JPH0549965B2 - - Google Patents

Info

Publication number
JPH0549965B2
JPH0549965B2 JP58151780A JP15178083A JPH0549965B2 JP H0549965 B2 JPH0549965 B2 JP H0549965B2 JP 58151780 A JP58151780 A JP 58151780A JP 15178083 A JP15178083 A JP 15178083A JP H0549965 B2 JPH0549965 B2 JP H0549965B2
Authority
JP
Japan
Prior art keywords
diffraction grating
diffraction
incident
light
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58151780A
Other languages
Japanese (ja)
Other versions
JPS6043629A (en
Inventor
Fumio Yamagishi
Shunji Kitagawa
Kozo Yamazaki
Shinya Hasegawa
Hiroyuki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15178083A priority Critical patent/JPS6043629A/en
Publication of JPS6043629A publication Critical patent/JPS6043629A/en
Publication of JPH0549965B2 publication Critical patent/JPH0549965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、分光に係り、特に、高分解能を要す
る分光方法とそれに使用する分光素子に関す。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to spectroscopy, and particularly to a spectroscopic method requiring high resolution and a spectroscopic element used therein.

(b) 技術の背景 分光は古くから知られている技術で、種々の分
析手段等として多く使用されているが、その対象
となる波長の幅は一般に広いのが通常である。一
方、近年は、レーザー光に関する技術が発展し、
レーザー光の分光が必要になつて来たが、レーザ
ー光は波長幅が極めて狭いためその分光に際して
は分解能を高くする必要があり、しかも簡便に出
来ることが望まれている。
(b) Background of the technology Spectroscopy is a technology that has been known for a long time and is widely used as a means of analysis, etc., but the range of wavelengths it targets is generally wide. On the other hand, in recent years, technology related to laser light has developed,
Spectroscopy of laser light has become necessary, but since laser light has an extremely narrow wavelength width, it is necessary to increase the resolution when performing spectroscopy, and it is desired that it can be done easily.

(c) 従来技術と問題点 第1図は従来の分光素子による分光方法の一実
施例を示した図、第2図は同じく他の実施例を示
した図で、1はプリズム、1aは入射面、1bは
出射面、2は回折格子到、2aは回折格子面、
A・Bは入射ビーム、Aaは屈折ビーム、Ab・
Baは出射ビームをそれぞれ示す。
(c) Prior art and problems Figure 1 shows an example of a spectroscopic method using a conventional spectroscopic element, and Figure 2 shows another example, where 1 is a prism, and 1a is an incident light beam. 1b is the exit surface, 2 is the diffraction grating surface, 2a is the diffraction grating surface,
A and B are incident beams, Aa is refracted beam, Ab and
Ba indicates the output beam, respectively.

第1図において、光学ガラスでなるプリズム1
は波長により異なる屈折率を有するので、プリズ
ム1に入射した被分光ビームである入射ビームA
は、入射面1aで屈折分光し屈折ビームAaにな
り、更に出射面1bで屈折分光して出射ビーム
Abとなつて出射する。この出射ビームAbをプリ
ズム1から離れたところで観測すれば、波長によ
る分布を知ることが出来る。そして、その分解能
は、主として、入射ビームAと出射ビームAbと
がなす屈折角の大きさと、プリズム1から前記観
測をする位置までの距離の長さに支配されてい
る。
In Figure 1, a prism 1 made of optical glass
has a refractive index that differs depending on the wavelength.
is refracted and split at the entrance surface 1a to become a refracted beam Aa, and further refracted and split at the exit surface 1b to become an output beam.
It becomes Ab and emits. By observing this emitted beam Ab at a distance from the prism 1, the distribution according to wavelength can be determined. The resolution is mainly controlled by the magnitude of the refraction angle formed by the incident beam A and the outgoing beam Ab, and the length of the distance from the prism 1 to the observation position.

