JPS6146690B2 - - Google Patents

Info

Publication number
JPS6146690B2
JPS6146690B2 JP21580481A JP21580481A JPS6146690B2 JP S6146690 B2 JPS6146690 B2 JP S6146690B2 JP 21580481 A JP21580481 A JP 21580481A JP 21580481 A JP21580481 A JP 21580481A JP S6146690 B2 JPS6146690 B2 JP S6146690B2
Authority
JP
Japan
Prior art keywords
leaf spring
fiber
reinforced resin
reinforcing fibers
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21580481A
Other languages
Japanese (ja)
Other versions
JPS58118338A (en
Inventor
Junichi Hori
Tomohito Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP21580481A priority Critical patent/JPS58118338A/en
Publication of JPS58118338A publication Critical patent/JPS58118338A/en
Publication of JPS6146690B2 publication Critical patent/JPS6146690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 本発明は、繊維強化樹脂製板ばねに係り、特に
効率的にせん断強度の向上を図つた繊維強化樹脂
製板ばねに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber-reinforced resin leaf spring, and particularly to a fiber-reinforced resin leaf spring that efficiently improves shear strength.

従来、繊維強化樹脂製板ばねは種々提案されて
いるが、鋼製の板ばねに比べて特に曲げ荷重やね
じり荷重が作用した場合のせん断力に対する強度
が不足するという欠点があつた。即ち板ばねに例
えば曲げ荷重が作用すると、該板ばねの曲げの中
立軸においては、引張応力も圧縮応力も0であ
り、凸に変形する表面層に近づくにつれ引張応力
が増大し、凹に変形する表面層に近づくにつれて
圧縮応力が増大する。従つて、曲げの中立軸付近
においては、応力の性質が正反対となるため層間
せん断応力が最大となり、該層間せん断応力は各
表面層に近づくにつれて漸減する。この場合、鋼
製の板ばねであれば、該層間せん断応力に対する
層間剥離強度は、その内部構造がすべて均質であ
り、分子の結合強度が大きいので十分に大きく、
層間せん断応力によつて板ばねが破損するという
ことはまずないといつてよい。
Various leaf springs made of fiber-reinforced resin have been proposed in the past, but they have the disadvantage that they lack strength against shearing forces, especially when subjected to bending loads or torsional loads, compared to steel leaf springs. In other words, when a bending load is applied to a leaf spring, both tensile stress and compressive stress are zero at the neutral axis of bending of the leaf spring, and the tensile stress increases as it approaches the surface layer that deforms convexly, deforming it concavely. The compressive stress increases as one approaches the surface layer. Therefore, near the neutral axis of bending, the interlaminar shear stress is maximum because the stress properties are exactly opposite, and the interlaminar shear stress gradually decreases as it approaches each surface layer. In this case, if the leaf spring is made of steel, the delamination strength against the interlaminar shear stress is sufficiently large because its internal structure is all homogeneous and the molecular bonding strength is high.
It can be said that it is highly unlikely that a leaf spring will be damaged by interlaminar shear stress.

しかしながら、繊維強化樹脂製板ばねにおいて
は、炭素繊維、ガラス繊維等の強化繊維をマトリ
ツクス樹脂で結合して積層したものであるため、
その板厚方向にはいくつもの性質の異なる層が形
成される。そして強化繊維は引張応力に対しては
非常に強いが、圧縮応力及び層間せん断応力に対
しては非常に弱いため、圧縮強度及び層間剥離強
度は、もつばらマトリツクス樹脂に依存せざるを
得なかつた。しかしこのマトリツクス樹脂も、そ
の圧縮強度及び層間剥離強度は鋼に比べて格段に
小さいので、該板ばねは、圧縮応力及び層間せん
断応力によつて破損し易いという欠点があり、ま
たねじりにも弱いという欠点があつた。
However, since fiber-reinforced resin leaf springs are made by laminating reinforcing fibers such as carbon fibers and glass fibers bonded with matrix resin,
A number of layers with different properties are formed in the thickness direction of the plate. Furthermore, reinforcing fibers are very strong against tensile stress, but very weak against compressive stress and interlaminar shear stress, so the compressive strength and interlaminar peel strength had to depend on the thorn matrix resin. . However, the compressive strength and interlaminar peel strength of this matrix resin are much lower than those of steel, so the leaf spring has the disadvantage of being easily damaged by compressive stress and interlaminar shear stress, and is also weak against torsion. There was a drawback.

