JPH0549801A - Method for evaporating foaming solution - Google Patents
Method for evaporating foaming solutionInfo
- Publication number
- JPH0549801A JPH0549801A JP4576891A JP4576891A JPH0549801A JP H0549801 A JPH0549801 A JP H0549801A JP 4576891 A JP4576891 A JP 4576891A JP 4576891 A JP4576891 A JP 4576891A JP H0549801 A JPH0549801 A JP H0549801A
- Authority
- JP
- Japan
- Prior art keywords
- flow
- liquid
- pipe
- pipe end
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、特に高発泡性溶液の蒸
発濃縮、溶媒回収、蒸留など沸騰を伴う操作に於て、発
泡を抑止して溶媒を蒸発させる発泡性溶液の蒸発方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaporating a foaming solution which suppresses foaming and evaporates a solvent, particularly in operations involving boiling such as evaporative concentration of a highly foaming solution, solvent recovery and distillation.
【0002】[0002]
【従来技術】発泡性溶液の濃縮過程に於てはしばしば蒸
発濃縮操作が行われる。蒸発物が製品となるときは消泡
剤を使用して発泡を抑制する方法を適用できるが、濃縮
液が製品となるときは消泡剤を使用できないことが多
く、特に、発泡性そのものが製品としての重要な要素で
ある場合は消泡剤の混入は許されない。その例としては
糖類、界面活性剤、糊料水溶液の蒸発濃縮操作がある。
消泡剤等を混入せずに発泡を抑止する方法としては、液
中での沸騰をさけて表面蒸発のみとする方法がある。こ
の場合、通常の蒸発缶では蒸発表面積が不足することか
ら薄膜蒸発法等が採用される。しかし、この薄膜蒸発方
法は高真空状態でないと完全な表面蒸発とはならず、発
泡性の高い溶液の発泡抑止に適用するには困難である。
そこで、従来は、実開昭58−58116号公報に例示
される如く、遠心薄膜蒸発機のように蒸発面を回転させ
ることにより液面と蒸発蒸気との間に剪断力を与えて発
泡を抑止している。また、実開平2−40403号公報
に例示される如く、蒸発缶内上部にスプレーノズル等の
圧力噴射ノズルを設け、被脱気液を同ノズルを通じてス
プレー状に噴射して液滴とすることで蒸発表面積を増大
し、液滴の噴射速度により液滴表面と蒸気との間に剪断
力を与えて発泡を抑止する方法も知られている。2. Description of the Related Art In the process of concentrating a foaming solution, an evaporative concentration operation is often performed. When the evaporate becomes a product, a method of suppressing foaming can be applied by using an antifoaming agent, but when the concentrate becomes a product, it is often impossible to use an antifoaming agent. If it is an important factor, the inclusion of antifoaming agents is not allowed. Examples include saccharides, surfactants, and evaporative concentration operations of aqueous paste solutions.
As a method of suppressing foaming without mixing an antifoaming agent or the like, there is a method of avoiding boiling in a liquid and only surface evaporation. In this case, the thin film evaporation method or the like is adopted because the evaporation surface area is insufficient in a normal evaporation can. However, this thin film evaporation method does not result in complete surface evaporation unless it is in a high vacuum state, and is difficult to apply to suppress foaming of a highly foamable solution.
Therefore, conventionally, as illustrated in Japanese Utility Model Laid-Open No. 58-58116, by rotating the evaporation surface like a centrifugal thin film evaporator, a shearing force is applied between the liquid surface and the evaporated vapor to suppress foaming. is doing. In addition, as illustrated in Japanese Utility Model Laid-Open No. 2-40403, a pressure injection nozzle such as a spray nozzle is provided in the upper part of the evaporator, and the degassed liquid is sprayed through the nozzle to form droplets. There is also known a method of increasing the evaporation surface area and applying a shearing force between the droplet surface and the vapor by the jetting speed of the droplet to suppress foaming.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前者の
方法では、高真空状態を得なければならず装置が高価な
上に、処理能力が小さく、処理量が多い場合などには経
済的でない。後者の方法では、加熱器から圧力噴射ノズ
ルに到る管路の圧力損失の大部分が圧力噴射ノズル部の
噴射圧力となるため、圧力噴射ノズル入口部の圧力が蒸
発缶の圧力、即ち蒸発圧力よりも相当に高くなるため圧
力噴射ノズルに到るまでの管路に於て加熱液が蒸発する
比率が少ないか、全く蒸気相が発生しない。このため、
大部分の蒸発は同ノズルからのフラッシュ蒸発およびノ
ズルから出た後の液滴表面からの蒸発によって行われる
こととなる。ところが、圧力噴射ノズルの場合は、液滴
となった状態での過熱量が大きいことに加えて液滴の飛
行速度が速いために、圧力噴射ノズルからでた液滴が蒸
発缶の液面に至るまでの時間が短く、過熱熱量を失うに
充分な蒸発が行われず過熱液の状態のまま液面に到達す
る。従って、蒸発缶の液が過熱液となり、液面近くで沸
騰蒸発が起こり発泡する。液滴が液面に到達する前に蒸
発を完了させるためには液滴径をより小さくすることが
考えられるものの、圧力噴射ノズルからのフラッシュ蒸
発に加え、さらにミストを増大させることになり運転に
支障を来す。液面と同ノズルの距離を長くする方法は蒸
発缶の高さを大きくするだけでなく、液滴が蒸発缶の側
壁面に衝突して沸騰、発泡する虞を防止するために蒸発
缶の径も大きくしなければならず、経済性から問題を生
ずる。また、加熱器に於ける液体の過熱度を小さくする
ことによって、圧力噴射ノズルから出た液滴が蒸発缶の
液滴に至るまでの間に蒸発を完了させようとすると、所
定量の液体を蒸発させるためには循環液量を数倍から十
数倍に増加しなければならず、この場合も装置が大きく
なって経済的でない。なお、液表面の気泡を機械的にパ
ドル等で叩いたり、沸点以下の液滴を散布して泡表面に
強い剪断力を与えたて泡を破壊する方法もある(実開昭
52−51331号公報などで知られている)が、確実
性に欠け、装置が複雑になったり、熱効率が悪くなる等
の欠点がある。またイナートガスやスチームを泡に吹き
付けて泡表面を乾燥破泡する方法もある(特開昭59−
111914号、実開昭62−199103号公報など
で知られている。)が、蒸発蒸気の凝縮器が大きくなっ
たり、熱効率が悪くなる等の欠点がある。However, the former method is not economical when a high vacuum state must be obtained, the apparatus is expensive, the processing capacity is small, and the processing amount is large. In the latter method, most of the pressure loss of the pipe from the heater to the pressure injection nozzle is the injection pressure of the pressure injection nozzle, so the pressure at the inlet of the pressure injection nozzle is the pressure of the evaporator, that is, the evaporation pressure. Since it is considerably higher than the above, the rate of evaporation of the heating liquid in the pipeline up to the pressure injection nozzle is small, or no vapor phase is generated. For this reason,
Most of the evaporation will be performed by flash evaporation from the same nozzle and evaporation from the surface of the droplet after it exits the nozzle. However, in the case of the pressure injection nozzle, since the amount of superheat in the state of droplets is large and the flight speed of the droplets is high, the droplets ejected from the pressure injection nozzle are reflected on the liquid surface of the evaporator. It takes a short time to reach the liquid surface in a state of superheated liquid without sufficient evaporation to lose the amount of heat of superheat. Therefore, the liquid in the evaporator becomes superheated liquid, causing boiling evaporation near the liquid surface and foaming. Although it is conceivable to make the droplet diameter smaller in order to complete the evaporation before the droplets reach the liquid surface, in addition to flash evaporation from the pressure injection nozzle, mist is further increased and the operation is reduced. Cause trouble. The method of increasing the distance between the liquid surface and the nozzle not only increases the height of the evaporator, but also increases the diameter of the evaporator in order to prevent the possibility of droplets colliding with the side wall surface of the evaporator and boiling or foaming. Also has to be large, which creates problems from economics. Also, by reducing the degree of superheat of the liquid in the heater, if it is attempted to complete the evaporation before the liquid droplets ejected from the pressure injection nozzle reach the liquid droplets of the evaporator, a predetermined amount of liquid will be discharged. In order to evaporate, the amount of circulating liquid must be increased from several times to several tens of times, and in this case, the apparatus becomes large, which is not economical. There is also a method of mechanically striking the bubbles on the liquid surface with a paddle or the like, or spraying droplets having a boiling point or less to give a strong shearing force to the bubbles to destroy the bubbles (Actual No. 52-51331). However, there are drawbacks such as lack of certainty, complexity of the device, and poor thermal efficiency. There is also a method in which inert gas or steam is sprayed on the foam to dry and break the foam surface (JP-A-59-59).
