JPH0549947B2 - - Google Patents

Info

Publication number
JPH0549947B2
JPH0549947B2 JP54146701A JP14670179A JPH0549947B2 JP H0549947 B2 JPH0549947 B2 JP H0549947B2 JP 54146701 A JP54146701 A JP 54146701A JP 14670179 A JP14670179 A JP 14670179A JP H0549947 B2 JPH0549947 B2 JP H0549947B2
Authority
JP
Japan
Prior art keywords
impedance
current transformer
primary
voltage
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54146701A
Other languages
Japanese (ja)
Other versions
JPS5670467A (en
Inventor
Tadashi Azegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP14670179A priority Critical patent/JPS5670467A/en
Publication of JPS5670467A publication Critical patent/JPS5670467A/en
Publication of JPH0549947B2 publication Critical patent/JPH0549947B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 本発明は変位量に応じてインピーダンスが変化
する一対のインピーダンス要素を用いて上記変位
量に応じた電気的な出力信号を得るインピーダン
ス変化検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impedance change detector that uses a pair of impedance elements whose impedance changes depending on the amount of displacement to obtain an electrical output signal according to the amount of displacement.

第1図は従来からのインピーダンス変化検出器
を元す概略図である。11,12は変化量に応じ
てインピーダンスが変化する受圧カプセル等に内
蔵されたインピーダンス要素で、変位量の変化に
よりその静電容量C1,C2が変化する。各インピ
ーダンス要素11,12には抵抗21,22が
夫々直列接続され、この直列回路が並列接続され
所謂ブリツジ回路を構成している。抵抗21及び
22の接続点は抵抗23に接続され、この回路に
交流信号が発振器3より供給される。ここで抵抗
21,22に流れる電流を夫々i1,i2、抵抗23
に流れる電流をi3、各抵抗21,22,23の抵
抗値をR1,R2,R3とし、各抵抗21,22,2
3に発生する電圧をe1,e2,e3とする。また、
1/jωC1,1/jωC2≫R1,R2,R3とすれば次式
が成り立つ。
FIG. 1 is a schematic diagram of a conventional impedance change detector. Reference numerals 11 and 12 denote impedance elements built into a pressure receiving capsule or the like whose impedance changes according to the amount of change, and whose capacitances C 1 and C 2 change according to changes in the amount of displacement. Resistors 21 and 22 are connected in series to each impedance element 11 and 12, respectively, and these series circuits are connected in parallel to form a so-called bridge circuit. The connection point between the resistors 21 and 22 is connected to a resistor 23, and an alternating current signal is supplied from the oscillator 3 to this circuit. Here, the currents flowing through the resistors 21 and 22 are respectively i 1 and i 2 and the resistor 23
Let i 3 be the current flowing through the resistors 21, 22, 23, and R 1 , R 2 , R 3 be the resistance values of the resistors 21, 22, 23.
Let the voltages generated at 3 be e 1 , e 2 , and e 3 . Also,
If 1/jωC 1 , 1/jωC 2 ≫R 1 , R 2 , R 3 , the following equation holds true.

i1=i3/C2(1/C1+1/C2)=i3C1/C1+C2 i2=i3/C1(1/C1+1/C2)=i3C2/C1+C2 従つてe1とe2の差、即ちe2−e1を求めるとR1
R2=R3のときは次式が成り立つ。
i 1 = i 3 /C 2 (1/C 1 + 1/C 2 ) = i 3 C 1 /C 1 +C 2 i 2 = i 3 /C 1 (1/C 1 + 1/C 2 ) = i 3 C 2 / C 1 + C 2 Therefore, finding the difference between e 1 and e 2 , that is, e 2e 1 , R 1 =
When R 2 = R 3 , the following formula holds true.

e2−e1=C2−C1/C2+C1・e3 e3=i3R3 従つて、抵抗23に流れる電流i3、即ちi1+i2
を一定にすれば抵抗21と22とに発生する電圧
の差が前述のインピーダンス要素のインピーダン
ス変位量に比例した値となる。
e 2 −e 1 = C 2 − C 1 /C 2 +C 1・e 3 e 3 = i 3 R 3 Therefore, the current i 3 flowing through the resistor 23, i.e., i 1 + i 2
If the voltage is kept constant, the difference in voltage generated between the resistors 21 and 22 becomes a value proportional to the amount of impedance displacement of the impedance element described above.

