers of the flange portion and/or the web portion are braided. Preform. 3.ウエブ強化部分の傾斜繊維は、相対して傾斜する方向の一方に延長し、フラ ンジ部分強化の直角繊維上を通過し、且つウエブ部分構成体の縁部まで前記相対 して傾斜する方向の他方に延長する、1つ以上の連続繊維によって形成される請 求項1又は2記載のプレフォーム。3. The sloped fibers of the web reinforcement portion extend in one of the oppositely sloped directions and said relative material passing over the right angle fibers of the web portion reinforcement and up to the edge of the web portion structure. A fiber formed by one or more continuous fibers extending in the other direction Preform according to claim 1 or 2. 4.ウエブ強化部分の縁部で、前記相対して傾斜する方向の一方に延長する繊維 が、前記方向の他方に延長するようループを形成して戻る請求項3記載のプレフ ォーム。4. fibers extending in one of said oppositely inclined directions at the edge of the web reinforcement; 4. The preform according to claim 3, wherein the preform returns to form a loop extending in the other direction. form. 5.フランジ強化部分の直角繊維はフランジ部分構成体を横切って戻り且つ進む ようループを形成する1つ以上の連続繊維からなる請求項1〜4のいずれか1項 記載のプレフォーム。5. The right angle fibers of the flange reinforcement return and advance across the flange section construction. Any one of claims 1 to 4, consisting of one or more continuous fibers forming a loop. Preform as described. 6.平行フランジ強化部分はプレフォームの長さに沿って延長する連続繊維から なる請求項1〜5のいずれか1項記載のプレフォーム。6. Parallel flange reinforcement is made from continuous fibers extending along the length of the preform. The preform according to any one of claims 1 to 5. 7.フランジ強化部分はフランジ部分の相対する側面に延長するウエブ強化部分 に接続し、直角フランジ部分は傾斜したウエブ部分繊維のまわりでループを形成 する請求項1〜6のいずれか1項記載のプレフォーム。7. The flange reinforcement section is a web reinforcement section that extends to opposite sides of the flange section. The right-angled flange section connects to the slanted web section forming a loop around the fibers. Preform according to any one of claims 1 to 6. 8.ウエブ強化部分の繊維は、前記軸線に対して+X°及び−X°の角度をもっ て対称的に置かれ、Xは30〜80°の範囲である請求項1〜7のいずれか1項 記載のプレフォーム。8. The fibers of the web reinforcement have angles of +X° and -X° with respect to said axis. 8. Any one of claims 1 to 7, wherein X is in the range 30 to 80°. Preform as described. 9.保隔マットによって互いに間隔をおいた2つ以上の層のウエブ強化繊維から なる請求項1〜8のいずれか1項記載のプレフォーム。9. From two or more layers of web reinforcement fibers spaced apart from each other by spacing mats. The preform according to any one of claims 1 to 8. 10.マトリックス材料に埋設された、請求項1〜9のいずれか1項記載の繊維 強化プレフォームからなる複合構造体。10. Fibers according to any one of claims 1 to 9 embedded in a matrix material. Composite structure consisting of reinforced preform. 11.ウエブ部分とフランジ部分とからなる複合構造体において、フランジ部分 で強化繊維が構造体の軸線に平行に置かれ、該軸線に直角に置かれた強化繊維を オーバーラップし、ウエブ部分で強化繊維が前記軸線に対して傾斜する方向にオ ーバーラップすると共に、該相対する方向の各々が前記軸線に対して30〜80 °傾斜するように形成された少くとも1層の繊維強化部分内に埋設されたマトリ ックス材料からなる複合構造体。11. In a composite structure consisting of a web part and a flange part, the flange part The reinforcing fibers are placed parallel to the axis of the structure, and the reinforcing fibers placed perpendicular to the axis are overlap, and the reinforcing fibers in the web portion are oriented in a direction that is oblique to the axis. - burlap and each of said opposing directions is 30 to 80 degrees relative to said axis. ° A matrix embedded in at least one layer of fiber reinforcement formed in an inclined manner. Composite structure made of box material. 12.ウエブ部分の強化繊維は、前記軸線に対して+X°及び−X°の角度をも って対称的に置かれ、Xは30〜80°の範囲である請求項10又は11記載の 複合構造体。12. The reinforcing fibers of the web portion also have angles of +X° and -X° with respect to the axis. and X is in the range of 30 to 80 degrees. Composite structure. 13.前記マトリックス材料内に埋設されたマットによって互いに間隔をおいた ウエブ強化繊維の2層以上からなる請求項10〜12のいずれか1項記載の複合 構造体。13. spaced apart from each other by mats embedded within said matrix material. The composite according to any one of claims 10 to 12, comprising two or more layers of web reinforcing fibers. Structure. 14.マトリックスはプラスチック又はセラミックからなる請求項10〜13の いずれか1項記載の複合構造体。14. 14. The matrix according to claims 10-13, wherein the matrix is made of plastic or ceramic. Composite structure according to any one of the items.
JP51485190A 1989-11-01 1990-11-01 reinforced composite structure Pending JPH05501385A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8924590.6 1989-11-01
GB898924590A GB8924590D0 (en) 1989-11-01 1989-11-01 Reinforced composite structural members