No. 111914 and Japanese Utility Model Laid-Open No. 62-199103. However, there are drawbacks such as a large condenser for evaporated vapor and poor thermal efficiency.
【0004】本発明は、以上のような問題を解消して、
消泡剤等の化学物質を添加せずに、発泡を高効率かつ経
済的に抑止できる発泡性溶液の蒸発方法を提供すること
を目的とするものである。The present invention solves the above problems,
It is an object of the present invention to provide a method for evaporating a foaming solution that can suppress foaming highly efficiently and economically without adding a chemical substance such as an antifoaming agent.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明の蒸発方法は、ポンプを経て供給される所定
量の発泡性溶液を所定温度に過熱する加熱器と、缶内上
部の気相部には蒸気取出口と缶内底部の液相部に向けて
配置される管端とを有するとともに、前記過熱された発
泡性溶液が配管を通じて前記管端に供給され、前記管端
から前記液相部に向けて噴射される蒸発缶とを備え、前
記加熱器で過熱された発泡性溶液を前記管端に至るまで
の配管中で蒸発させて気液混合相となし、かつ前記管端
付近に於ける気液混合相の流動形態が間欠流または環状
流となるように前記加熱器に於ける発泡性溶液の流量と
前記加熱器出口に於ける過熱温度とを制御することを要
旨としている。また、本発明のより具体的な蒸発方法と
して、前記管端に至る直線配管部を捻れ管とすることが
好ましい。In order to achieve the above object, the evaporation method of the present invention comprises a heater for heating a predetermined amount of a foaming solution supplied through a pump to a predetermined temperature, and an upper part of a can. The vapor phase portion has a vapor outlet and a pipe end arranged toward the liquid phase portion of the bottom of the can, and the superheated foaming solution is supplied to the pipe end through a pipe, and from the pipe end. An evaporating can sprayed toward the liquid phase portion, evaporating the foaming solution heated by the heater in a pipe leading to the pipe end to form a gas-liquid mixed phase, and the pipe To control the flow rate of the foaming solution in the heater and the superheat temperature at the outlet of the heater so that the flow form of the gas-liquid mixed phase near the end is an intermittent flow or an annular flow I am trying. Further, as a more specific evaporation method of the present invention, it is preferable that the straight pipe portion reaching the pipe end is a twisted pipe.
【0006】[0006]
【作用】高発泡性液を液面下で沸騰させた場合は必ず発
泡し蒸発缶の気相部に気泡が蓄積して蒸発操作が困難と
なる。従って、消泡剤が使用できないときに採られる方
法としては、表面蒸発とするか、表面にでた泡に剪断力
を与えて破泡するか、または泡を乾燥して破泡するかの
何れかである。本発明では、過熱液を配管内で蒸発させ
ることにより、気液混相流となし液表面に気液の速度差
による剪断力を与え配管中での発泡を抑止することを基
本としている。より具体的には、蒸発はほとんどが配管
内で行われるが、残りの蒸発が容易に行われるように蒸
発缶の気相部に管端を設け、蒸発蒸気の噴射力によって
液滴を生成し表面積を増大させ、液滴が蒸発缶下部の液
面に至るまでに蒸発を完了させる。このように、配管中
で大部分の蒸発を行わせて、管端からの噴射により液滴
を生成させるためには、従来の如くスプレーノズル等の
圧力噴射ノズルを使用せず、円管または捻れ管の直管を
切断した1本または複数本の管端を蒸発缶の気相部に設
け、かつこの管端付近に於ける気液混相流の流動形態が
間欠流または環状流となるように制御操作することで容
易に達成されることが判明した。本発明は以上の試験結
果に基づいて達成されたものである。なお、化学工学上
では、下降流に於ける気液混相流の流動形態は一般に図
3に示すように分類されている。同図(イ)は流下膜
流、同図(ロ)は気泡流、同図(ハ)はプラグ流、同図
(ニ)はチヤーン流、同図(ホ)はセミプラグ流、同図
(ヘ)は環状流、同図(ト)は墳霧流であり、また同図
(ハ)から(ホ)までの流動形態を総括して間欠流と称
されている。When the highly foamable liquid is boiled below the liquid surface, it is always foamed, and bubbles are accumulated in the vapor phase portion of the evaporator, which makes the evaporation operation difficult. Therefore, when the defoaming agent cannot be used, the method to be adopted is either surface evaporation, breaking the foam by applying shearing force to the foam on the surface, or drying the foam to break the foam. It is. In the present invention, the superheated liquid is basically evaporated in the pipe to give a shearing force to the surface of the gas-liquid mixed phase flow and the non-liquid surface due to the difference in velocity of the gas and liquid to suppress the foaming in the pipe. More specifically, most of the evaporation is done in the pipe, but a pipe end is provided at the vapor phase part of the evaporator so that the remaining evaporation is easily performed, and droplets are generated by the injection force of the evaporation vapor. The surface area is increased and the evaporation is completed by the time the droplet reaches the liquid surface under the evaporator. As described above, in order to cause most of the evaporation in the pipe and generate droplets by jetting from the pipe end, a pressure jet nozzle such as a spray nozzle is not used as in the conventional case, but a circular pipe or a twisted pipe is used. One or more pipe ends obtained by cutting a straight pipe are provided in the vapor phase part of the evaporator, and the flow form of the gas-liquid mixed phase flow near this pipe end is an intermittent flow or an annular flow. It has been found that this can be easily achieved by controlling the operation. The present invention has been achieved based on the above test results. In chemical engineering, the flow patterns of the gas-liquid mixed phase flow in the downward flow are generally classified as shown in FIG. The figure (a) is a falling film flow, the figure (b) is a bubble flow, the figure (c) is a plug flow, the figure (d) is a yarn flow, the figure (e) is a semi-plug flow, the figure (f). ) Is an annular flow, (g) is a mound flow, and the flow forms from (c) to (e) are collectively called an intermittent flow.
