JPS60149403A - Manufacture of ceramic fiber molded part - Google Patents

Manufacture of ceramic fiber molded part

Info

Publication number
JPS60149403A
JPS60149403A JP522684A JP522684A JPS60149403A JP S60149403 A JPS60149403 A JP S60149403A JP 522684 A JP522684 A JP 522684A JP 522684 A JP522684 A JP 522684A JP S60149403 A JPS60149403 A JP S60149403A
Authority
JP
Japan
Prior art keywords
ceramic fiber
molded body
fiber molded
manufacture
molded part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP522684A
Other languages
Japanese (ja)
Inventor
宮下 邦彦
日比野 政美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP522684A priority Critical patent/JPS60149403A/en
Publication of JPS60149403A publication Critical patent/JPS60149403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、セラミック繊維成型体の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic fiber molded body.

セラミック繊維を使った成型体は当初省エネルギー材料
として、主として非鉄金属、たとえばアルミおよびアル
ミ合金等の押湯保温材としてスリープ吠が、耐熱容器と
してラドル、ディパー等が使われてきた。ところが最近
はその断熱性、耐火性、電気絶縁性等の性質から幅広く
使用されるようになり、これらの幅広い用途のうち特に
温水ボイラー、風呂釜等の燃焼器機のように、その構成
する1つの部品として使われるようになってきた。
Molded bodies using ceramic fibers were initially used as energy-saving materials, mainly as insulation materials for feeders of non-ferrous metals such as aluminum and aluminum alloys, and as heat-resistant containers such as ladle and dipers. However, recently, it has been widely used due to its properties such as heat insulation, fire resistance, and electrical insulation, and among these wide range of uses, it is especially important to use one of its components, such as combustor equipment such as hot water boilers and bathtubs. It has come to be used as a component.

そこで従来のような寸法精度では部品として使用出来な
い場合が生じ、殊に部品の組込みの際に相手となる材料
と同じ寸法精度が要求されるようになってきた。
Therefore, there are cases in which the conventional dimensional accuracy cannot be used as a component, and in particular, when assembling a component, the same dimensional accuracy as the mating material is required.

しかし従来セラミック繊維成型体の場合構成する主材が
繊維状であるため繊維のからみ方によって、およびバイ
ンダーの種類によって乾燥時に復元かもしくけ収縮して
、成型時の寸法が大幅に違りことがたびたび起り、不都
合を生ずる場合が多くなって来た。
However, in the case of conventional ceramic fiber molded bodies, the main material of the molded body is fibrous, so depending on the way the fibers are entwined and the type of binder used, the dimensions of the molded body often differ significantly due to shrinkage due to restoration during drying. This has become more and more common, causing inconvenience.

また無機バインダーにより繊維質を固着させようとして
も、乾燥時に水分とともにバインダーが移動し、成型体
の表面しか硬まらないという、いわゆるサンドイッチ現
象が生ずる。さらに有機バインダーを用いた場合は、常
温では形状として寸法精度および硬さがとjるが、30
0°C以上になるとバインダーが焼失して、その形状が
くずれるという欠点があった。一方、複雑な形状の成型
法としては特開昭53−4013又は特開昭53−14
816等に開示されているが、いずti亀乾燥時に寸法
が復元してしまうか、金型がたくさん必要となり量産出
来ないという欠点があった。
Further, even if an attempt is made to fix the fibers using an inorganic binder, the binder moves with the moisture during drying, resulting in a so-called sandwich phenomenon in which only the surface of the molded product becomes hard. Furthermore, when an organic binder is used, the dimensional accuracy and hardness of the shape are reduced at room temperature, but the
When the temperature exceeds 0°C, the binder burns out and loses its shape. On the other hand, as a molding method for complex shapes, JP-A-53-4013 or JP-A-53-14
816, etc., but the drawbacks are that the dimensions are restored when drying or a large number of molds are required, making mass production impossible.

そこで本発明は、セラミック繊維を用い、寸法精度が良
く、かつ厚み方向に対して均一な硬さをもち、高温での
使用に耐えることができ、しかも量産可能な成型体を得
る方法を提供しようとするものである。
Therefore, the present invention provides a method for obtaining a molded body using ceramic fibers, which has good dimensional accuracy, has uniform hardness in the thickness direction, can withstand use at high temperatures, and can be mass-produced. That is.