このように従来の変換方式ではブリツジ回路を
構成する一対のインピーダンス要素と2つの抵抗
との直列回路に流れる電流i1,i2の和電流i3が常
に一定であれば、抵抗21と22とに発生する電
圧の差を測定することによりインピーダンス要素
のインピーダンス変化を測定することができる。
しかしながらこのような従来方式では、インピー
ダンス要素11,12の容量値C1,C2が変化す
ると電流値i1,i2が変化し、発振器3より供給さ
れる和電流i3が変化する。従つて従来方式では第
1図に示す如く、和電流i3=i1+i2を一定に保つ
ため抵抗23に発生する電圧e3の変動を検出制御
部31により検出し、この検出制御部31が発振
器3より供給される電流を一定に保持している。
このため、発振器3及び検出制御部31の回路構
成が複雑になる欠点があつた。
In this way, in the conventional conversion method, if the sum current i 3 of the currents i 1 and i 2 flowing in the series circuit of a pair of impedance elements and two resistors constituting a bridge circuit is always constant, the resistors 21 and 22 The change in impedance of the impedance element can be measured by measuring the difference in voltage generated between the impedance elements.
However, in such a conventional system, when the capacitance values C 1 and C 2 of the impedance elements 11 and 12 change, the current values i 1 and i 2 change, and the sum current i 3 supplied from the oscillator 3 changes. Therefore, in the conventional method, as shown in FIG. 1, in order to keep the sum current i 3 =i 1 +i 2 constant, the detection control unit 31 detects the fluctuation in the voltage e 3 generated in the resistor 23. holds the current supplied by the oscillator 3 constant.
Therefore, there is a drawback that the circuit configurations of the oscillator 3 and the detection control section 31 become complicated.

本発明は従来技術の欠点を除去し、極めて簡単
な構成によりインピーダンス変化を検出する変位
変換器の実現を目的としている。そしてその構成
上の特徴は巻数の相等しい1次側及び2次側コイ
ルを有するカレントトランスを用い、その1次側
及び2次側コイルの互いに同極性をなす端子を上
記インピーダンス要素に接続してなる夫夫の直列
回路に互いに振幅が等しく逆位相の交流電圧を加
えた構成にしたところにある。この構成によれば
1次側及び2次側コイルに流れる電流は常に等し
くなり、発振器の交流電圧の振幅を常に一定に保
てば、インピーダンス変化に応じた出力信号がカ
レントトランスより得ることができる。以下に本
発明の一実施例を第2図に基いて説明する。
The present invention aims to eliminate the drawbacks of the prior art and to realize a displacement transducer that detects impedance changes with an extremely simple configuration. Its configuration is characterized by using a current transformer having primary and secondary coils with the same number of turns, and connecting the terminals of the primary and secondary coils with the same polarity to the impedance element. The structure is such that alternating current voltages of equal amplitude and opposite phases are applied to the series circuit of Narufuo. With this configuration, the current flowing through the primary and secondary coils is always equal, and if the amplitude of the oscillator's AC voltage is always kept constant, an output signal corresponding to impedance changes can be obtained from the current transformer. . An embodiment of the present invention will be described below with reference to FIG.

第2図で11,12は第1図と同様の、例えば
静電容量C1,C2が変化する一対のインピーダン
ス要素であり、4は1次側及び2次側の巻線数が
相等しいカレントトランス、3′は一定振幅の交
流電圧e0を発生する発振器、5はカレントトラン
ス4の1次側(又は2次側)に発生する電圧を検
出して出力信号として取り出す信号検出部、6は
2次側コイル6bに中間タツプ62を有するトラ
ンスである。また、カレントトランス4の1次側
のコイルの端子41,42、2次側のコイル端子
43,44は夫々端子41と43、及び端子42
と44が同極性である。
In Figure 2, 11 and 12 are the same as in Figure 1, for example, a pair of impedance elements whose capacitances C 1 and C 2 change, and 4 is the same number of windings on the primary and secondary sides. A current transformer, 3' is an oscillator that generates an alternating current voltage e0 with a constant amplitude, 5 is a signal detection unit that detects the voltage generated on the primary side (or secondary side) of the current transformer 4, and extracts it as an output signal, 6 is a transformer having an intermediate tap 62 on the secondary coil 6b. In addition, the terminals 41 and 42 of the primary coil and the coil terminals 43 and 44 of the secondary side of the current transformer 4 are terminals 41 and 43, and terminal 42, respectively.
and 44 have the same polarity.