【0007】配管中の気液混相流が何れの流動形態をと
るかは、 管の内径 D[m] および次の被蒸発液の物性 蒸気の密度 ρG [kg/m3] 液体の密度 ρL [kg/m3] 液体の粘度 μL [kgm/m・sec] 表面張力 σL [kg/m] が決まれば操作条件、即ち 蒸気の空筒速度 UG [m/sec] 液体の空筒速度 UL [m/sec] によって決定し、流下膜流、気泡流、間欠流、環状流お
よび墳霧流の境界線の式はD、 ρG 、 ρL、 μL 、σ
L、 UG、 UL の関数として示される (Two − phase Flow Patterns and VoidFract
ions in Downward Flow ; I n t. J.Multiphas
e Flow eVol.11,No.6,1985を参照 )。 鉛直下降流の場合は次式(1)から(7)式で与えられ
る。墳霧流と間欠流および環状流との境界式 △PL=2.89[(ρL−ρG)gσL]0.5 (1) 環状流と間欠流および流下膜流との境界式 1.9(UG/ UL)0.125=KuG 0.2FrG 0.36 (2) 流下膜流と間欠流および気泡流との境界式 FrG=0.43426(UG/ UL)1.1 (3) 気泡流と間欠流との境界式 FrG=0.117(UG+UL)1.6(gD)-0.8 (4) ここで、 KuG=UGρG 0.5[(ρL−ρG)gσL]-0.25 (5) FrG=UG(gD)-0.5 (6) △PL=2fρLUL 2 /D (7) fは管摩擦係数である。 gは重力加速度である。 本発明の蒸発方法では、発泡性液の種類と濃度および 管端の本数 N [−] 管端の内径 D [m] 操作圧力 P [Torr] が決まれば前記被蒸発液の物性の他 蒸気の分子量 M [−] 蒸発潜熱 H [kcal/kg] 沸点温度 T [゜K] 液体の比熱 CPL[kcal/kg・deg] が定まるので加熱器入口に於ける発泡性溶液の流量およ
び加熱器出口に於ける液温度と蒸発缶の操作圧力におけ
る液の沸点との温度差、即ち過熱温度△T[℃]のみに
よって管端1本当りの液流量および蒸気流量が決まる。
従って、UG とULが決って流動状態を特定できる。こ
こで、加熱器入口に於ける発泡性溶液の流量を管端の本
数と管端の流路断面積とで除して求めた管端に於ける発
泡性溶液の仮想空筒液流速 UL0[m/sec]とし、加熱
器出口に於ける液温度と蒸発缶の操作圧力P[Tor
r]に於ける液の沸点温度との温度差を過熱温度△T
[℃]として、前述の流動形態境界線の式を変形すれば
端管の本数Nに関係なく気液混相流の流動形態分布を△
TとUL0の関数として導くことができる。即ち、管端1
本当たりの液流量に対する発生蒸気流量の比率Vfは、
過熱温度△Tのときの過熱流量が全て蒸発潜熱として消
費されると考えれば、 Vf=CPL△T/H (8) で与えられるので、墳霧流と間欠流および環状流との境
界式(1)は Fd=1.7[(ρL−ρG)gσL]0.25 (9) UL0=Fd/[(2f)0.5(1−Vf)] (10) 環状流と間欠流および流下膜流との境界式(2)は Fa=169.84(ρG/ρL)3.48(gD)1.44× [(ρL−ρG)gρL/ρG 2]0.4 (11) UL0=[FaVf/(1−Vf)]1/4.48 /Vf (12) 流下膜流と間欠流および気泡流との境界式(3)は Ff=0.4343(gD)0.5(ρL/ρG)0.1 (13) UL0=FfVf 0.1(1−Vf)-1.1 (14) 気泡流と間欠流との境界式(4)は Fb=[(ρL/0.117ρG)]5/3(gD)0.5 (15) UL0=FbVf -1[(ρL−ρG)/ρG+1/Vf]-8/3 (16) のように導かれる。The flow mode of the gas-liquid mixed phase flow in the pipe depends on the inner diameter of the pipe D [m] and the physical properties of the liquid to be evaporated next: vapor density ρ G [kg / m 3 ] liquid density ρ L [kg / m 3 ] Viscosity of liquid μ L [kgm / m · sec] Surface tension σ L [kg / m] Operational conditions, ie, Vapor empty velocity V U G [m / sec] Liquid empty It is determined by the cylinder velocity UL [m / sec], and the equations for the boundary line of falling film flow, bubbly flow, intermittent flow, annular flow and mound flow are D, ρ G , ρ L , μ L , σ
It is shown as a function of L , U G , and U L (Two-phase Flow Patterns and VoidFract
ions in Downward Flow; Int. J. Multiphas
e Flow eVol. 11, No. 6, 1985). In the case of vertical downflow, it is given by the following equations (1) to (7). Mound boundaries expression between fog flow and intermittent flow and annular flow △ P L = 2.89 [(ρ L -ρ G) gσ L] 0.5 (1) boundary equation 1 between the annular flow and intermittent flow and falling film flow. 9 (U G / U L) 0.125 = K uG 0.2 F rG 0.36 (2) the boundary equation F rG the falling film flow and intermittent flow and bubble flow = 0.43426 (U G / U L ) 1.1 (3) the bubble flow and intermittent flow and boundary type F rG = 0.117 (U G + U L) 1.6 (gD) -0.8 (4) where, K uG = U G ρ G 0.5 [(ρ L -ρ G) gσ L ] -0.25 (5) F rG = U G (gD) -0.5 (6) △ P L = 2fρ L U L 2 / D (7) f is the pipe friction coefficient. g is the acceleration of gravity. In the evaporation method of the present invention, if the type and concentration of the effervescent liquid and the number of pipe ends N [-] pipe end inner diameter D [m] operating pressure P [Torr] are determined, the physical properties of the vaporized liquid Molecular weight M [-] Latent heat of vaporization H [kcal / kg] Boiling point temperature T [° K] Specific heat of liquid C PL [kcal / kg ・ deg] is determined, so the flow rate of the foaming solution at the heater inlet and the heater outlet The liquid flow rate and vapor flow rate per tube end are determined only by the temperature difference between the liquid temperature in the tank and the boiling point of the liquid at the operating pressure of the evaporator, that is, only the superheat temperature ΔT [° C].
Therefore, U G and U L can be decided and the flow state can be specified. Here, the flow rate of the foamable solution at the inlet of the heater is divided by the number of tube ends and the cross-sectional area of the flow path at the tube ends to obtain a virtual empty liquid flow velocity UL0 of the foamable solution at the tube end. [M / sec], the liquid temperature at the heater outlet and the operating pressure P [Tor of the evaporator]
r], the temperature difference from the boiling temperature of the liquid
If the above equation of the flow form boundary line is modified as [° C.], the flow form distribution of the gas-liquid multiphase flow is Δ regardless of the number N of end tubes.
It can be derived as a function of T and UL0 . That is, pipe end 1
The ratio V f of the generated steam flow rate to the liquid flow rate per line is
Considering that the entire superheat flow rate at the superheat temperature ΔT is consumed as evaporation latent heat, it is given by V f = C PL ΔT / H (8), so that the boundary between the mound flow and the intermittent or annular flow is equation (1) is F d = 1.7 [(ρ L -ρ G) gσ L] 0.25 (9) U L0 = F d / [(2f) 0.5 (1-V f)] (10) and the annular flow The boundary equation (2) between the intermittent flow and falling film flow is F a = 169.84 (ρ G / ρ L ) 3.48 (gD) 1.44 × [(ρ L −ρ G ) gρ L / ρ G 2 ] 0.4 ( 11) U L0 = [F a V f / (1-V f )] 1 / 4.48 / V f (12) The boundary equation (3) between falling film flow and intermittent flow and bubbly flow is F f = 0.4343. (GD) 0.5 (ρ L / ρ G ) 0.1 (13) UL0 = F f V f 0.1 (1-V f ) -1.1 (14) The boundary equation (4) between bubbly flow and intermittent flow is F b = [(Ρ L /0.117 ρ G )] 5/3 (gD) 0.5 ( 15) is derived as U L0 = F b V f -1 [(ρ L -ρ G) / ρ G + 1 / V f] -8/3 (16).