即ち、本発明はセラミック繊維と微細な粘土鉱物を水分
中に分散した後、カチオン性の有機質、又は無機質のい
づれか少なくとも1種の凝集剤を添加して、粘土鉱物を
包含したセラミック繊維のフロック状物を形成せしめ、
減圧吸引装置1に接続した多孔質の金型の表面に、前記
フロックを堆積せしめ前記フロックの堆積層にプレス金
型を押し当ててプレスすることを特徴とするものである
。本発明に使用するセラミック繊維は、例えばアルミナ
とシリカとから成り、2000“C以上の温度で溶融さ
れた後、圧縮空気で吹きとばされて得られる士ラミック
ファイバーやアルミナ結晶質繊維、シリカ繊維、ロック
ウール等がある、 また、微細な粘土鉱物とは含水アルミナ珪酸塩であり、
加熱するか、水で湿したものを乾かすとき固まるものが
よく、例えば、カオリナイト、モンモリロナイト、セリ
サイト等がある。
That is, in the present invention, after dispersing ceramic fibers and fine clay minerals in water, at least one type of cationic organic or inorganic flocculant is added to form a floc of ceramic fibers containing clay minerals. cause things to form,
The method is characterized in that the flocs are deposited on the surface of a porous mold connected to a vacuum suction device 1, and a press mold is pressed against the deposited layer of the flocs for pressing. The ceramic fibers used in the present invention are made of, for example, alumina and silica, and are obtained by melting at a temperature of 2000"C or higher and then blowing it away with compressed air. Ceramic fibers, alumina crystalline fibers, and silica fibers , rock wool, etc. Also, fine clay minerals are hydrated alumina silicate,
Those that solidify when heated or when wetted with water and dried are good, such as kaolinite, montmorillonite, and sericite.

そして有機質凝集剤としては、カチオン性ポリアクリル
アミド、カチオン化でんぷん、カチオン性ポリアミド樹
脂等があり、無機質凝集剤としてけ、硫酸アルミニウム
、塩化第二鉄、ポリ塩化アルミニウム等がある。
Examples of organic flocculants include cationic polyacrylamide, cationized starch, and cationic polyamide resins, and examples of inorganic flocculants include aluminum sulfate, ferric chloride, and polyaluminum chloride.

本発明の特徴は、セラミック繊維のフロック状物中へ粘
土鉱物を包含させることにより、プレス成型した時に形
状がしっかり固定し、かつ乾燥時に粘土鉱物が固まり、
厚さ方向に対して均一な硬さをもち、さらにセラミック
繊維の復元を押さえ、寸法精度の良い成型体を得ること
が出来る点である。
The feature of the present invention is that by incorporating clay minerals into the ceramic fiber flock, the shape is firmly fixed when press-molded, and the clay minerals solidify when drying.
It has uniform hardness in the thickness direction, suppresses the restoration of ceramic fibers, and can obtain a molded product with good dimensional accuracy.

また、この成型体は無機質の粘土鉱物が充てんされてい
るので高温においても十分耐火性が発揮される。
Furthermore, since this molded body is filled with inorganic clay mineral, it exhibits sufficient fire resistance even at high temperatures.

次に本発明の実施例を具体的に説明する。Next, embodiments of the present invention will be specifically described.

実施例1 シリカアルミナm維(商品名イビウール)?。Example 1 Silica alumina m-fiber (product name Ibiwool)? .

