JPH054991B2 - - Google Patents

Info

Publication number
JPH054991B2
JPH054991B2 JP59045782A JP4578284A JPH054991B2 JP H054991 B2 JPH054991 B2 JP H054991B2 JP 59045782 A JP59045782 A JP 59045782A JP 4578284 A JP4578284 A JP 4578284A JP H054991 B2 JPH054991 B2 JP H054991B2
Authority
JP
Japan
Prior art keywords
resin
fibers
titanium oxide
fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59045782A
Other languages
Japanese (ja)
Other versions
JPS60188465A (en
Inventor
Akira Watanabe
Yoshimitsu Takeuchi
Koji Saeki
Megumi Shitami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP4578284A priority Critical patent/JPS60188465A/en
Publication of JPS60188465A publication Critical patent/JPS60188465A/en
Publication of JPH054991B2 publication Critical patent/JPH054991B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は多孔質樹脂複合体の製造方法に関し、
詳しくはチタン酸化物含有繊維を多量に含有する
熱硬化性樹脂の多孔質樹脂複合体の製造方法に関
するものである。
The present invention relates to a method for producing a porous resin composite,
Specifically, the present invention relates to a method for producing a porous resin composite of a thermosetting resin containing a large amount of titanium oxide-containing fibers.

【従来の技術】[Conventional technology]

近年合成樹脂中に無機質の繊維状物質を添加し
て、その機械的強度や耐熱性を向上させた樹脂複
合体が数多く開発され、多方面の用途に使用され
ている。特に、エンジニアリングプラスチツクと
して機械部品等に使用され始めている。
In recent years, many resin composites have been developed in which mechanical strength and heat resistance are improved by adding inorganic fibrous substances to synthetic resins, and these are used in a wide variety of applications. In particular, it has begun to be used as an engineering plastic for machine parts.

【発明が解決しようとする課題】[Problem to be solved by the invention]

このプラスチツクと各種無機繊維との複合体は
主として熱可塑性樹脂を用い射出成形、鋳込成形
あるいは押出成形により成形したものであり、高
温での樹脂の軟化変形を無機繊維の添加によつて
押さえようとするものであり、耐熱性を上げるた
めには無機繊維の添加量を増加せねばならない。
しかし、無機繊維の添加量を増加すると、樹脂と
の混合物の粘性が高くなりすぎ流動性が減少し、
成形が不可能となるため、無機繊維の添加量は最
大40%程度が限界である。 従つて、軟化温度が低く高温下では使用できな
い、強度が不足し切削加工性が不十分で細部加工
時に角欠けを生じ易い、耐熱衝撃性が不十分で急
冷時にクラツクを生じ易い、等の欠点がある。
This composite of plastic and various inorganic fibers is mainly made of thermoplastic resin by injection molding, casting molding, or extrusion molding, and the softening and deformation of the resin at high temperatures can be suppressed by adding inorganic fibers. Therefore, in order to improve heat resistance, the amount of inorganic fiber added must be increased.
However, when the amount of inorganic fiber added increases, the viscosity of the mixture with resin becomes too high, reducing fluidity.
Since molding becomes impossible, the maximum amount of inorganic fiber added is limited to about 40%. Therefore, it has disadvantages such as its low softening temperature and cannot be used at high temperatures, its insufficient strength and machinability, which tends to cause corner chips during detailed machining, and its insufficient thermal shock resistance, which easily causes cracks during rapid cooling. There is.