【0008】図4は流動形態境界線の式として(8)か
ら(16)式を使用してサポニン2.5%水溶液を操作
圧力が50Torrで内径25mmの垂直管中で過熱熱量
分を完全に蒸発させたときの鉛直下降流の流動形態分布
を示したものである。しかしながら、実際の操作では、
配管の圧力損失があるために管端に至るまでに△Tに相
当する過熱熱量分を完全に蒸発させることができない。
従って、図4では過熱温度△tが過熱器出口に於ける液
温度と管端に於ける液温度との温度差と考え、操作圧力
Pは管端に於ける液温度に対する蒸気圧と考えた場合に
相当する。操作圧力を蒸発缶の操作圧力Pとし、過熱温
度として過熱器出口に於ける液温度と蒸発缶の操作圧力
に於ける液の沸点との温度差△Tを使用し、実際の流動
形態分布をテスト結果を基に求めると図4は図5のよう
に修正される。FIG. 4 shows that the saponin 2.5% aqueous solution is completely heated in a vertical pipe having an inner diameter of 25 mm at an operating pressure of 50 Torr by using the equations (8) to (16) as the equations of the flow form boundary line. It shows the distribution of the flow morphology of the vertical downward flow when it is evaporated. However, in actual operation,
Due to the pressure loss in the pipe, the amount of superheat corresponding to ΔT cannot be completely evaporated before reaching the pipe end.
Therefore, in FIG. 4, the superheat temperature Δt is considered to be the temperature difference between the liquid temperature at the superheater outlet and the liquid temperature at the pipe end, and the operating pressure P is considered to be the vapor pressure relative to the liquid temperature at the pipe end. Corresponds to the case. Let the operating pressure be the operating pressure P of the evaporator, and use the temperature difference ΔT between the liquid temperature at the outlet of the superheater and the boiling point of the liquid at the operating pressure of the evaporator as the superheat temperature to determine the actual flow pattern distribution. When obtained based on the test results, FIG. 4 is modified as shown in FIG.
【0009】図5に示した如く過熱温度および仮想空筒
液流速が比較的小さい場合は流下膜流となる。仮想空筒
液流速が大きく過熱温度が高い場合は噴霧流となる。流
下膜流よりも仮想空筒液流速が速い範囲で過熱温度が比
較的低い場合は気泡流となるが、仮想空筒液流速が速く
なるに伴って配管の圧力損失が増加するため過熱温度を
高くしても配管中の蒸気比率が増加せず、気泡流の範囲
が広くなっている。気泡流よりも過熱温度を高くするに
したがって遷移状態を経て間欠流となる。流下膜流また
は間欠流よりもさらに過熱熱量を増加すると環状流とな
る。間欠流または環状流の場合、蒸発はほとんど配管中
で行われ適度な噴射力で管端から適度な噴射角の広がり
をもって放出されるので、ミストの少ない適度な大きさ
の液滴となり蒸発缶下部の液面に至るまでに過熱熱量を
失い沸騰蒸発を完了し、蒸発缶液面での沸騰は起こらず
発泡も起こらないことが確認された。間欠流をさらに細
分類するとプラグ流、チヤーン流およびセミプラグ流に
分類される。セミプラグ流の場合は操作条件の変動に依
って流動形態が変動してもチヤ−ン流、プラグ流(スラ
グ流)または環状流の範囲であり発泡の起こらない安定
した運転ができることが判明した。しかし、セミプラグ
流よりも加熱量を少なくしたプラグ流(スラグ流)およ
びチエーン流の場合は、流動形態が安定していればセミ
プラグ流と同様に良好な運転ができるが、僅かな運転条
件の変動で気泡流との遷移域に入り液滴の噴射角が狭く
なり液柱噴射に近づく。従って、この液柱が蒸発缶液面
に衝突して気泡巻き込みによる発泡が起こる。As shown in FIG. 5, when the superheat temperature and the virtual empty liquid velocity are relatively small, a falling film flow occurs. When the virtual empty liquid velocity is high and the superheat temperature is high, a spray flow results. When the superheat temperature is relatively low in the range where the virtual blanket liquid flow velocity is faster than the falling film flow, it becomes a bubble flow.However, as the virtual empty liquid flow velocity becomes faster, the pressure loss in the pipe increases, so the superheat temperature is increased. Even if it is increased, the steam ratio in the pipe does not increase, and the range of bubbly flow is widened. As the superheat temperature is made higher than that of the bubbly flow, it becomes an intermittent flow through a transition state. If the amount of heat of superheat is further increased as compared with the falling film flow or the intermittent flow, an annular flow occurs. In the case of intermittent flow or annular flow, most of the evaporation occurs in the pipe and is discharged from the pipe end with an appropriate spread of the injection angle with an appropriate injection force, resulting in droplets of an appropriate size with less mist, and at the bottom of the evaporator. It was confirmed that the amount of heat of superheat was lost by the time the liquid surface reached to the end of boiling evaporation was completed, and neither boiling nor foaming occurred on the liquid surface of the evaporator. The intermittent flow is further classified into plug flow, yarn flow and semi-plug flow. It has been found that in the case of the semi-plug flow, even if the flow form changes depending on the change of operating conditions, it is in the range of chain flow, plug flow (slug flow) or annular flow, and stable operation can be performed without foaming. However, in the case of the plug flow (slug flow) and the chain flow, in which the heating amount is smaller than that of the semi-plug flow, good operation can be performed as with the semi-plug flow if the flow form is stable, but slight fluctuations in operating conditions At the transitional area with the bubbly flow, the jet angle of the liquid droplet becomes narrow and approaches the liquid column jetting. Therefore, this liquid column collides with the liquid surface of the evaporator and foaming occurs due to the inclusion of bubbles.
【0010】実際の運転条件としては、多少の発泡が起
こっても液滴の衝突による破泡速度と発泡速度とがバラ
ンスして泡の層が一定の高さ以上にならなければ運転可
能であるから、プラグ流(スラグ流)およびチヤーン流
の範囲でも運転が可能である。気泡流となるのは間欠流
よりも過熱熱量を少なくしたときか、仮想空筒液速度が
速く配管抵抗が大きいために充分な蒸発が行われないと
きである。この気泡流の場合、管端から放出される気液
混相流は気泡を含んだ液柱状またはほとんど広がり角度
をもたない液滴噴射となり、蒸発表面積が少なく管端か
ら蒸発缶下部の液面に至るまでの間に過熱熱量を放出で
きない。過熱熱量を少なくした場合は管端からでた液は
過熱熱量は持っておらず、液が蒸発缶下部の液面に戻っ
た後で蒸発することは少なく沸騰蒸発による発泡は少な
いが管端から液柱状となって蒸発缶下部の液面に到達す
るため液面で蒸気を巻き込んで発泡する。配管抵抗が大
きいために充分な蒸発が行われない場合は、管端からで
た液は過熱熱量を持っており、管端から液柱状またはほ
とんど広がり角をもたない液滴噴射となって、蒸発缶下
部の液面に到達するため液面で蒸気を巻き込んで発泡す
る現象と、液が蒸発缶下部の液面に戻った後で沸騰蒸発
する際の発泡現象の両方がみられる。仮想空筒液流速が
遅くしかも環状流よりも過熱熱量が少ない場合は流下膜
流となる。この場合、液量が少ないため液は管壁を薄膜
状に自然流下に近い状態で流れ、蒸気が配管の中心部を
流れる。従って、蒸気の流路断面積が比較的大きく過熱
熱量が大きい場合でも蒸気の流速は比較的遅く、管端に
於ける噴射力が少ないので比較的大きな液滴となり自由
落下に近い状態で蒸発缶下部の液面に落下する。この場
合、配管の圧力損失が少ないために配管中で沸騰蒸発が
完了する。但し、気液界面の剪断力が小さいために配管
内で沸騰蒸発する際に発泡して管端から気泡を排出する
ことがある。また、液滴径が比較的大きいため、蒸発缶
下部の液面に落下した際に蒸気の巻き込みによる発泡が
みられる。仮想空筒液流速が速くなると噴霧流となる。
実際の運転では蒸発圧力が大気圧以下で過熱熱量が少な
い場合、液流速が速くなると配管の圧力損失のために配
管中での蒸気の発生が少なく、噴霧流の状態は不安定で
気泡流の流動形態になることがありこの際に発泡する。
蒸気圧力が大気圧以上の場合で過熱熱量が相当多く、し
かも供給液流量が多い場合に限って安定した噴霧流の状
態がみられる。この場合、配管中での蒸発が起こるが配
管抵抗が大きいために管端でも過熱熱量を残している。
しかし、噴射による液滴径が細かいために蒸発缶下部の
液面に到達するまでに過熱熱量を失って沸騰蒸発は完了
する。この場合の欠点は、加圧蒸発であるために装置が
圧力容器となること、ミストが多くなること、液滴が細
かいために蒸発圧力の変動などによって蒸発缶下部の液
面で発生した気泡を噴射された液滴の衝突によって破泡