田重量部と、モンモリロナイト鉱物、12.5重量部、
水、10.000重量部をパルパーにて十分攪拌混合す
る。その後、カチオン性ポリアクリルアミド(商品名サ
ンポリ−)を0.5重量部投入して、フロック状物を得
た。これらの混合液中に外径50fi、長さ30011
5のパンチングメタルで出来た表1flK金鋼を巻いた
円筒吠金型を投入して、真空吸引装置で20秒吸引して
、厚さおよそ10111の筒状成型品を得九。この金型
に堆積した成型体の、円周側からta、s kti/c
dの圧力でプレス成型を行い、円径50闘、外径60f
i、長さ300鱈の筒状成型品金得た。この時の含水率
は95%であり、この成型体を105℃で2時間乾燥後
の外周u 60.5 wgであった。
12.5 parts by weight of montmorillonite mineral,
10.000 parts by weight of water was sufficiently stirred and mixed using a pulper. Thereafter, 0.5 parts by weight of cationic polyacrylamide (trade name: Sunpoly-) was added to obtain a floc-like material. In these mixed liquids, an outer diameter of 50fi and a length of 30011
A cylindrical mold made of the punching metal No. 5 wrapped with K gold steel was put into the mold, and suction was applied for 20 seconds using a vacuum suction device to obtain a cylindrical molded product with a thickness of approximately 10111 mm. From the circumferential side of the molded body deposited in this mold, ta, s kti/c
Press molded at a pressure of d, with a circular diameter of 50 mm and an outer diameter of 60 f.
i. A cylindrical molded piece of cod with a length of 300 mm was obtained. The moisture content at this time was 95%, and the outer circumference u of this molded product after drying at 105° C. for 2 hours was 60.5 wg.

また、この成型体のカサ密度は、0.501/dであっ
た。
Moreover, the bulk density of this molded body was 0.501/d.

比較例として、実施例1と同様な方法で、たてl Q 
Q fi 、よこ100gの平板の金型で厚みおよそ1
0fiの成型体を得た。
As a comparative example, in the same manner as in Example 1, vertical l Q
Q fi, a flat mold with a width of 100 g and a thickness of approximately 1
A molded body of 0fi was obtained.

第1表にその配合比および、含水率、復元回復率、曲げ
強度、カサ密度を示す。
Table 1 shows the blending ratio, moisture content, recovery rate, bending strength, and bulk density.

第1表 各種配合による物性比較 ここで含水率はプレス成型後の製品の含水率を次式によ
ってめる。
Table 1 Comparison of physical properties of various formulations Here, the moisture content is determined by the moisture content of the product after press molding using the following formula.

また復元回復率は含水時の厚みと乾燥時の厚みから次式
によってめる。
In addition, the restoration recovery rate is determined by the following formula from the thickness when wet and the thickness when dry.

実施例2 シリカアルミナ繊維(商品名イビウール)を913重量
部と、カオリナイト微粉71重量部、水100・00O
N量部をパルパーにて十分攪拌混合する。
Example 2 913 parts by weight of silica alumina fiber (trade name Ibiwool), 71 parts by weight of kaolinite fine powder, and 100.00 O water
Thoroughly stir and mix the N amount using a pulper.

その後、カチオン性でんぷん13重量部およびカチオン
性ポリアクリルアミド3重量部を投入して、フロック状
物を得た。これらの混合液中にタテ1500ヨコ200
 fl高さ200絹のパンチングメタルで作り表面に金
網を巻いた角形筒状金型を投入して、真空吸引装置で、
30秒吸引して、厚さおよそ15mの角形筒状物を得た
。この金型に堆積した成型体の4面からOkv’d、5
.6 kn/cd 、11.0 kv’d、13.8 
&f/d 、 27.5 kg/dの圧力でプレス成型
を行い、第2表の物性をもつ成型体管得た。
Thereafter, 13 parts by weight of cationic starch and 3 parts by weight of cationic polyacrylamide were added to obtain a floc-like material. 1,500 vertically and 200 horizontally in these mixed liquids.
A rectangular cylindrical mold made of silk punching metal with a height of 200 mm and a wire mesh wrapped around the surface was put in, and a vacuum suction device was used to mold it.
Suction was carried out for 30 seconds to obtain a rectangular cylinder with a thickness of approximately 15 m. Okv'd from the four sides of the molded body deposited in this mold, 5
.. 6 kn/cd, 11.0 kv'd, 13.8
&f/d, press molding was performed at a pressure of 27.5 kg/d to obtain a molded body tube having the physical properties shown in Table 2.