【課題を解決するための手段】[Means to solve the problem]

本発明の目的は、無機繊維の使用量を多くし
て、軟化変形温度を引き上げて、高温でも使用し
得、強度も大で、切削加工性に優れた、樹脂と無
機繊維の複合体を得るものである。更に、複合体
を多孔質とすることによつて、軽量で断熱性に優
れ、しかも、高荷重下でも十分に使用できる樹脂
複合体を得るものである。 本発明は、チタン酸化物含有繊維60〜90重量
%、熱硬化性樹脂粉末10〜40重量%より成る配合
物を混練後、熱処理し硬化させることを特徴とす
る多孔質樹脂複合体の製造方法である。 本発明の多孔質樹脂複合体の製造に用いられる
樹脂は、熱硬化性樹脂または熱可塑性樹脂と硬化
剤の組み合わせで熱硬化性とした樹脂(以下、単
に熱硬化性樹脂という)で、例えば、フエノール
樹脂、尿素樹脂、メラミン樹脂、ポリエステル樹
脂、シリコン樹脂等が用いられる。熱硬化性樹脂
を用いることで、、高温での使用中あるいは熱処
理中に軟化変形することのない耐熱性の良い強度
の高いプラスチツクが得られ、また、熱可塑性樹
脂で見られる、高温下で樹脂が成形体表面に移動
し、成形体の内部と表面部とで著しい組織および
強度の差を生じ、歪を発生することが避けられ
る。 使用する熱硬化性樹脂は粒径2mm以下の粉
末状のものを用いるが、1mm以下のものが、単位
重量当たりの表面積が大きくなりより好ましい。
液状の樹脂ではマトリツクス部に樹脂が充填して
しまい、多孔質になりにくい。また、粒径が2mm
を越えると、比表面積が小さくなり、樹脂粒同士
の接触面積が小さくなつて強度が低下する。 添加されるチタン酸化物含有繊維はチタン酸ア
ルカリ金属繊維、チタン酸アルカリ土類金属繊
維、チタニア繊維より選ばれる1種あるいは2種
以上を組み合わせて使用する。複合体中のチタン
酸化物含有繊維の含有量は60〜90重量%とする。
含有量が60重量%未満では高温下での軟化変形が
生じ、90重量%を越えると複合体の強度が低下す
る。なお、繊維は上記のチタン酸化物含有繊維を
主体として、その他の無機繊維、例えば、ガラス
繊維、セラミツク繊維、炭素繊維、アスベスト等
の天然繊維との併用も可能である。その場合は繊
維の全使用量は上記の60〜90重量%とし、その半
量以上をチタン酸化物含有繊維とする。 チタン酸化物含有繊維は繊維同士のからみがよ
く、それ自身を成形体とした場合に、多孔質であ
つても強度が大きいという利点がある。また、樹
脂と繊維との接触もよく、少量の樹脂で繊維表面
を十分に被覆するのである。必要であれば、繊維
表面をチタン系あるいはシラン系のカツプリング
剤で処理して用いれば、さらに樹脂との接触性が
よくなる。 バインダーとしては50〜300℃の温度で揮発す
るような成分を含むもので、水、アルコール類、
液状樹脂類、ケイ酸ソーダ液、リン酸アルミニウ
ム液、アルミナゾル、シリカゾル等が用いられ、
その添加量はチタン酸化物含有繊維と熱硬化性樹
脂の合量100重量部に対し10〜50重量部とする。
さらに添加剤としてケイ酸ソーダ粉末、リン酸ソ
ーダ粉末、リン酸アルミニウム粉末、CMC、デ
キストリン、粘土類等を用いることもできる。添
加剤を加える場合は、チタン酸化物含有繊維と熱
硬化性樹脂の合量100重量部に対し0.1〜10重量部
が望ましい。0.1重量部未満では素地強度が向上
せず、10重量部を越えると充填が上がり高気孔率
が得られない。 熱硬化性樹脂、チタン酸化物含有繊維およびバ
インダー、必要に応じて添加剤よりなる配合を混
練後加圧成形し、50〜300℃の温度で熱処理を行
う。この熱処理によりバインダーは揮発し、成形
体は多孔質化すると同時に、粉末樹脂表面が軟化
し、樹脂となじみのよいチタン酸化物含有繊維を
包含する形で次第に熱硬化性樹脂は硬化し、強固
に結合した多孔質複合体を形成する。多孔体とす
ることで軽量となり、熱伝導率が低下し、しか
も、熱硬化性樹脂の使用量が少なく材料費が安く
て済む利点がある。 本発明のチタン酸化物含有繊維熱硬化性樹脂複
合体は、各種機械部品、ブレーキライニング、フ
エージング、ヒーターカバー、電子部品、センサ
ー、各種担体、オイルレスメタル代替品等、非常
に広い用途がある。
The purpose of the present invention is to increase the amount of inorganic fiber used and raise the softening deformation temperature to obtain a composite of resin and inorganic fiber that can be used even at high temperatures, has high strength, and has excellent machinability. It is something. Furthermore, by making the composite porous, it is possible to obtain a resin composite that is lightweight, has excellent heat insulation properties, and can be used satisfactorily even under high loads. The present invention is a method for producing a porous resin composite, which comprises kneading a mixture of 60 to 90% by weight of titanium oxide-containing fibers and 10 to 40% by weight of thermosetting resin powder, and then heat-treating and curing the mixture. It is. The resin used for manufacturing the porous resin composite of the present invention is a thermosetting resin or a resin made thermosetting by a combination of a thermoplastic resin and a curing agent (hereinafter simply referred to as a thermosetting resin), and includes, for example, Phenol resin, urea resin, melamine resin, polyester resin, silicone resin, etc. are used. By using a thermosetting resin, it is possible to obtain a high-strength plastic with good heat resistance that does not soften or deform during use or heat treatment at high temperatures. It is possible to prevent this from moving to the surface of the molded product, causing a significant difference in structure and strength between the inside and the surface of the molded product, and causing distortion. The thermosetting resin used is in powder form with a particle size of 2 mm or less, but one with a particle size of 1 mm or less is more preferable because it provides a larger surface area per unit weight.