する作用がない点である。As an actual operating condition, even if some foaming occurs, it is possible to operate unless the bubble breaking speed due to the collision of the droplets and the foaming speed are balanced so that the foam layer has a certain height or more. Therefore, it is possible to operate in the range of plug flow (slag flow) and yarn flow. The bubbly flow occurs when the amount of superheat is smaller than that in the intermittent flow, or when the virtual empty liquid velocity is high and the pipe resistance is large, so that sufficient evaporation is not performed. In the case of this bubbly flow, the gas-liquid mixed phase flow discharged from the pipe end becomes a liquid column containing bubbles or droplet ejection with almost no spread angle, and the evaporation surface area is small and the liquid surface from the pipe end to the liquid surface below the evaporator can. In the meantime, it cannot release the amount of superheat. When the amount of superheat is reduced, the liquid that comes out of the pipe end does not have the amount of superheat, and the liquid does not evaporate after returning to the liquid surface at the bottom of the evaporator. Since it becomes a liquid column and reaches the liquid surface under the evaporation can, it entrains vapor at the liquid surface and foams. If sufficient evaporation does not occur due to the large piping resistance, the liquid that has flowed out from the pipe end has a superheat amount and becomes a liquid droplet ejection from the pipe end that does not have a liquid column shape or almost a spreading angle. There are both a phenomenon in which vapor is entrained on the liquid surface to reach the liquid surface in the lower portion of the evaporator and foaming occurs, and a phenomenon in which the liquid boil-vaporizes after returning to the liquid surface in the lower portion of the evaporator. When the flow velocity of the virtual hollow liquid is slow and the amount of superheat is smaller than that of the annular flow, the falling film flow occurs. In this case, since the amount of liquid is small, the liquid flows in a thin film on the pipe wall in a state close to the natural flow, and the steam flows in the central portion of the pipe. Therefore, even if the cross-sectional area of the steam flow path is relatively large and the amount of superheat is large, the flow velocity of the steam is relatively slow, and the jetting force at the pipe end is small, resulting in relatively large droplets and a vaporizer in a state near free fall. It falls on the lower liquid surface. In this case, since the pressure loss in the pipe is small, the boiling evaporation is completed in the pipe. However, since the shearing force at the gas-liquid interface is small, foaming may occur during boiling and evaporation in the pipe, and bubbles may be discharged from the pipe end. In addition, since the droplet diameter is relatively large, foaming due to the entrainment of steam is observed when the droplet drops onto the liquid surface below the evaporator. As the virtual empty cylinder liquid flow velocity increases, it becomes a spray flow.
In actual operation, when the evaporation pressure is below atmospheric pressure and the amount of superheat is small, when the liquid flow rate becomes faster, less steam is generated in the pipe due to pressure loss in the pipe, and the spray flow state is unstable and It may be in a fluidized form and foam at this time.
When the steam pressure is higher than atmospheric pressure, the amount of heat of superheat is considerably large, and a stable atomization flow state is observed only when the flow rate of the supply liquid is large. In this case, evaporation occurs in the pipe, but since the pipe resistance is large, the amount of superheat remains at the pipe end.
However, since the diameter of the droplets ejected is small, the amount of heat of superheat is lost and the boiling evaporation is completed by the time it reaches the liquid surface in the lower part of the evaporator. The disadvantages in this case are that the device becomes a pressure vessel due to pressure evaporation, the amount of mist increases, and the bubbles generated on the liquid surface under the evaporation can due to fluctuations in evaporation pressure due to fine droplets. The point is that there is no action of breaking bubbles due to the collision of the ejected droplets.
【0011】以上のことから、具体的な蒸発装置設計条
件としては、発泡性溶液の熱安定性、処理量、濃度によ
る物性変化等を考慮した上で操作圧力、管端の口径およ
び管端本数を決定し、発泡性溶液の物性から図5のよう
な流動形態分布図を作成し、間欠流と環状流との境界線
上の液流量UL0[m/sec]と過熱温度△T[℃]とを採
用することが好ましい。From the above, specific conditions for designing an evaporator are as follows: operating pressure, pipe diameter and number of pipe ends, taking into consideration the thermal stability of the foaming solution, the amount of treatment, changes in physical properties due to concentration, etc. 5 was created from the physical properties of the foaming solution, and the liquid flow rate U L0 [m / sec] and the superheat temperature ΔT [° C] on the boundary line between the intermittent flow and the annular flow were created. It is preferable to adopt and.
【0012】[0012]
【実施例】図1は本発明の蒸発方法に用いられる蒸発装
置例を示している。なお、実施例では発泡性溶液例とし
てサポニン2.5%溶液の蒸発濃縮例を示すが、本発明
はこの例に限られることなく各種の発泡性溶液に適用で
きるものである。同図の蒸発装置は、大きくは垂直状態
に配置される蒸発缶1と、循環ポンプ2で供給されるサ
ポニン溶液を過熱する加熱器3と、加熱器3により過熱
された溶液を蒸発缶1に導く配管4と、蒸発缶1内の上
部に取り付けらるとともに配管4に接続された4本の管
端5と、加熱器3に供給される溶液の流量を調整する流
量計6と、加熱器3の出口に設けられた温度検出器7な
どを備えている。蒸発缶1は内径1400mm、直胴部
長さ1500mmの大きさからなり、缶内上部の気相部
に設けられた蒸気取出口1aと、缶内底部に設けられた
液取出口1bとを有し、各管端5を管内底部の液相部に
向けて配置した概略構造となっている。各管端5は内径
25mmの円筒状からなり、図では2本しか示されてい
ないが管端5同士は略平行に配置され上端部を配管4に
接合した状態で、缶内に挿入されている。管端5の噴射
口には温度計10を設置し、管端5から噴射される過熱
蒸気の温度TIを缶外から計測できるようにした。缶内
底部の溶液は、循環ポンプ2により各配管を介して加熱
器3内へ供給される。この場合、循環ポンプ2は管端5
に至るまでの圧力損失等の変動による流量変化を極力避
けるため容量式ポンプを使用しており、また加熱器3へ
の供給量を一定にするためインバーター8および流量計
6により制御できるようになっている。加熱器3はスチ
ームなどを熱媒体とするもので、溶液沸点温度に対して
加熱器出口温度が一定となるよう同出口温度を温度検出
器にて検出し、温度調節計TIC7により供給水蒸気の
流量を調整弁9によって制御し、沸点液に対する加熱熱
量が一定となるように加熱し、過熱温度15℃の過熱液
とする。加熱器3をでた過熱液は配管4を経由して各管
端5から噴射される。噴射された蒸気と液滴との混合物
は缶上部の気相部で分離され、液滴は液面に到達し、ミ
ストを含む蒸気は蒸気取出口1aから配管を通じてミス
トセパレーター11に入る。ここでは蒸気中のミストが
分離された後、凝縮器12で凝縮され受槽13を経由し
て排出ポンプ14により系外に取り出される。ミストセ
パレーター11で分離されたミストは、ドレインとなっ
て配管を経由して蒸発缶1に戻される。凝縮器12の上
部出口は配管を経由して真空ポンプ15に接続され、真
空ポンプ15により蒸発缶1、ミストセパレーター1
1、凝縮器12および受槽13の内圧が50Torrと