第2表 プレス成型による成型体の物性以上の如く、本
発明によれば、従来の成型体の復元回復率は10分の1
以下となり、あらかじめ設定された金型どおりの成型体
を得ることができる。また比較例との対比でも明らかな
ように、高強度の成型体が得られるので取り扱いも良好
となる利点があると共に、実施例2と第2表で明らかな
ようにプレス圧力は任意に選ぶことができ、この事はカ
サ密度も変化し得ることを示している。
Table 2: Physical Properties of Molded Body by Press Molding As mentioned above, according to the present invention, the restoration recovery rate of the conventional molded body is 1/10.
The following results, and it is possible to obtain a molded body according to the preset mold. Furthermore, as is clear from the comparison with the comparative example, a molded product with high strength can be obtained, which has the advantage of being easy to handle, and as is clear from Example 2 and Table 2, the press pressure can be selected arbitrarily. This shows that the bulk density can also change.

特許出願人 イビデン株式会社 代表者多賀潤一部patent applicant IBIDEN Co., Ltd. Representative Jun Taga

Claims (1)

【特許請求の範囲】[Claims] 1、セラミック繊維と微細な粘土鉱物とを水中に分散し
、次いでカチオン性の有機質、又は無機質のいづれか少
なくとも1種の凝集剤を添加して、粘土鉱物を包含した
セラミック繊維のフロック吠物を形成せしめ、減圧吸引
装置に接続した多孔質の金型の表面に、前記フロックを
堆積せしめ、前記フロックの堆積物にプレス金型を押し
当ててプレスすることを特徴とするセラミック繊維成型
体の製造方法。
1. Disperse ceramic fibers and fine clay minerals in water, then add at least one type of cationic organic or inorganic flocculant to form a ceramic fiber flock containing clay minerals. A method for producing a ceramic fiber molded body, comprising depositing the flocs on the surface of a porous mold connected to a vacuum suction device, and pressing a press mold against the floc deposits. .
JP522684A 1984-01-13 1984-01-13 Manufacture of ceramic fiber molded part Pending JPS60149403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP522684A JPS60149403A (en) 1984-01-13 1984-01-13 Manufacture of ceramic fiber molded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP522684A JPS60149403A (en) 1984-01-13 1984-01-13 Manufacture of ceramic fiber molded part

Publications (1)

Publication Number Publication Date
JPS60149403A true JPS60149403A (en) 1985-08-06

Family

ID=11605271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP522684A Pending JPS60149403A (en) 1984-01-13 1984-01-13 Manufacture of ceramic fiber molded part

Country Status (1)