これら各要素は以下のように接続されている。
即ち、一対のインピーダンス要素11,12の一
端112,122は夫夫カレントトランス4の
夫々カレントトランス4の1次側及び2次側コイ
ル4a及び4bの互いに同極性をなす端子41,
43に接続され、またカレントトランス4の1次
側及び2次側コイルの他方の端子42,44はト
ランス6の中間タツプ62を有する2次側コイル
6bの端子61,63に夫々接続されている。ま
たトランス6の2次側コイル6bの中間タツプ6
2は上記インピーダンス要素11,12の他方の
端子111,121と接続され、トランス6の1
次側コイル6aには発振器3′より一定振幅の交
流電圧eが与えられる。またカレントトランス4
の1次側(2次側)コイル4a,4bに発生する
電圧が信号検出部5により検出され、この電圧に
よりインピーダンス要素のインピーダンス変化を
知ることができる。
These elements are connected as follows.
That is, one ends 112, 122 of the pair of impedance elements 11, 12 are connected to the terminals 41, 41, and 41 of the primary and secondary coils 4a and 4b of the current transformer 4, respectively, which have the same polarity.
43, and the other terminals 42 and 44 of the primary and secondary coils of the current transformer 4 are respectively connected to terminals 61 and 63 of the secondary coil 6b having an intermediate tap 62 of the transformer 6. . Also, the intermediate tap 6 of the secondary coil 6b of the transformer 6
2 is connected to the other terminals 111, 121 of the impedance elements 11, 12, and 1 of the transformer 6.
An alternating current voltage e of constant amplitude is applied to the next coil 6a from an oscillator 3'. Also current transformer 4
The voltage generated in the primary side (secondary side) coils 4a and 4b is detected by the signal detection unit 5, and it is possible to know the impedance change of the impedance element from this voltage.

次に本発明の作用について説明する。いま一対
のインピーダンス要素11,12のインピーダン
スをZ1,Z2とし、カレントトランス4の1次側及
び2次側に流れる電流をi1,i2、カレントトラン
ス4の1次側コイルに発生する電圧をeとする。
カレントトランス4の1次側及び2次側の巻線数
は相等しいが、1次側及び2次側に与えられる電
圧の位相は互いに逆であるため、1次側及び2次
側のコイルには互いに逆向きで大きさの等しい電
圧eが発生し、そこに流れる電流i1,i2は大きさ
が等しく互いに逆向き、即ちi1=i2となる。
Next, the operation of the present invention will be explained. Now let the impedances of the pair of impedance elements 11 and 12 be Z 1 and Z 2 , and currents flowing through the primary and secondary sides of the current transformer 4 are generated at i 1 and i 2 in the primary coil of the current transformer 4. Let the voltage be e.
Although the number of windings on the primary and secondary sides of the current transformer 4 are equal in phase, the phases of the voltages applied to the primary and secondary sides are opposite to each other, so the coils on the primary and secondary sides are A voltage e is generated which is opposite in direction and equal in magnitude, and currents i 1 and i 2 flowing therein are equal in magnitude and in opposite directions, that is, i 1 =i 2 .

ここで、トランス6の2次側の端子61−62
及び63−62間に発生する電圧は極性が逆で大
きさが等しいのでこれをe1−e0とすると、 e0=i1Z1+e ……(1) e0=i2Z1−e ……(2) i1=−i2 ……(3) となり、上式(1),(2),(3)より、カレントトランス
4の1次側コイルに発生する電圧еは e=Z1−Z2/Z1+Z2・e0 ……(4) となり、カレントトランス4の1次側端子間41
−42よりインピーダンス要素の変動分に比例し
た出力電圧を得ることができる。またインピーダ
ンス要素が差動的に変化する静電容量C1,C2
ときは Z1=1/jωC1,Z2=1/jωC1であるので、 e=C2−C1/C1+C2・e0 として、静電容量変化に応じた電圧eが、カレン
トトランスの端子間41−42に発生する。この
電圧eは信号検出部5より取り出される。
Here, terminals 61-62 on the secondary side of the transformer 6
The voltages generated between 63 and 62 have opposite polarities and are equal in magnitude, so if we define this as e 1 - e 0 , e 0 = i 1 Z 1 + e......(1) e 0 = i 2 Z 1 - e ...(2) i 1 = -i 2 ...(3) From the above equations (1), (2), and (3), the voltage e generated in the primary coil of the current transformer 4 is e = Z 1 −Z 2 /Z 1 +Z 2・e 0 ...(4), and between the primary terminals of the current transformer 4 41
-42, it is possible to obtain an output voltage proportional to the variation of the impedance element. Furthermore, when the impedance elements are capacitances C 1 and C 2 that change differentially, Z 1 = 1/jωC 1 and Z 2 = 1/jωC 1 , so e=C 2 −C 1 /C 1 As +C 2 ·e 0 , a voltage e corresponding to the change in capacitance is generated between the terminals 41 and 42 of the current transformer. This voltage e is extracted from the signal detection section 5.