いう一定真空度に保持される。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an evaporation device used in the evaporation method of the present invention. In addition, although an evaporative concentration example of a saponin 2.5% solution is shown as an example of the effervescent solution in the examples, the present invention is not limited to this example and can be applied to various effervescent solutions. The evaporator shown in FIG. 1 has an evaporator 1 arranged in a substantially vertical state, a heater 3 for heating a saponin solution supplied by a circulation pump 2, and a solution heated by the heater 3 to the evaporator 1. A pipe 4 for guiding, four pipe ends 5 attached to the upper part of the evaporator 1 and connected to the pipe 4, a flow meter 6 for adjusting the flow rate of the solution supplied to the heater 3, and a heater. The temperature detector 7 and the like provided at the outlet of No. 3 are provided. The evaporator 1 has an inner diameter of 1400 mm and a straight body length of 1500 mm, and has a vapor outlet 1a provided in the vapor phase portion in the upper part of the can and a liquid outlet 1b provided in the bottom of the can. , And has a schematic structure in which each pipe end 5 is arranged toward the liquid phase portion at the bottom of the pipe. Each pipe end 5 has a cylindrical shape with an inner diameter of 25 mm, and although only two pipe ends are shown in the figure, the pipe ends 5 are arranged substantially parallel to each other and are inserted into the can with the upper end portions joined to the pipes 4. There is. A thermometer 10 was installed at the injection port of the tube end 5 so that the temperature TI of the superheated steam injected from the tube end 5 could be measured from outside the can. The solution at the bottom of the can is supplied into the heater 3 by the circulation pump 2 through each pipe. In this case, the circulation pump 2 has a pipe end 5
In order to avoid changes in flow rate due to fluctuations in pressure loss, etc., to the utmost, a displacement pump is used, and in order to make the supply amount to the heater 3 constant, it can be controlled by the inverter 8 and the flow meter 6. ing. The heater 3 uses steam or the like as a heat medium. The outlet temperature of the heater is detected by a temperature detector so that the outlet temperature of the heater is constant with respect to the boiling point of the solution, and the temperature controller TIC7 supplies the flow rate of steam. Is controlled by the adjusting valve 9 so that the amount of heat for heating the boiling point liquid becomes constant, and the superheated liquid having a superheating temperature of 15 ° C. is obtained. The superheated liquid leaving the heater 3 is jetted from each pipe end 5 via the pipe 4. The mixture of the sprayed vapor and the droplets is separated at the vapor phase portion in the upper part of the can, the droplets reach the liquid surface, and the vapor containing mist enters the mist separator 11 through the pipe from the vapor outlet 1a. Here, after the mist in the vapor is separated, it is condensed in the condenser 12 and taken out of the system by the discharge pump 14 via the receiving tank 13. The mist separated by the mist separator 11 becomes a drain and is returned to the evaporator 1 via a pipe. The upper outlet of the condenser 12 is connected to a vacuum pump 15 via a pipe, and the vacuum pump 15 allows the evaporator 1 and the mist separator 1 to be connected.
1, the internal pressure of the condenser 12 and the receiving tank 13 is maintained at a constant vacuum degree of 50 Torr.
【0013】以下、以上の装置を、蒸発濃縮過程におけ
る作用効果を含めて更に詳述する。装置が起動して安定
となると、加熱器3の出口では、配管4および管端5の
圧力損出によって蒸気をほとんど含まない過熱液の状態
となっており、管端5に近づくにしたがって圧力が低く
なるために除々に蒸発が起こり気液二相流となる。この
とき、配管4内の流動状態は蒸気の比率が増加するにし
たがって流速が速くなり、気泡流から遷移状態を経て管
端5に至る下向き垂直管では間欠流または環状流とな
る。管端5に至るまでに過熱液は過熱熱量の大部分を蒸
発潜熱として放出し、管端5では僅かな過熱度となる。
そして、間欠流または環状流の状態で、管端5から高速
で噴射された過熱液は液滴となりその表面積を増大さ
せ、残りの僅かな過熱熱量を蒸発缶1内の液面に到達す
るまでに蒸発潜熱として放出し飽和液滴として液面に至
る。間欠流または環状流の状態で、管端5から高速で噴
射された液滴は、ミストが少なく適度な液滴径となり、
装置の始動時に起こり易い圧力変動などの外乱によって
発生した液面上の泡を液滴の衝突による衝撃力によって
消泡する。この液滴の消泡作用を利用することに加え
て、管端5から高速で噴射された過熱液滴が過熱熱量を
放出し終わらない状態で蒸発缶1の側壁面や液面に到達
するとそこで沸騰蒸発し発泡するので、これを避けるた
めに管端5の位置は液面から600mm、缶側壁までと
の間に350mm程度の距離を確保した。また、管端5
の液滴噴射角度を60度程度にして、液滴が蒸発缶1の
側壁面に当たることなく、全て液面上に到達するように
設定した。The above-mentioned apparatus will be described in more detail below, including the function and effect in the evaporative concentration process. When the apparatus is activated and becomes stable, the outlet of the heater 3 is in a state of superheated liquid containing almost no steam due to pressure loss of the pipe 4 and the pipe end 5, and the pressure increases as it approaches the pipe end 5. Since it becomes low, evaporation gradually occurs and a gas-liquid two-phase flow occurs. At this time, the flow state in the pipe 4 becomes faster as the vapor ratio increases, and becomes an intermittent flow or an annular flow in the downward vertical pipe that reaches the pipe end 5 from the bubble flow through the transition state. By the time the pipe end 5 is reached, the superheated liquid releases most of the amount of superheat as evaporation latent heat, and the pipe end 5 has a slight degree of superheat.
Then, in the state of the intermittent flow or the annular flow, the superheated liquid jetted at high speed from the pipe end 5 becomes droplets to increase the surface area thereof, and the remaining slight amount of superheat reaches the liquid level in the evaporator 1 Is discharged as latent heat of vaporization to reach the liquid surface as saturated droplets. Droplets ejected at high speed from the tube end 5 in an intermittent or annular flow state have a small amount of mist and have an appropriate droplet diameter,
Bubbles on the liquid surface generated by disturbances such as pressure fluctuations that tend to occur at the time of starting the device are defoamed by the impact force due to collision of droplets. In addition to utilizing the defoaming action of the liquid droplets, when the superheated liquid droplets jetted at high speed from the pipe end 5 reach the side wall surface or liquid surface of the evaporator 1 without releasing the amount of superheated heat and ending there. In order to avoid this, the position of the tube end 5 was 600 mm from the liquid surface, and a distance of about 350 mm from the side wall of the can was ensured. Also, the pipe end 5
The droplet ejection angle was set to about 60 degrees so that all the droplets would reach the liquid surface without hitting the side wall surface of the evaporator 1.
【0014】本実施例に於ける定常運転では、 仮想空筒液流速 UL0=1.5m/sec 過熱温度 △T=15℃ であり、図4と図5上にプロットした点aに相当するよ
うにした。管端5に於ける流動形態は間欠流中のセミプ
ラグ流となり安定した無発泡の状態で継続運転すること
ができた。In the steady operation of this embodiment, the virtual empty liquid velocity U L0 = 1.5 m / sec, the superheat temperature ΔT = 15 ° C., which corresponds to the point a plotted in FIGS. 4 and 5. I did it. The flow pattern at the pipe end 5 was a semi-plug flow during intermittent flow, and continuous operation was possible in a stable, non-foaming state.