このように、プリズム1で分光を行う場合は、
その方法は簡便であるが、前記屈折角は60度程度
であることと、前記観測をする位置までの距離を
無闇に長く出来ない制限から、分解能を高く出来
ない欠点がある。
In this way, when performing spectroscopy with prism 1,
Although this method is simple, it has the disadvantage that it cannot achieve high resolution because the refraction angle is about 60 degrees and the distance to the observation position cannot be increased arbitrarily.

第2図に示す実施例では第1図の場合のプリズ
ム1の代わりに回折格子板2を使用している。そ
の回折格子面2aにある回折格子は波長により回
折角が異なるので、入射ビームBは回折格子面2
aで回折分光して出射ビームBaとなり、第1図
の場合と同様に観測出来る。回折格子板2の場合
は、回折角は回折格子の格子間隔で決まるが実用
上から120度程度以下であつて、プリズム1の場
合と同様に簡便な方法ではあるが、やはり分解能
を高く出来ない欠点がある。
In the embodiment shown in FIG. 2, a diffraction grating plate 2 is used in place of the prism 1 in the case of FIG. Since the diffraction angle of the diffraction grating on the diffraction grating surface 2a differs depending on the wavelength, the incident beam B is
It undergoes diffraction and spectroscopy at point a to become an outgoing beam Ba, which can be observed in the same manner as in Figure 1. In the case of the diffraction grating plate 2, the diffraction angle is determined by the grating spacing of the diffraction grating, but from a practical standpoint, it is about 120 degrees or less, and although it is a simple method as in the case of prism 1, it still cannot achieve high resolution. There are drawbacks.

(d) 発明の目的 本発明の目的は上記従来の欠点に鑑み、従来と
同様に簡便な方法でありながら、分解能を高める
ことが可能な分光方法とそれに使用する分光素子
とを提供するにある。
(d) Purpose of the Invention In view of the above-mentioned drawbacks of the conventional method, the purpose of the present invention is to provide a spectroscopic method that is as simple as the conventional method but can improve the resolution, and a spectroscopic element used therein. .

(e) 発明の構成 上記目的は、 (1) 3個以上の回折格子を軸に対して平行に且つ
放射状に配置し、該回折格子の任意の一つに被
分光ビームを、該軸に垂直な面に対して斜めに
且つ該回折格子に対して斜めに入射して回折さ
せ、該回折光が順次隣接する回折格子に入射し
て少なくとも最初に入射された回折格子に達す
るまで回折を繰り返した後、該回折光を取り出
す分光方法、あるいは (2) 3個以上の回折格子面が軸に対して平行に且
つ放射状に配設され、且つまた、該回折格子面
は、その任意の一つが、それを挟む両隣の回折
格子面の一方から入射した被分光ビームを回折
させ、他方の回折格子面へむけて出射する回折
格子を有する分光素子、あるいは (3) 前記回折格子面はホログラムである前記2項
記載の分光素子、あるいは (4) 前記配設において、前記回折格子面間は透明
媒質で充填されている前記2項記載の分光素子
によつて達成される。
(e) Structure of the Invention The above object is to: (1) Arrange three or more diffraction gratings parallel to an axis and radially, and direct a beam to be separated to any one of the diffraction gratings perpendicular to the axis. The diffracted light was incident diagonally to the surface and diagonally to the diffraction grating and diffracted, and the diffracted light was sequentially incident on adjacent diffraction gratings and the diffraction was repeated until it reached at least the first diffraction grating. and (2) three or more diffraction grating surfaces are arranged parallel to the axis and radially, and any one of the diffraction grating surfaces is A spectroscopic element having a diffraction grating that diffracts a beam to be separated that is incident from one of the diffraction grating surfaces on both sides thereof and outputs the beam toward the other diffraction grating surface, or (3) the above-mentioned one in which the diffraction grating surface is a hologram. The spectroscopic element according to item 2, or (4) in the above arrangement, is achieved by the spectroscopic element according to item 2, wherein the space between the surfaces of the diffraction grating is filled with a transparent medium.