第3図は発振器3′より矩形交流を供給した時
にインピーダンス要素11,12に発生する電圧
波形を示すグラフである。図aは、インピーダン
ス要素11,12に発生する電圧e10,e20を示し
ており、Z1=Z2のときは、e10=e20=e0となつて
一対のインピーダンス要素に発生する電圧はブリ
ツジ回路に与えられる交流電圧と等しくなり、カ
レントトランスの1次側又は2次側コイルに発生
する電圧e3がゼロになることを示している。図b
では、Z1>Z2となつた時のインピーダンス要素1
1,12に発生する電圧e10,e20を示し、カレン
トトランスの1次側コイルに発生する電圧e3に対
して、 e10=e0+e,e20=e0−eとなり、1次側及び2
次側コイルの巻線数が等しいカレントトランスの
性質より一方のインピーダンス要素に発生する電
圧上昇は他方のインピーダンス要素に発生する電
圧の低下となることを示している。
FIG. 3 is a graph showing voltage waveforms generated in impedance elements 11 and 12 when rectangular alternating current is supplied from oscillator 3'. Figure a shows the voltages e 10 and e 20 generated in the impedance elements 11 and 12, and when Z 1 = Z 2 , e 10 = e 20 = e 0 , which is generated in the pair of impedance elements. The voltage becomes equal to the AC voltage applied to the bridge circuit, indicating that the voltage e 3 generated in the primary or secondary coil of the current transformer becomes zero. Diagram b
Then, impedance element 1 when Z 1 > Z 2
1 and 12, and for the voltage e 3 generated in the primary coil of the current transformer, e 10 = e 0 + e, e 20 = e 0 - e, and the primary side and 2
The property of a current transformer in which the number of turns of the next coil is equal indicates that a voltage increase occurring in one impedance element results in a voltage decrease occurring in the other impedance element.

なお、出力信号の取出しとしては上記1次側コ
イル又は2次側コイルの端子間に発生した電圧を
取出す構成のほかに、第4図の如くカレントトラ
ンス4に第3のセンス巻線4Cを設け、このセン
ス巻線4Cに発生する電圧を信号検出部5により
検出してもよい。
In addition to the configuration for extracting the voltage generated between the terminals of the primary coil or the secondary coil, as shown in FIG. 4, a third sense winding 4C is provided in the current transformer 4 to extract the output signal. , the voltage generated in the sense winding 4C may be detected by the signal detection section 5.