【0015】以上の装置に於て、過熱温度△Tの設定値
を変えたり、管端5の本数を変えたり、循環ポンプ2の
吐出流量をインバーター8の制御により変えるなどし
て、管端5から噴射される仮想空洞液流速UL0を変化さ
せた場合の例を図4と図5上に点bからjでプロットし
た。なお、図4に於て過熱温度△tは加熱器出口温度と
管端温度との差であり、図5に於て過熱温度△Tは加熱
器出口温度と蒸発缶操作圧力に於ける沸点温度との差で
ある。例えば、点aの場合、過熱器出口温度は56.5
℃、管端温度は48.9℃、50Torrに於ける沸点
温度は41.5℃であり、過熱温度△Tは15℃、過熱
温度△tは7.6℃である。従って、図4と図5上の同
じ符号の点は同じ操作条件の試験データーを示した。以
下、この仮想空洞液流速UL0を変化させた例を説明す
る。In the above apparatus, the set value of the overheat temperature ΔT is changed, the number of the pipe ends 5 is changed, the discharge flow rate of the circulation pump 2 is changed by the control of the inverter 8, and the like. An example in which the flow velocity U L0 of the virtual cavity liquid injected from is changed is plotted at points b to j on FIGS. 4 and 5. In FIG. 4, the superheat temperature Δt is the difference between the heater outlet temperature and the pipe end temperature, and in FIG. 5, the superheat temperature ΔT is the heater outlet temperature and the boiling point temperature at the evaporator operating pressure. Is the difference. For example, in the case of point a, the superheater outlet temperature is 56.5.
C., the tube end temperature is 48.9.degree. C., the boiling point temperature at 50 Torr is 41.5.degree. C., the superheat temperature .DELTA.T is 15.degree. C., and the superheat temperature .DELTA.t is 7.6.degree. Therefore, the points with the same reference numerals in FIGS. 4 and 5 indicate test data under the same operating conditions. Hereinafter, an example in which the virtual cavity liquid flow velocity U L0 is changed will be described.
【0016】先ず、加熱器出口温度を56.5℃に設定
し、過熱温度△T=15℃一定とし、点aから流量を増
加させて UL0=2.8m/sec とすると点bに至る。
この点bは気泡流と間欠流の遷移域にあたり、管端5か
らの噴射状態は液柱噴射と液滴噴射を交互に繰り返す不
安定な状態となった。気泡は液面の全面にわたって広が
るが、液滴噴射時に液滴が気泡に衝突して破泡する消泡
作用によって一定量で落ち着いていた。更に、流量を増
加して UL0=3.0m/sec とすると、点cに至り完
全に気泡流となる。この場合の管端5からの噴射状態は
液柱噴射となり、液面沸騰と蒸気巻き込みによって気泡
の蓄積増加がみられた。逆に、流量を減少して UL0=
0.6m/sec とすると点fに至り、流下膜流と間欠流
との遷移領域に入る。管端5からの噴射は液滴噴射と蒸
気噴射とを交互に繰り返す状態となった。蒸気噴射状態
のときは管端5の管壁を伝って流れている液が管端5か
ら大きな液滴となって液面に落下し、蒸気を巻き込んで
気泡を生じた。この点fでは液滴噴射時にこの気泡は液
滴の衝突によって破泡されるのでなんとか運転が可能で
あった。流量を更に減少して UL0=0.3m/sec と
すると点gに至り流下膜流となった。管端5からの噴射
は蒸気噴射状態となり、管壁を伝って流れている液が管
端5から大きな液滴となって液面に落下し、蒸気を巻き
込んで気泡を生じた。この気泡の発生速度は速くないも
のの消泡能力がないので長時間運転すると気泡が除々に
蓄積増加し運転不能となった。一方、加熱器出口温度を
46.5℃に下げ、UL0=0.2m/sec まで下げると
点hに至って完全に流下膜領域となった。ここでは蒸気
噴射力が弱くなり、配管内で気泡を生じて管端5から気
泡の集合体が間欠的に噴射される状態となった。点aと
同じく UL0=1.5m/sec として、加熱器出口温度
の設定値を48.5℃まで下げると点dに至る。ここで
は点bと同様に気泡流と間欠流の遷移域にあたり、運転
状態は不安定となったが液滴噴射時の消泡作用で何とか
運転を継続できた。更に、加熱器出口温度の設定値を4
6.5℃まで下げると点eに至り完全に気泡流領域に入
り液柱噴射状態となり、気泡の蓄積増加がみられ運転が
できなくなった。過熱器出口温度を76.5℃に設定
し、UL0=3.0m/sec とすると環状流領域の点iと
なる。ここでは点aと比較して液滴の噴射力が強くなり
蒸発蒸気中ミストが増加したが運転状態は極めて安定し
ており、缶下部の液面には気泡が全く見られなかった。
次に、缶内部に取り付けられた4本の管端の内、2本に
盲板を挿入して UL0=6.0m/sec とすると噴霧流
領域の点jとなる。ここでの液滴噴射は不安定で液柱噴
射になったり、液滴噴射になったりした。液滴噴射のと
きでもほとんど霧状の液滴噴射であったり、環状流の点
iの場合と同じような液滴噴射状態となり噴射力に強弱
が見られた。液柱噴射時には噴射液が多量の過熱熱量を
残したまま高速で缶液面に至るため蒸気巻き込みによる
発泡と、液面下の沸騰とにより急激に気泡層が増加し運
転不能となった。First, the heater outlet temperature is set to 56.5 ° C., the superheat temperature ΔT = 15 ° C. is kept constant, and the flow rate is increased from point a to U L0 = 2.8 m / sec to reach point b. ..
This point b corresponds to the transition region between the bubbly flow and the intermittent flow, and the jetting state from the tube end 5 became an unstable state in which the liquid column jetting and the droplet jetting are alternately repeated. The bubbles spread over the entire surface of the liquid, but at the time of jetting the droplets, the droplets collided with the bubbles and were decompressed by the defoaming action, so that the bubbles were settled in a certain amount. Further, if the flow rate is increased to U L0 = 3.0 m / sec, the flow reaches the point c and becomes a bubbly flow completely. In this case, the injection state from the tube end 5 was a liquid column injection, and the accumulation of bubbles was observed due to liquid surface boiling and vapor entrainment. On the contrary, the flow rate is reduced to U L0 =
When it is set to 0.6 m / sec, the point f is reached, and it enters the transition region between the falling film flow and the intermittent flow. The injection from the tube end 5 was in a state where droplet injection and vapor injection were repeated alternately. In the vapor injection state, the liquid flowing along the pipe wall of the pipe end 5 became large droplets from the pipe end 5 and dropped onto the liquid surface, and the vapor was entrained to generate bubbles. At this point f, when the droplets were ejected, the bubbles were broken by the collision of the droplets, so that the operation was manageable. When the flow rate was further reduced to U L0 = 0.3 m / sec, point g was reached and a falling film flow occurred. The injection from the pipe end 5 was in a vapor injection state, and the liquid flowing along the pipe wall became large droplets from the pipe end 5 and dropped to the liquid surface, and the vapor was entrained to generate bubbles. Although the generation rate of this bubble is not high, it has no defoaming ability. Therefore, when it is operated for a long time, the bubble gradually accumulates and becomes inoperable. On the other hand, when the temperature at the outlet of the heater was lowered to 46.5 ° C. and was lowered to U L0 = 0.2 m / sec, the point h was reached and the film fell completely into the falling film region. Here, the steam jetting force became weak, and bubbles were generated in the pipe, and the aggregate of bubbles was intermittently jetted from the pipe end 5. As in the case of point a, UL0 = 1.5 m / sec, and when the set value of the heater outlet temperature is lowered to 48.5 ° C, point d is reached. Here, as in the case of point b, the operating state became unstable in the transitional region between the bubbly flow and the intermittent flow, but the defoaming action at the time of droplet ejection could somehow continue the operation. In addition, set the heater outlet temperature to 4
When the temperature was lowered to 6.5 ° C., point e was reached, the bubble flow region was completely entered, and the liquid column injection state was reached, and the accumulation of bubbles was observed and the operation could not be performed. When the superheater outlet temperature is set to 76.5 ° C and U L0 = 3.0 m / sec, it becomes point i in the annular flow region. Here, as compared with point a, the jetting force of the liquid droplet became stronger and the mist in the evaporated vapor increased, but the operating state was extremely stable, and no bubbles were seen on the liquid surface under the can.