Publications (1)

Publication Number Publication Date
JPH05501385A true JPH05501385A (en) 1993-03-18

Family

ID=10665522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51485190A Pending JPH05501385A (en) 1989-11-01 1990-11-01 reinforced composite structure

Country Status (5)

Country Link
EP (1) EP0500604A1 (en)
JP (1) JPH05501385A (en)
AU (1) AU6617690A (en)
GB (2) GB8924590D0 (en)
WO (1) WO1991006421A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9117863D0 (en) * 1991-08-19 1991-10-09 Cambridge Consultants Fibre preforms for structural composite components
DE4342575A1 (en) * 1993-10-12 1995-04-13 Textilma Ag Textile insert for the production of a fiber composite material and fiber composite material
FR2998602B1 (en) * 2012-11-28 2015-06-05 Lr Etanco Atel SYSTEM OF INSULATION OF BUILDINGS FROM OUTSIDE.
CA2922198C (en) 2013-09-04 2021-06-15 Biteam Ab Method and means for weaving a 3d fabric, 3d fabric items thereof and their use
CN112936912B (en) * 2021-04-12 2023-08-25 江苏集萃碳纤维及复合材料应用技术研究院有限公司 Composite material transmission shaft and forming method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2334645C3 (en) * 1973-07-07 1983-04-07 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Process for the production of a beam from a fiber composite profile
JPS5841950A (en) * 1981-08-31 1983-03-11 東レ株式会社 Reinforcing base material for fiber reinforced resin
FR2564490B1 (en) * 1984-05-15 1986-09-19 Aerospatiale IMPROVEMENTS ON THREE-DIMENSIONAL KNITTED COMPOSITE PROFILES AND PROCESS FOR THEIR MANUFACTURE
US4606961A (en) * 1984-10-09 1986-08-19 The Boeing Company Discretely stiffened composite panel
JPS61179731A (en) * 1984-12-29 1986-08-12 日本マイヤー株式会社 Three-dimensional structure material
DE3575746D1 (en) * 1985-09-13 1990-03-08 Shikishima Canvas Kk FIBER STRUCTURE FOR REINFORCING BUILDING MATERIAL.
FR2602248B1 (en) * 1986-08-01 1989-11-24 Brochier Sa MULTIDIMENSIONAL TEXTILE STRUCTURE FOR REINFORCING LAMINATE MATERIALS AND A WEAVING METHOD AND MATERIAL FOR OBTAINING SUCH A STRUCTURE
JPS63152637A (en) * 1986-12-16 1988-06-25 Toray Ind Inc Preform material for reinforcement of resin
IT1218653B (en) * 1987-04-08 1990-04-19 Ferrari Spa Esercizio Fabbrich COMPOSITE STRUCTURAL SUPPORTING ELEMENT FOR VEHICLE BODIES AND PROCEDURE FOR ITS MANUFACTURE
EP0329434B1 (en) * 1988-02-19 1993-07-28 Mitsubishi Jukogyo Kabushiki Kaisha Textile structure for reinforcing structural members such as beams made of composite material, and method of producing the same
JPH0823095B2 (en) * 1989-06-06 1996-03-06 東レ株式会社 Reinforcing fiber fabric

Also Published As

Publication number Publication date
EP0500604A1 (en) 1992-09-02
GB8924590D0 (en) 1989-12-20
GB2253639A (en) 1992-09-16
GB2253639B (en) 1994-06-29
GB9209556D0 (en) 1992-07-08
WO1991006421A1 (en) 1991-05-16
AU6617690A (en) 1991-05-31

Similar Documents

Publication Publication Date Title
EP0073648B1 (en) Fiber material for reinforcing plastics
JPH0322298B2 (en)
US4084029A (en) Sine wave beam web and method of manufacture
US6735916B2 (en) Reinforced structural member
KR20110122109A (en) Woven preform with integral off axis stiffeners
EP0402099A3 (en) Reinforcing woven fabric and preformed material, fiber reinforced composite material and beam using it
DE60221469D1 (en) Through longitudinal and transverse fibers reinforced, pultruded part
HUE027065T2 (en) Textile-reinforced concrete element
US4764409A (en) Metallic reinforcements for use in fiber structures
JPH05501385A (en) reinforced composite structure
US5618603A (en) Fiber reinforcement mat for composite structures
JPH01141723A (en) Method of fixing connecting body to product composed of composite product and connecting body used for said method
EP1842657A3 (en) A pultruded part reinforced by longitudinal and transverse fibers and a method of manufacturing thereof
JPS6140852B2 (en)
JPH01110944A (en) Frp structure
JPH03297479A (en) Ski plate and manufacture of inner core body used in ski plate and manufacture of ski plate
JP4020005B2 (en) Reinforcing structure and reinforcing method using reinforcing material made of fiber reinforced resin
JP7037798B2 (en) Floor structure
JPS6146690B2 (en)
JPH03205132A (en) Connecting method for fiber reinforced resin ribs
JPS6010840Y2 (en) Composite tensile structure
JP2002307585A (en) Frp structural material
EP1023556B1 (en) Pressure-loaded panel and its use at boat or container constructions
JPH04365667A (en) Bogie frame for railway vehicle
JPS5989842A (en) Frp leaf plate