本分光素子において、被分光ビームが前記軸に
対して傾斜をもつて入射されると、該ビームは該
分光素子内において前記複数の回折格子面で順次
回折を繰り返しながら螺旋状に進み、それを、所
望の回数(n回)の回折の後出射ビームとして引
き出せば、該出射ビームの分光の度合は1回の分
光の略n倍に拡大されているので、分解能を大幅
に高めることが可能である。
In this spectroscopic element, when the beam to be separated is incident at an angle with respect to the axis, the beam travels in a spiral shape while repeating sequential diffraction orders on the plurality of diffraction grating surfaces within the spectroscopic element. If it is extracted as an output beam after diffraction a desired number of times (n times), the degree of spectralization of the output beam is expanded to approximately n times that of one spectral beam, so it is possible to significantly improve the resolution. be.

また、本発明によれば、前記分光素子の回折格
子面は、ホログラムであることが望ましい。それ
は、他の回折格子面と比較して回折効率(出射光
量/入射光量)が高いからである。
Further, according to the present invention, it is desirable that the diffraction grating surface of the spectroscopic element is a hologram. This is because the diffraction efficiency (outgoing light amount/incident light amount) is higher than that of other diffraction grating surfaces.

更に、前記複数の回折格子面間は透明媒質で充
填されていることが望ましい、それは、一般に回
折格子面は透明板の表面に形成されており、該透
明板の表面反射が入射ビームのロスとなつて出射
ビームの光量を低減させ、前記回折格子面が複数
の場合その影響が大きくなるのを、前記透明媒質
の充填により該反射ロスを減少させることが出来
るからである。
Furthermore, it is desirable that the spaces between the plurality of diffraction grating surfaces be filled with a transparent medium, because the diffraction grating surfaces are generally formed on the surface of a transparent plate, and surface reflection of the transparent plate causes loss of the incident beam. This is because filling the transparent medium makes it possible to reduce the reflection loss, which reduces the amount of light of the emitted beam and increases the influence when there are a plurality of diffraction grating surfaces.

(f) 発明の実施例 以下本発明の実施例を図により説明する。(f) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の分光素子の一実施例による分
光方法の一実施例を示した斜視図aと平面図b、
第4図・第5図・第6図はそれぞれ分光素子の他
の実施例を示した図で、3a,3b,3c,3d
は回折格子板、4a,4dはミラー面、5a〜5
d,6a〜6dは透明媒質、7は接合材、8は回
折格子板、Cは入射ビーム、Caは出射ビーム、
Zは軸をそれぞれ示す。
FIG. 3 is a perspective view a and a plan view b showing an embodiment of a spectroscopic method using an embodiment of the spectroscopic element of the present invention;
Figures 4, 5, and 6 are diagrams showing other embodiments of the spectroscopic element, 3a, 3b, 3c, 3d.
is a diffraction grating plate, 4a, 4d are mirror surfaces, 5a to 5
d, 6a to 6d are transparent media, 7 is a bonding material, 8 is a diffraction grating plate, C is an incident beam, Ca is an output beam,
Z indicates an axis, respectively.

第3図に示す回折素子は、ホログラムでなり同
一の回折格子面を備えた四枚の回折格子板3a〜
3dが図示の如く90度間隔で放射状に配設され、
その間が例えばレンズボンドの如き透明媒質5a
〜5dで充填されている。ここで、前記回折格子
面の回折格子は、例えば、図b図示のように、回
折格子板3aから3bに略45度の入射角で入射し
たビームは回折格子板3bの回折格子面で回折し
回折格子板3cに向けて略45度の出射角で出射す
るような回折格子になつている。更に、透明媒質
5a,5b・5cは回折格子板3a〜3dの全面
を充填しているが、透明媒質5dの充填は図aに
示すように回折格子板3d,3aの面の上部およ
び下部を残しており、その残された回折格子板3
dの上部の面と3aの下部の面にビームを反射さ
せるためのミラー面4d,4aがそれぞれ形成さ
れている。
The diffraction element shown in FIG. 3 is a hologram and includes four diffraction grating plates 3a to 3a having the same diffraction grating surface.
3d are arranged radially at 90 degree intervals as shown in the figure,
In between is a transparent medium 5a such as lens bond.
Filled with ~5d. Here, the diffraction grating on the diffraction grating surface is such that, for example, as shown in FIG. The diffraction grating is such that the light is emitted at an output angle of approximately 45 degrees toward the diffraction grating plate 3c. Furthermore, although the transparent media 5a, 5b, and 5c fill the entire surfaces of the diffraction grating plates 3a to 3d, the filling of the transparent medium 5d covers the upper and lower surfaces of the diffraction grating plates 3d and 3a, as shown in Figure a. The remaining diffraction grating plate 3
Mirror surfaces 4d and 4a for reflecting the beam are formed on the upper surface of d and the lower surface of 3a, respectively.