本発明は、上述した渋来技術の欠点を除くため
になされたものであつて、その目的とするところ
は、繊維強化樹脂製板ばねの長手方向に対する直
角方向断面に、少なくとも板厚方向に引き揃えた
強化繊維を所定の間隔をおいて配設することによ
つて、マトリツクス樹脂の層間剥離強度を補強
し、層間せん断応力に対する繊維強化樹脂製板ば
ねの層間剥離強度を効率的に増大させることであ
り、またこれによつて繊維強化樹脂製板ばねが層
間せん断応力による層間剥離を起こして破損する
のを防止することである。また他の目的は、ねじ
り強度を増大させることである。
The present invention has been made in order to eliminate the drawbacks of the above-mentioned conventional technology, and its purpose is to provide a fiber-reinforced resin plate spring with a tensile force at least in the thickness direction in a cross section perpendicular to the longitudinal direction. To effectively increase the interlayer peel strength of a fiber-reinforced resin leaf spring against interlayer shear stress by reinforcing the interlayer peel strength of a matrix resin by arranging aligned reinforcing fibers at predetermined intervals. This also prevents the fiber-reinforced resin leaf spring from being damaged due to delamination due to interlayer shear stress. Another purpose is to increase torsional strength.

要するに本発明は、板ばねの長手方向に強化繊
維を配配合して積層した繊維強化樹脂製板ばねに
おいて、該板ばねの長手方向に対する直角方向断
面に所定の間隔をおいて該板ばねの少なくとも板
厚方向に引き揃えた強化繊維を配設したことを特
徴とするものである。
In short, the present invention provides a fiber-reinforced resin leaf spring in which reinforcing fibers are mixed and laminated in the longitudinal direction of the leaf spring. It is characterized by having reinforcing fibers aligned in the thickness direction.

以下本発明を図面に示す実施例に基いて説明す
る。第1図において、繊維強化樹脂製板ばね1の
長手方向には、強化繊維2が引き揃えて配合して
あり、該繊維強化樹脂製板ばねの長手方向に対す
る直角方向断面には、所定の間隔をおいて該板ば
ねの少なくとも板厚方向に引き揃えた強化繊維3
を配合してある。該強化繊維は板厚方向のほか、
幅方向、斜めの方向又はクロス状態に引き揃えて
もよい。
The present invention will be explained below based on embodiments shown in the drawings. In FIG. 1, reinforcing fibers 2 are aligned and blended in the longitudinal direction of a fiber-reinforced resin leaf spring 1, and in a cross section perpendicular to the longitudinal direction of the fiber-reinforced resin leaf spring 1, a predetermined interval is formed. reinforcing fibers 3 aligned at least in the thickness direction of the leaf spring
It is blended with. The reinforcing fibers are used not only in the thickness direction, but also in the thickness direction.
They may be aligned in the width direction, diagonal direction, or crosswise.

次に第2図及び第3図により本発明に係る繊維
強化樹脂製板ばね1の製造方法について説明する
と、まず第2図に示すものは、プルトルージヨン
法の応用であつて、最初に、長手方向に対する直
角な断面の強化繊維3を引き揃え、又はクロス状
に織つて布状とし、所定の間隔をおいて配置し、
これに矢印で示すように、炭素繊維、ガラス繊維
等の強化繊維2を縫針等に引掛けて長手方向に通
し、強化繊維2,3とで骨組を作り、これをマト
リツクス樹脂4で成形し固化させて第1図に示す
ような繊維強化樹脂製板ばね1とする。
Next, the manufacturing method of the fiber-reinforced resin leaf spring 1 according to the present invention will be explained with reference to FIGS. 2 and 3. First, what is shown in FIG. 2 is an application of the pultrusion method. Reinforcing fibers 3 with a cross section perpendicular to the longitudinal direction are aligned or woven into a cloth shape, and arranged at predetermined intervals,
As shown by the arrow, reinforcing fibers 2 such as carbon fibers or glass fibers are hooked onto a sewing needle or the like and passed through in the longitudinal direction to form a framework with the reinforcing fibers 2 and 3, which is then molded with matrix resin 4 and solidified. This produces a fiber-reinforced resin plate spring 1 as shown in FIG.