With liquid resin, the resin fills the matrix, making it less likely to become porous. In addition, the particle size is 2 mm.
If it exceeds 100%, the specific surface area becomes small, the contact area between resin particles becomes small, and the strength decreases. The titanium oxide-containing fiber to be added may be one selected from alkali metal titanate fiber, alkaline earth metal titanate fiber, and titania fiber, or a combination of two or more thereof. The content of titanium oxide-containing fibers in the composite is 60-90% by weight.
If the content is less than 60% by weight, softening deformation occurs at high temperatures, and if it exceeds 90% by weight, the strength of the composite will decrease. The fibers are mainly the titanium oxide-containing fibers, but can also be used in combination with other inorganic fibers, such as glass fibers, ceramic fibers, carbon fibers, and natural fibers such as asbestos. In that case, the total amount of fiber used will be 60 to 90% by weight as described above, and at least half of that will be the titanium oxide-containing fiber. Titanium oxide-containing fibers have the advantage of good intertwining between fibers, and when formed into a molded product, it has high strength even if it is porous. In addition, the resin and fibers come into good contact, and a small amount of resin sufficiently covers the fiber surface. If necessary, the fiber surface can be treated with a titanium-based or silane-based coupling agent to further improve contact with the resin. Binders include components that volatilize at temperatures between 50 and 300℃, such as water, alcohol,
Liquid resins, sodium silicate liquid, aluminum phosphate liquid, alumina sol, silica sol, etc. are used.
The amount added is 10 to 50 parts by weight per 100 parts by weight of the titanium oxide-containing fiber and thermosetting resin.
Further, as additives, sodium silicate powder, sodium phosphate powder, aluminum phosphate powder, CMC, dextrin, clays, etc. can also be used. When adding additives, it is desirable to add 0.1 to 10 parts by weight per 100 parts by weight of the titanium oxide-containing fiber and thermosetting resin. If it is less than 0.1 parts by weight, the strength of the substrate will not improve, and if it exceeds 10 parts by weight, the filling will increase and high porosity will not be obtained. A mixture consisting of a thermosetting resin, titanium oxide-containing fibers, a binder, and optionally additives is kneaded and then pressure molded, followed by heat treatment at a temperature of 50 to 300°C. Through this heat treatment, the binder evaporates, the molded body becomes porous, and at the same time, the surface of the powdered resin softens, and the thermosetting resin gradually hardens to include the titanium oxide-containing fibers that are compatible with the resin, making it strong. forming a bonded porous composite. By making it a porous body, it is lightweight, has low thermal conductivity, and has the advantage that less thermosetting resin is used, resulting in lower material costs. The titanium oxide-containing fiber thermosetting resin composite of the present invention has a very wide range of uses, including various mechanical parts, brake linings, fading, heater covers, electronic parts, sensors, various carriers, and oil-less metal substitutes. .