Country Link
JP (1) JPS60149403A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257806A (en) * 1986-05-06 1987-11-10 ニチアス株式会社 Manufacture of inorganic fibrous block
JPS6359527A (en) * 1986-08-29 1988-03-15 株式会社東芝 Manufacture of ceramics molded form
US4735756A (en) * 1984-10-06 1988-04-05 Didier-Werke Ag Method for producing light-weight molded articles containing ceramic fibers
US4737326A (en) * 1984-12-05 1988-04-12 Didier-Werke Ag Refractory shapes of ceramic fiber-containing material
US5422055A (en) * 1985-09-16 1995-06-06 The Dow Chemical Company Reinforced glass and/or ceramic matrix composites
JP2014109024A (en) * 2012-12-04 2014-06-12 Sumitomo Bakelite Co Ltd Composite resin composition and molded product having excellent insulation properties and heat dissipation properties
JPWO2014142017A1 (en) * 2013-03-13 2017-02-16 株式会社フジミインコーポレーテッド Thermal spray slurry, thermal spray coating, and method of forming thermal spray coating
JP2017536996A (en) * 2014-11-03 2017-12-14 クィリッツ ホールディングス ゲーエムベーハー Method for manufacturing molded insulating component, molded insulating component manufactured by the method, and mold for manufacturing molded insulating component using the method
US10196729B2 (en) 2015-09-25 2019-02-05 Fujimi Incorporated Slurry for thermal spraying, sprayed coating, and method for forming sprayed coating
US10377905B2 (en) 2013-03-13 2019-08-13 Fujimi Incorporated Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
US11066734B2 (en) 2014-09-03 2021-07-20 Fujimi Incorporated Thermal spray slurry, thermal spray coating and method for forming thermal spray coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989706A (en) * 1972-12-28 1974-08-27
JPS50156579A (en) * 1974-06-08 1975-12-17
JPS5626760A (en) * 1979-06-11 1981-03-14 Nicolet Industries Mill obard composition without asbestos* manufacture of same and annealing furnace roll or glass tempering roll by use of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989706A (en) * 1972-12-28 1974-08-27
JPS50156579A (en) * 1974-06-08 1975-12-17
JPS5626760A (en) * 1979-06-11 1981-03-14 Nicolet Industries Mill obard composition without asbestos* manufacture of same and annealing furnace roll or glass tempering roll by use of same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735756A (en) * 1984-10-06 1988-04-05 Didier-Werke Ag Method for producing light-weight molded articles containing ceramic fibers
US4737326A (en) * 1984-12-05 1988-04-12 Didier-Werke Ag Refractory shapes of ceramic fiber-containing material
US5422055A (en) * 1985-09-16 1995-06-06 The Dow Chemical Company Reinforced glass and/or ceramic matrix composites
JPS62257806A (en) * 1986-05-06 1987-11-10 ニチアス株式会社 Manufacture of inorganic fibrous block
JPS6359527A (en) * 1986-08-29 1988-03-15 株式会社東芝 Manufacture of ceramics molded form
JPH0545555B2 (en) * 1986-08-29 1993-07-09 Tokyo Shibaura Electric Co
JP2014109024A (en) * 2012-12-04 2014-06-12 Sumitomo Bakelite Co Ltd Composite resin composition and molded product having excellent insulation properties and heat dissipation properties
JPWO2014142017A1 (en) * 2013-03-13 2017-02-16 株式会社フジミインコーポレーテッド Thermal spray slurry, thermal spray coating, and method of forming thermal spray coating
US10196536B2 (en) 2013-03-13 2019-02-05 Fujimi Incorporated Slurry for thermal spraying, thermal spray coating, and method for forming thermal spray coating
US10377905B2 (en) 2013-03-13 2019-08-13 Fujimi Incorporated Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
US11066734B2 (en) 2014-09-03 2021-07-20 Fujimi Incorporated Thermal spray slurry, thermal spray coating and method for forming thermal spray coating
JP2017536996A (en) * 2014-11-03 2017-12-14 クィリッツ ホールディングス ゲーエムベーハー Method for manufacturing molded insulating component, molded insulating component manufactured by the method, and mold for manufacturing molded insulating component using the method
US10196729B2 (en) 2015-09-25 2019-02-05 Fujimi Incorporated Slurry for thermal spraying, sprayed coating, and method for forming sprayed coating

Similar Documents

Publication Publication Date Title
JPS60149403A (en) Manufacture of ceramic fiber molded part
JPS59111985A (en) Composite body of ceramic material and metal
US5945049A (en) Bonding of ceramic fibers
US4343989A (en) Magnesium oxide based heat storage device
PL208861B1 (en) Fiber reinforced filter for molten metal filtration and method for producing such filters
US6692678B2 (en) Calcium silicate insulating material containing alumina silica microspheres
CA1038890A (en) Siliceous thermal insulation and method of making same
US4201606A (en) Refractory exothermic heating insulating articles
JPS5988378A (en) Lightweight refractories and manufacture
JPH09263465A (en) Lightweight refractory and its production
JPS6035316B2 (en) SiC-Si↓3N↓4-based sintered composite ceramics
US5077242A (en) Fiber-reinforced ceramic green body and method of producing same
US6840994B2 (en) Calcium silicate insulating material containing alumina silica microspheres
GB2347143A (en) Refractory composition
JPS5973463A (en) Inorgnic hardened body
JPS61239098A (en) Metal-inorganic fiber composite sheet and its production
JP3094147B2 (en) Firing jig
JP3774299B2 (en) Inorganic fibrous refractory insulation and method for producing the same
JP3094149B2 (en) Manufacturing method of lightweight refractory
US3394913A (en) Insulating riser sleeve composition
JP3224853B2 (en) Composite glass composition
JP2001192278A (en) Refractory and heat insulating formed body and method of producing the same
JPS61168582A (en) Manufacture of inorganic formed body
JPS58104059A (en) Fibrous formed body composition
JP2811923B2 (en) Calcium silicate heating element and method for producing the same