第3図に示す方法では、まず強化繊維2を長手
方向に引き揃えて、これにマトリツクス樹脂4を
付着させてプリプレグ5となし、次いて該プリプ
レグを数段に積層して、直角方向に矢印で示すよ
うに所定の間隔をおいて、縫針等に強化繊維3を
引掛けてプリプレグ4に通し、これを固化させれ
ば第1図に示すような繊維強化樹脂製板ばね1が
完成する。
In the method shown in FIG. 3, reinforcing fibers 2 are first aligned in the longitudinal direction, matrix resin 4 is attached thereto to form a prepreg 5, and then the prepregs are laminated in several tiers in the direction indicated by the arrow at right angles. As shown in FIG. 1, reinforcing fibers 3 are hooked onto a sewing needle or the like at predetermined intervals and passed through the prepreg 4, and then solidified to complete a fiber-reinforced resin plate spring 1 as shown in FIG.

本発明は、上記のように構成されており、以下
その作用について説明する。第1図において、繊
維強化樹脂製板ばね1に曲げ荷重が作用すると、
上側の表面層1aでは引張応力が、下側の表面層
1bでは圧縮応力が、曲げの中立軸においては層
間せん断応力が最大となる。この引張応力には長
手方向の強化繊維2、主として炭素繊維が対抗
し、圧縮応力には長手方向の強化繊維2とマトリ
ツクス樹脂4及びこれに加えて直角方向の強化繊
維3が対抗する。また層間せん断応力に対して
は、マトリツクス樹脂4に加えて新たに直角方向
の強化繊維3が対抗し、各強化繊維2の層が互に
剥離しようとするのを阻止し、繊維強化樹脂製板
ばね1の層間剥離強度が向上する。またねじり応
力に対しても直角方向の強化繊維3が有効に作用
してねじり強度が向上する。
The present invention is configured as described above, and its operation will be explained below. In FIG. 1, when a bending load is applied to the fiber reinforced resin leaf spring 1,
The upper surface layer 1a has a tensile stress, the lower surface layer 1b has a compressive stress, and the interlaminar shear stress is maximum at the neutral axis of bending. This tensile stress is opposed by the longitudinal reinforcing fibers 2, mainly carbon fibers, and the compressive stress is opposed by the longitudinal reinforcing fibers 2, the matrix resin 4, and in addition to these, the orthogonal reinforcing fibers 3. Furthermore, in addition to the matrix resin 4, additional reinforcing fibers 3 in the right angle direction counteract the interlaminar shear stress, preventing the layers of each reinforcing fiber 2 from peeling off from each other, and preventing the fiber reinforced resin board from peeling off. The delamination strength of the spring 1 is improved. Furthermore, the reinforcing fibers 3 in the right angle direction effectively act against torsional stress, improving torsional strength.

なお第1図に示す実施例では、直角方向の強化
繊維3は7個所に配合されているが、これは7個
所に限定されるものではなくこれより増減させて
もよいことは明らかである。また本発明繊維強化
樹脂製板ばね1の製造方法は第2図及び第3図に
示すものに限定されるものではなく、種々の変形
が考えられる。
In the embodiment shown in FIG. 1, the reinforcing fibers 3 in the perpendicular direction are blended at seven locations, but it is clear that the number of locations is not limited to seven and may be increased or decreased from this. Further, the method for manufacturing the fiber-reinforced resin leaf spring 1 of the present invention is not limited to the method shown in FIGS. 2 and 3, and various modifications may be made.

本発明は、上記のように構成され、作用するも
のであるから、繊維強化樹脂製板ばねの長手方向
に対する直角方向断面に、少なくとも板厚方向に
引き揃えた強化繊維を所定の間隔をおいて配設し
たので、マトリツクス樹脂の層間剥離強度を補強
し、層間せん断応力に対する繊維強化樹脂製板ば
ねの層間剥離強度を効率的に増大させ得る効果が
得られる。またこの結果繊維強化樹脂製板ばねが
層間せん断応力による層間剥離を起こして破損す
るのを防止することができ、またねじり強度も増
大する等種々の優れた効果が得られる。
Since the present invention is constructed and operates as described above, reinforcing fibers aligned at least in the thickness direction are spaced at predetermined intervals in a cross section perpendicular to the longitudinal direction of a fiber-reinforced resin leaf spring. With this arrangement, the effect of reinforcing the interlayer peel strength of the matrix resin and efficiently increasing the interlayer peel strength of the fiber reinforced resin leaf spring against interlayer shear stress can be obtained. Moreover, as a result, it is possible to prevent the fiber-reinforced resin leaf spring from being damaged due to delamination due to interlayer shear stress, and various excellent effects such as increased torsional strength can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係り、第1図は繊維強
化樹脂製板ばねの模型的な斜視図、第2図及び第
3図は繊維強化樹脂製板ばねの製造工程の一例を
示す斜視図である。 1は繊維強化樹脂製板ばね、2は長手方向の強
化繊維、3は長手方向に対する直角方向の強化繊
維である。
The drawings relate to embodiments of the present invention, and FIG. 1 is a schematic perspective view of a fiber-reinforced resin leaf spring, and FIGS. 2 and 3 are perspective views showing an example of the manufacturing process of the fiber-reinforced resin leaf spring. It is. 1 is a leaf spring made of fiber-reinforced resin, 2 is a reinforcing fiber in the longitudinal direction, and 3 is a reinforcing fiber in a direction perpendicular to the longitudinal direction.