【実施例】【Example】

実施例1〜3、比較例1〜4 第1表に示す配合をニーダーで混練した後、オ
イルプレスで成形した試料を250℃で熱処理した。
この試料の物性、機械的性質、熱衝撃性を試験し
た結果も第1表に示した。 なお、軟化変形温度の測定は、JIS K−7207の
方法で、曲げ強さ、曲げ弾性率はJIS K−7203
で、機械加工性はダイヤモンドカツターでの切断
時の稜部の角欠けの有無で、耐熱衝撃性は試料を
300℃で30分間加熱後、水中に投入した際の亀裂
の有無で示した。 第1表にみられるように、本発明の多孔質複合
体は、熱可塑性樹脂を用いた従来のプラスチツク
(比較例1〜3)と比較して、軟化変形温度は著
しく向上し、その他の加工性、耐熱衝撃性等も優
れている(実施例1、2)。熱硬化性樹脂と従来
の無機繊維を用いた本発明に類似したもの(比較
例4)でも本発明には及ばず、無機繊維の半量以
上をチタン酸化物含有繊維に代える(実施例3)
ことにより、軟化変形温度等に向上がみられ、チ
タン酸化物含有繊維使用の効果が明かである。
Examples 1 to 3, Comparative Examples 1 to 4 After kneading the formulations shown in Table 1 using a kneader, samples molded using an oil press were heat-treated at 250°C.
Table 1 also shows the results of testing the physical properties, mechanical properties, and thermal shock properties of this sample. The softening deformation temperature was measured using the JIS K-7207 method, and the bending strength and bending modulus were measured using the JIS K-7203 method.
Machinability is determined by the presence or absence of corner chips on the ridge when cutting with a diamond cutter, and thermal shock resistance is determined by the presence or absence of corner chips when cutting with a diamond cutter.
After heating at 300°C for 30 minutes, the cracks were determined by the presence or absence of cracks when placed in water. As shown in Table 1, the porous composite of the present invention has a significantly improved softening and deformation temperature compared to conventional plastics using thermoplastic resins (Comparative Examples 1 to 3), and It also has excellent properties such as hardness and thermal shock resistance (Examples 1 and 2). Even a product similar to the present invention using a thermosetting resin and conventional inorganic fibers (Comparative Example 4) is not as good as the present invention, and more than half of the inorganic fibers are replaced with titanium oxide-containing fibers (Example 3)
As a result, an improvement in the softening deformation temperature, etc. is observed, and the effect of using the titanium oxide-containing fiber is clear.

【発明の効果】【Effect of the invention】

【表】 実施例および比較例から明らかなように、チタ
ン酸化物含有繊維熱硬化性樹脂多孔質複合体は、
従来の繊維強化樹脂複合体に比較して、軟化変形
温度、機械加工性、耐熱衝撃性が著しく向上し、
多孔質であつても強度は優れ、熱伝導率特性も十
分である。
[Table] As is clear from the Examples and Comparative Examples, the titanium oxide-containing fiber thermosetting resin porous composite has the following properties:
Compared to conventional fiber-reinforced resin composites, the softening deformation temperature, machinability, and thermal shock resistance are significantly improved.
Even though it is porous, it has excellent strength and sufficient thermal conductivity.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸化物含有繊維60〜90重量%、熱硬化
性樹脂粉末10〜40重量%より成る配合物を混練
後、熱処理し硬化させることを特徴とする多孔質
樹脂複合体の製造方法。
1. A method for producing a porous resin composite, which comprises kneading a blend of 60 to 90% by weight of titanium oxide-containing fibers and 10 to 40% by weight of thermosetting resin powder, followed by heat treatment and curing.
JP4578284A 1984-03-09 1984-03-09 Production of porous resin composite material Granted JPS60188465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4578284A JPS60188465A (en) 1984-03-09 1984-03-09 Production of porous resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4578284A JPS60188465A (en) 1984-03-09 1984-03-09 Production of porous resin composite material