この構成でなる回折素子を使用して分光を行う
には、第3図に示すように、回折格子板3a〜3
d配設の軸Zに垂直な面に対して若干傾斜させ、
且つミラー面4dで反射したビームが回折格子板
3aに略45度の入射角で入射するように、被分光
ビームである入射ビームCを投射してやればよ
い。入射ビームCは回折格子板3aで最初の回折
をし、以下3b・3c〜と回折を繰り返し、図示
の例ではこの回折素子の中を3回転して12回目の
回折を3dで行つて出射ビームCaとなり、ミラ
ー面4aで反射して引き出される。この場合、回
折効率のよいホログラムを回折格子板3a〜3d
にし、且つその表面反射を抑制する透明媒質5a
〜5dの充填がなされているので、出射ビーム
Caは12回の回折にもかかわらず充分な光量を有
している。従つて、この出射ビームCaは、その
分光の度合が1回の分光の略12倍になつており、
その光量も充分であるので、例えば、レーザー光
の如く波長幅の小さな光であつてもその分布を容
易に観測することが可能になる。
In order to perform spectroscopy using the diffraction element having this configuration, as shown in FIG.
d Slightly inclined with respect to the plane perpendicular to the axis Z of the arrangement,
Moreover, the incident beam C, which is the beam to be separated, may be projected so that the beam reflected by the mirror surface 4d is incident on the diffraction grating plate 3a at an incident angle of approximately 45 degrees. The incident beam C undergoes the first diffraction at the diffraction grating plate 3a, and then repeats the diffraction in steps 3b, 3c, etc. In the illustrated example, it rotates through this diffraction element three times, performs the 12th diffraction at 3d, and becomes an output beam. It becomes Ca, is reflected on the mirror surface 4a, and is drawn out. In this case, the hologram with good diffraction efficiency is placed on the diffraction grating plates 3a to 3d.
transparent medium 5a that suppresses surface reflection.
Since the filling is ~5d, the output beam
Ca has a sufficient amount of light despite being diffracted 12 times. Therefore, the degree of spectralization of this output beam Ca is approximately 12 times that of one spectral beam,
Since the amount of light is also sufficient, it is possible to easily observe the distribution of light even if the wavelength width is small, such as laser light.

以下回折素子の他の実施例を列記するが、何れ
の場合も分光の原理ならびに方法は上記と変わら
ない。
Other embodiments of the diffraction element will be listed below, but in any case, the principle and method of spectroscopy are the same as above.

第4図は第3図の場合の透明媒質5a〜5dを
充填しないもので、回折格子板3a〜3dの面反
射が第3図の場合より大きいため、回折可能回数
は第3図の場合より制限される。
FIG. 4 shows a case in which the transparent media 5a to 5d in the case of FIG. 3 are not filled, and the surface reflection of the diffraction grating plates 3a to 3d is larger than in the case in FIG. limited.

第5図は第3図の場合の透明媒質5a〜5dを
光学ガラスでなる6a〜6dにしたもので、この
場合は回折格子板3a〜3dとの間を例えばレン
ズボンド等の接合材7で接合するとよい。
In FIG. 5, the transparent media 5a to 5d in FIG. 3 are replaced with optical glass 6a to 6d, and in this case, a bonding material 7 such as lens bond is used between the diffraction grating plates 3a to 3d. It is better to join.