Claims (1)

【特許請求の範囲】[Claims] 1 板ばねの長手方向に強化繊維を配合して積層
した繊維強化樹脂製板ばねにおいて、該板ばねの
長手方向に対する直角方向断面に所定の間隔をお
いて該板ばねの少なくとも板厚方向に引き揃えた
強化繊維を配設したことを特徴とする繊維強化樹
脂製板ばね。
1. In a fiber-reinforced resin leaf spring in which reinforcing fibers are blended and laminated in the longitudinal direction of the leaf spring, the leaf spring is stretched at least in the thickness direction at a predetermined interval in a cross section perpendicular to the longitudinal direction of the leaf spring. A fiber-reinforced resin leaf spring characterized by having uniform reinforcing fibers arranged therein.
JP21580481A 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin Granted JPS58118338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21580481A JPS58118338A (en) 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21580481A JPS58118338A (en) 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin

Publications (2)

Publication Number Publication Date
JPS58118338A JPS58118338A (en) 1983-07-14
JPS6146690B2 true JPS6146690B2 (en) 1986-10-15

Family

ID=16678522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21580481A Granted JPS58118338A (en) 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin

Country Status (1)

Country Link
JP (1) JPS58118338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316899A (en) * 1988-06-17 1989-12-21 Yamato Protec Co Fire alarm system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611793A (en) * 1984-06-21 1986-09-16 Toyota Jidosha Kabushiki Kaisha Leaf spring assembly for wheel suspension
US6460838B1 (en) * 2001-04-10 2002-10-08 Visteon Global Technologies, Inc. Fiber reinforced suspension member
CN107923466B (en) * 2015-06-22 2021-05-11 亨德里克森美国有限责任公司 Composite suspension component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316899A (en) * 1988-06-17 1989-12-21 Yamato Protec Co Fire alarm system

Also Published As

Publication number Publication date
JPS58118338A (en) 1983-07-14

Similar Documents

Publication Publication Date Title
US4368234A (en) Woven material and layered assembly thereof
RU2420407C2 (en) Thin-layer laminates
EP1197316B1 (en) Plastic component with inserts
JPH0322298B2 (en)
ATE368562T1 (en) PULTRUDED PART REINFORCED BY LONGITUDINAL AND TRANSVERSAL FIBERS
CN110202856B (en) Composite panel with reinforcing pins
US20070009712A1 (en) Force-introduction point in core composites and method for producing said point using reinforcement elements that traverse the thickness of the core composite
JPS6146690B2 (en)
EP0445620B1 (en) Leaf springs from fibre/plastic composite
JPH02133632A (en) Sewing yarn for forming preform material for reinforcing resin
EP1842657A3 (en) A pultruded part reinforced by longitudinal and transverse fibers and a method of manufacturing thereof
DE10018035A1 (en) Core material for sandwich structures, in particular, light weight structures incorporates channels whose orientation, number and thickness are optimized for a particular application
JPH05501385A (en) reinforced composite structure
EP1023556B1 (en) Pressure-loaded panel and its use at boat or container constructions
JPS6139533B2 (en)
JPS5989842A (en) Frp leaf plate
DE9006957U1 (en) Composite and hybrid material web
JPS58171945A (en) Multilayer prepreg
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
JP2002307585A (en) Frp structural material
JPH04279332A (en) Carbon fiber-reinforced laminated lumber
JPH0726343Y2 (en) Carbon fiber reinforced inorganic board
DE10102417A1 (en) Method for strengthening wooden building elements consists of producing strengthening patterns made up of textile structures, and laminating them onto the wooden building element
JPS6358297B2 (en)
Sun Intelligent tailoring of composite laminates