以上述べたように、本発明は1次側及び2次側
の巻線数の相等しいカレントトランスを用いて、
一対のインピーダンス要素とブリツジ回路を構成
し、1次側及び2次側コイルに流れる電流が常に
等しくなるようにした極めて新規な構成によるも
のである。従つて、交流源より与えられる振幅が
等しく逆位相の交流電圧の振幅を一定に、即ち実
施例においては発振器3′の交流電圧を一定振幅
に保つておけば、インピーダンス要素11,12
のインピーダンス変化に応じた出力を得ることが
できる。また発振器3′の交流電圧を一定振幅に
保つ回路は、例えば発振器3′内でゼナーダイオ
ードを用いた基準電圧をつくること等により容易
に設計することができ、従来の如く和電流を一定
に保つ構成と比べて回路の簡略化を計ることがで
きる。
As described above, the present invention uses a current transformer with the same number of windings on the primary and secondary sides,
This is an extremely novel configuration in which a pair of impedance elements constitutes a bridge circuit so that the currents flowing through the primary and secondary coils are always equal. Therefore, if the amplitudes of the alternating current voltages of equal amplitude and opposite phase given by the alternating current source are kept constant, that is, if the alternating current voltage of the oscillator 3' is kept constant in amplitude, the impedance elements 11 and 12
It is possible to obtain an output according to the impedance change. Furthermore, a circuit that maintains the AC voltage of the oscillator 3' at a constant amplitude can be easily designed by, for example, creating a reference voltage using a Zener diode within the oscillator 3', so that the sum current can be kept constant as in the conventional case. The circuit can be simplified compared to a configuration in which it is maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のインピーダンス変化検出器を示
す概略図、第2図は本発明の一実施例を示す概略
図、第3図は一対のインピーダンス要素に発生す
る電圧波形を示すグラフ、第4図は本発明の出力
信号の他の取出し構成を示す図である。 11,12……インピーダンス要素、3′……
発振器、4……カレントトランス、5……信号検
出部。
Fig. 1 is a schematic diagram showing a conventional impedance change detector, Fig. 2 is a schematic diagram showing an embodiment of the present invention, Fig. 3 is a graph showing a voltage waveform generated in a pair of impedance elements, and Fig. 4 FIG. 2 is a diagram showing another output signal extraction configuration of the present invention. 11, 12... Impedance element, 3'...
Oscillator, 4... current transformer, 5... signal detection section.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一方のインピーダンスが変化する
一対のインピーダンス要素と、1次側及び2次側
で巻線数の相等しいコイルを有するカレントトラ
ンスと、振幅が等しく逆位相の交流電圧を発生す
る交流源と、上記カレントトランスのコイルに発
生する電圧を測定する信号検出部とを具備し、上
記一対のインピーダンス要素の一方の端子が夫々
上記カレントトランスの1次側及び2次側の同極
性をなす端子に接続され、上記一対のインピーダ
ンス要素と上記カレントトランスの1次側及び2
次側のコイルとの直列に接続された回路に上記交
流源より振幅が等しく互いに逆位相の交流電圧が
供給され、上記カレントトランスの1次側又は2
次側のコイルに発生した電圧を上記信号検出部で
検出して上記インピーダンス要素のインピーダン
ス変化を測定することを特徴とするインピーダン
ス変化検出器。
1: a pair of impedance elements whose impedance changes at least on one side; a current transformer having coils with the same number of turns on the primary and secondary sides; and an AC source that generates AC voltages with equal amplitude and opposite phases; a signal detection unit that measures the voltage generated in the coil of the current transformer, and one terminal of the pair of impedance elements is connected to terminals of the same polarity on the primary side and secondary side of the current transformer, respectively. and the pair of impedance elements and the primary and secondary sides of the current transformer.
AC voltages of equal amplitude and opposite phases are supplied from the AC source to a circuit connected in series with the next coil, and
An impedance change detector characterized in that the voltage generated in the next coil is detected by the signal detecting section to measure an impedance change of the impedance element.
JP14670179A 1979-11-13 1979-11-13 Detector for change in impedance Granted JPS5670467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14670179A JPS5670467A (en) 1979-11-13 1979-11-13 Detector for change in impedance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14670179A JPS5670467A (en) 1979-11-13 1979-11-13 Detector for change in impedance

Publications (2)

Publication Number Publication Date
JPS5670467A JPS5670467A (en) 1981-06-12
JPH0549947B2 true JPH0549947B2 (en) 1993-07-27

Family

ID=15413591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14670179A Granted JPS5670467A (en) 1979-11-13 1979-11-13 Detector for change in impedance

Country Status (1)

Country Link
JP (1) JPS5670467A (en)

Also Published As

Publication number Publication date
JPS5670467A (en) 1981-06-12

Similar Documents

Publication Publication Date Title
JPH0440670B2 (en)
US3783374A (en) Capacitance difference detector circuit
JPS5945106B2 (en) Current sensing device particularly suitable for use as a ground leak detection device
JPH0549946B2 (en)
JPH0549947B2 (en)
JPH0523361B2 (en)
US4461987A (en) Current sensing circuit for motor controls
JP2776693B2 (en) Temperature compensation device for torque measuring device
US20060192549A1 (en) Current sensor with magnetic toroid dual frequency detection scheme
US4150412A (en) Filter excitation circuitry
SU1195182A1 (en) Capacitance displacement meter
RU2173859C1 (en) Device for measuring capacitor capacitance
JPS6212646B2 (en)
SU885904A1 (en) Device for comparing two alternative voltages
SU416634A1 (en)
SU1182413A1 (en) Transformer measuring bridge
SU553500A1 (en) Pressure transducer
SU1615816A1 (en) Sine voltage instrument converter
SU900228A1 (en) Method and device for measuring magnetic field
SU1026100A2 (en) Hall emf meter
JP2750690B2 (en) Leakage current detection method
SU1525627A1 (en) Device for testing windings of short-circuited rotors
SU785770A1 (en) Current measuring device
SU1322212A1 (en) Device for measuring errors of current transformers
JPS6245129Y2 (en)