第6図は三枚の回折格子板8で構成した例で、
該構成の形態は第3図・第4図・第5図の何れで
あつてもよい。但し、回折の角度が異なるため回
折格子の間隔を変える必要がある。
Figure 6 shows an example composed of three diffraction grating plates 8.
The form of the structure may be any of those shown in FIG. 3, FIG. 4, and FIG. 5. However, since the angle of diffraction is different, it is necessary to change the spacing of the diffraction gratings.

なお、本発明の構成による回折素子は、同一の
もので使用出来る波長の幅が広くないので、観測
する入射ビーム波長に合つた回折素子を用意する
必要があるが、構造が簡単であるので大きな負担
にならず、むしろ分光方法の簡便さの利点の方が
大きい。
Note that the diffraction elements configured according to the present invention cannot be used in a wide range of wavelengths, so it is necessary to prepare a diffraction element that matches the wavelength of the incident beam to be observed. It is not a burden, and the simplicity of the spectroscopic method is a greater advantage.

(g) 発明の効果 以上に説明したように、本発明による構成によ
れば、従来と同様に簡便な方法でありながら、分
解能を高めることが可能な分光方法とそれに使用
する分光素子とを提供することが出来、例えば、
レーザ光の如く波長幅の小さな光であつてもその
分布を容易に観測することを可能にさせる効果が
ある。
(g) Effects of the Invention As explained above, the configuration of the present invention provides a spectroscopic method that is as simple as the conventional method but can improve resolution, and a spectroscopic element used therein. For example,
This has the effect of making it possible to easily observe the distribution of even light with a small wavelength width, such as laser light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分光素子による分光方法の一実
施例を示した図、第2図は同じく他の実施例を示
した図、第3図は本発明の分光素子の一実施例に
よる分光方法の一実施例を示した斜視図aと平面
図b、第4図・第5図・第6図はそれぞれ分光素
子の他の実施例を示した図である。 図面において、1はプリズム、1aは入射面、
1bは出射面、2,3a〜3d,8は回折格子
板、2aは回折格子面、4a,4bはミラー面、
5a〜5d,6a〜6dは透明媒質、7は接合
材、A,B,Cは入射ビーム、Aaは屈折ビーム、
Ab,Ba,Caは出射ビーム、Zは軸をそれぞれ示
す。
Fig. 1 shows an example of a spectroscopic method using a conventional spectroscopic element, Fig. 2 shows another example, and Fig. 3 shows a spectroscopic method using an embodiment of the spectroscopic element of the present invention. A perspective view a and a plan view b showing one embodiment, and FIGS. 4, 5, and 6 are views showing other embodiments of the spectroscopic element, respectively. In the drawing, 1 is a prism, 1a is an entrance surface,
1b is an output surface, 2, 3a to 3d, 8 are diffraction grating plates, 2a is a diffraction grating surface, 4a, 4b are mirror surfaces,
5a to 5d, 6a to 6d are transparent media, 7 is a bonding material, A, B, C are incident beams, Aa is a refracted beam,
Ab, Ba, and Ca indicate the output beam, and Z indicates the axis, respectively.

Claims (1)