Publications (2)

Publication Number Publication Date
JPS60188465A JPS60188465A (en) 1985-09-25
JPH054991B2 true JPH054991B2 (en) 1993-01-21

Family

ID=12728853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4578284A Granted JPS60188465A (en) 1984-03-09 1984-03-09 Production of porous resin composite material

Country Status (1)

Country Link
JP (1) JPS60188465A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3638889B2 (en) 2000-07-27 2005-04-13 大塚化学ホールディングス株式会社 Dielectric resin foam and radio wave lens using the same
JP3466144B2 (en) 2000-09-22 2003-11-10 士郎 酒井 How to roughen the surface of a semiconductor
JP2007062151A (en) * 2005-08-31 2007-03-15 Alps Electric Co Ltd Porous body and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860770A (en) * 1971-12-01 1973-08-25
JPS49128049A (en) * 1973-04-10 1974-12-07
JPS51151764A (en) * 1975-06-13 1976-12-27 Rohm & Haas Foam thermosetting article and method of producing same
JPS58109552A (en) * 1981-12-23 1983-06-29 Matsushita Electric Works Ltd Phenolic resin molding material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860770A (en) * 1971-12-01 1973-08-25
JPS49128049A (en) * 1973-04-10 1974-12-07
JPS51151764A (en) * 1975-06-13 1976-12-27 Rohm & Haas Foam thermosetting article and method of producing same
JPS58109552A (en) * 1981-12-23 1983-06-29 Matsushita Electric Works Ltd Phenolic resin molding material

Also Published As

Publication number Publication date
JPS60188465A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
CN108033756B (en) High-density ceramic fiber board and preparation method thereof
GB2168284A (en) Manufacturing refractory moulded bodies
JPS5860683A (en) Improvement of ceramic fiber formed article
AU723822B2 (en) Method for making compressed articles of ceramic fibers and compressed articles obtained thereby
JP4782416B2 (en) Fiber reinforced filter for filtering molten metal and method for producing such a filter
JPS62260782A (en) Hot bonded fibrous product
JP2014228035A (en) Fireproof heat insulation material and manufacturing method
CN103772980A (en) Asbestos-free and metal material-free composite for brake block and preparation method thereof
CA1136388A (en) Method of producing sintered ceramic articles using liquid boron-containing sintering aid
JPH054991B2 (en)
JPS63182273A (en) Heat-insulating fiber formed body and manufacture
JPS60149403A (en) Manufacture of ceramic fiber molded part
JP3094148B2 (en) Manufacturing method of lightweight refractory
CA1190945A (en) Moulded articles
JP5963704B2 (en) Refractory insulation and method for producing the same
JPS6035316B2 (en) SiC-Si↓3N↓4-based sintered composite ceramics
CA1190946A (en) Moulded articles
JP2002105610A (en) Preform for metal matrix composite, and metal matrix composite
JPH0617271B2 (en) Cutting tool and its manufacturing method
JPH0311306B2 (en)
JPS62108768A (en) Manufacture of whisker-containing carbon composite material
JP3315370B2 (en) Low melting point metal casting equipment constituent materials
JPS63112477A (en) Heat resistant inorganic fiber formed body
JPS58104059A (en) Fibrous formed body composition
JPH1129831A (en) Preform for metal matrix composite, and its production