【特許請求の範囲】 1 3個以上の回折格子を軸に対して平行に且つ
放射状に配置し、該回折格子の任意の一つに被分
光ビームを、該軸に垂直な面に対して斜めに且つ
該回折格子に対して斜めに入射して回折させ、該
回折光が順次隣接する回折格子に入射して少なく
とも最初に入射された回折格子に達するまで回折
を繰り返した後、該回折光を取り出すことを特徴
とする分光方法。 2 3個以上の回折格子面が軸に対して平行に且
つ放射状に配設され、且つまた、該回折格子面
は、その任意の一つが、それを挟む両隣の回折格
子面一方から入射した被分光ビームを回折させ、
他方の回折格子面へ向けて出射する回折格子を有
することを特徴とする分光素子。 3 前記回折格子面は、ホログラムであることを
特徴とする、特許請求の範囲第2項記載の分光素
子。 4 前記配設において、前記回折格子面間は透明
媒質で充填されていることを特徴とする、特許請
求の範囲第2項記載の分光素子。
[Claims] 1. Three or more diffraction gratings are arranged parallel to an axis and radially, and a beam to be separated is directed to any one of the diffraction gratings at an angle with respect to a plane perpendicular to the axis. The diffraction light is incident obliquely on the diffraction grating and diffracted, and the diffraction light is sequentially incident on adjacent diffraction gratings until it reaches at least the first diffraction grating, and then the diffraction light is A spectroscopic method characterized by the extraction of 2. Three or more diffraction grating surfaces are arranged parallel to the axis and radially, and any one of the diffraction grating surfaces is capable of absorbing light incident from one of the adjacent diffraction grating surfaces on both sides. diffract the spectral beam,
A spectroscopic element characterized by having a diffraction grating that emits light toward the other diffraction grating surface. 3. The spectroscopic element according to claim 2, wherein the diffraction grating surface is a hologram. 4. The spectroscopic element according to claim 2, wherein in the arrangement, a space between the surfaces of the diffraction grating is filled with a transparent medium.
JP15178083A 1983-08-20 1983-08-20 Method and element for sectral distribution Granted JPS6043629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15178083A JPS6043629A (en) 1983-08-20 1983-08-20 Method and element for sectral distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15178083A JPS6043629A (en) 1983-08-20 1983-08-20 Method and element for sectral distribution

Publications (2)

Publication Number Publication Date
JPS6043629A JPS6043629A (en) 1985-03-08
JPH0549965B2 true JPH0549965B2 (en) 1993-07-27

Family

ID=15526134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15178083A Granted JPS6043629A (en) 1983-08-20 1983-08-20 Method and element for sectral distribution

Country Status (1)

Country Link
JP (1) JPS6043629A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716468B2 (en) * 2001-05-31 2011-07-06 株式会社イトーキ Transport mechanism and automatic warehouse equipped with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100847A (en) * 1977-02-15 1978-09-02 Nippon Selfoc Co Ltd Light wave length spectrometer with prism
JPS53106060A (en) * 1977-02-26 1978-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical brenching filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100847A (en) * 1977-02-15 1978-09-02 Nippon Selfoc Co Ltd Light wave length spectrometer with prism
JPS53106060A (en) * 1977-02-26 1978-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical brenching filter

Also Published As

Publication number Publication date
JPS6043629A (en) 1985-03-08

Similar Documents

Publication Publication Date Title
US4863224A (en) Solar concentrator and manufacturing method therefor
US4691994A (en) Method for a solar concentrator manufacturing
US4748614A (en) Optical wavelength-multiplexing and/or demultiplexing device
US4701005A (en) Light beam combining method and apparatus
US4834474A (en) Optical systems using volume holographic elements to provide arbitrary space-time characteristics, including frequency-and/or spatially-dependent delay lines, chirped pulse compressors, pulse hirpers, pulse shapers, and laser resonators
US4836634A (en) Wavelength multiplexer/demultiplexer using optical fibers
US7006266B2 (en) Optical switching devices
GB2151036A (en) Improvements in or relating to optical filters
JPH02176606A (en) Diffraction grating
US4397525A (en) Device for dividing a laser beam
US10546968B2 (en) Solar concentration system using volume holograms
KR890012277A (en) Optical scanning device
JPH0549965B2 (en)
SU1103049A1 (en) Method of manufacturing light radiation concentrator by means of holographic technique
CN1200288C (en) Plate lens with variable light refractive index
US6621633B2 (en) System and method for increasing the diffraction efficiency of holograms
US20060232839A1 (en) Efficient multi-line narrow-band large format holographic filter
SU1756852A1 (en) Multiplexer
US20090201967A1 (en) Laser device comprising a diffraction grating and coupled laser resonators
RU2199769C2 (en) Process recording holographic diffraction grating
KR102046103B1 (en) Integrated hologram optical element
JPH0677331B2 (en) Light head
SU1350489A1 (en) Device for measuring linear shifts of objects
JPS61223704A (en) Formation of hologram lens
SU754221A1 (en) Interference filter with selective amplitude modulation