Then, among the four tube end attached to the can, comprising the insert the Mekuraban to two and U L0 = 6.0m / sec and j in terms of spray flow region. The droplet ejection here was unstable and became liquid column ejection or droplet ejection. Even when the liquid droplets were ejected, the liquid droplets were almost atomized, or the liquid droplets were in a state similar to the case of the point i in the annular flow, and the ejection force was weak. During injection of the liquid column, the injected liquid reaches the liquid surface of the can at a high speed while leaving a large amount of superheat, and foaming due to steam entrainment and boiling below the liquid surface caused a sudden increase in the bubble layer, making it inoperable.
【0017】このように、発泡を抑止する上での運転条
件としては、管端付近に於ける気液混合相の流動形態が
セミプラグ流または環状流となるよう制御することが好
ましいが、実際にはに多少の発泡が発生しても液滴の衝
突による破泡速度と発泡速度とがバランスして泡の層が
一定の高さ以上にならなければ運転可能であり、プラグ
流(スラグ流)およびチヤーン流の範囲でも運転できる
ことが確認された。As described above, as an operating condition for suppressing foaming, it is preferable to control so that the flow form of the gas-liquid mixed phase near the pipe end is a semi-plug flow or an annular flow. Even if some foaming occurs, it can be operated unless the bubble layer due to collision of droplets and the foaming speed are balanced and the bubble layer is above a certain height. Plug flow (slug flow) It was also confirmed that the system could be operated in the range of the yarn flow.
【0018】なお、試験的に蒸発缶下部の液面上に一部
液に浸漬させたワイヤーデミスターを配置して行った。
この場合には、液滴の生成が不安定なプラグ流(スラブ
流)の領域あるいは管端5と蒸発缶下部の液面または蒸
発缶壁面との距離が不充分に短い場合であっても液面に
対する衝撃が緩和され、安定に運転が行えることが確認
された。また、仮にワイヤーデミスター上に気泡が蓄積
した場合でも、管端5と液面との距離を短縮したときは
液滴の衝突による衝撃力が大きく、破泡力が強いため消
泡するまでの時間が短くできることも判明した。ワイヤ
ーデミスターの液面上の厚さは、液滴が直接液面に当た
らないようにそのワイヤーの充填密度を考慮して決定す
ればよい。液面下の厚さは特に規定する必要はないが、
液面高さの変動によって液面上にでてしまわないように
配慮するばよい。ワイヤーデミスターに浮き子を取り付
けて液面との位置関係を一定に保つようにすることが好
ましい。A wire demister partially immersed in the liquid was placed on the liquid surface below the evaporator for a test.
In this case, even if the region of the plug flow (slab flow) in which droplet generation is unstable or the distance between the pipe end 5 and the liquid surface under the evaporator or the wall surface of the evaporator is insufficiently short, It was confirmed that the impact on the surface was relieved and stable operation was possible. Further, even if air bubbles accumulate on the wire demister, when the distance between the pipe end 5 and the liquid surface is shortened, the impact force due to the collision of the liquid droplets is large, and the defoaming force is strong, so the time until the bubbles disappear. It turned out that can be shortened. The thickness of the wire demister on the liquid surface may be determined in consideration of the packing density of the wire so that the droplet does not directly contact the liquid surface. The thickness below the liquid surface does not need to be specified,
Care should be taken so that the liquid level does not rise above the liquid level due to fluctuations. It is preferable to attach a float to the wire demister so as to keep the positional relationship with the liquid surface constant.
【0019】更に、試験では管端5に至る直線配管部に
第2図に示す捻れ管20を用いたときの作用効果を調べ
た。同図(イ)は捻れ管20の断面図、同図(ロ)は捻
れ管20の外観図であり、捻れ管20は外径ODが21
mm、内径ID1が22mm、内径ID2が23mm、
捻れピッチPが25mmで、捻れ溝21を有している。
捻れ管20に交換した後、操作条件を特に前記点aおよ
び点bと同じくしたときは、直管の場合に見られた液柱
噴射状態がなくなり、缶内液面上に気泡が全く発生せ
ず、管端からの噴射状態が均一となって安定に運転でき
ることが判明した。これは、気液混相流に回転運動が加
わり、その遠心力によって液が管壁に押し付けられ、管
軸に沿って連続した気柱が作られ易くなる結果、断続的
な気泡の流れを持つセミプラグ流、チヤーン流、プラグ
流(スラブ流)を環状流にすることができたためと推測
される。ここで、前記捻れ管20とは前記具体的に例示
したものに限られず、要は管中での圧力損失が小さく、
流体に回転運動が加わり、遠心力により液が管壁に押し
付けられ管軸に沿って連続した気柱が得られるような捻
れ管形状を意味している。このように、本発明方法は、
請求項記載の範囲で種々変形ないしは展開できるもので
ある。Further, in the test, the working effect when the twisted pipe 20 shown in FIG. 2 was used for the straight pipe portion reaching the pipe end 5 was examined. The figure (a) is a sectional view of the twisted tube 20, and the figure (b) is an external view of the twisted tube 20. The twisted tube 20 has an outer diameter OD of 21.
mm, inner diameter ID1 is 22 mm, inner diameter ID2 is 23 mm,
The twist pitch P is 25 mm, and the twist groove 21 is provided.
After replacing with the twisted tube 20, when the operating conditions were made to be the same as the above points a and b, the liquid column injection state seen in the case of the straight tube disappeared and no bubbles were generated on the liquid surface in the can. It was found that the injection state from the pipe end became uniform and stable operation was possible. This is because a rotary motion is applied to the gas-liquid multiphase flow, the liquid is pressed against the tube wall by the centrifugal force, and it becomes easy to form a continuous air column along the tube axis, resulting in a semi-plug with an intermittent flow of bubbles. It is speculated that the flow, the chain flow, and the plug flow (slab flow) could be made into an annular flow. Here, the twisted tube 20 is not limited to the specifically exemplified one, and the point is that the pressure loss in the tube is small,
It means a twisted tube shape in which a rotational motion is applied to a fluid and the fluid is pressed against the tube wall by a centrifugal force to obtain a continuous air column along the tube axis. Thus, the method of the present invention is
Various modifications and developments can be made within the scope of the claims.
【0020】[0020]
【発明の効果】以上説明したように、本発明にあって
は、蒸発缶内で発泡性溶液の発泡そのものを起こさない
ように予め気液混相の流動形態を制御して発泡を抑制す
るものであり、従来の如く遠心力や高真空にするための
装置を必要とせず、また破泡のための機械的な可動部を
設けたり、ガスや蒸気を吹き付けるという熱効率を損な
うような操作を行ったりする必要がなくなるので、蒸発
装置の構造を大きく簡易化でき、工業化ないしは量産化
に優れている。また流動形態制御を過熱温度−流量によ
ってコントロールするので操作が容易で、かつ発泡の高
抑制効果により安定した蒸発が行える。As described above, in the present invention, the foaming solution is suppressed in advance by controlling the flow form of the gas-liquid mixed phase so that the foaming solution itself does not foam in the evaporator. Yes, there is no need for centrifugal force or high vacuum equipment as in the past, and there are mechanical moving parts for breaking bubbles, and operations such as blowing gas or steam that impair the thermal efficiency are performed. Since it is not necessary to do so, the structure of the evaporator can be greatly simplified, and it is excellent in industrialization or mass production. In addition, since the flow form control is controlled by the superheat temperature-flow rate, the operation is easy, and stable evaporation can be performed by the high foaming suppression effect.
【図1】本発明の蒸発方法に用いる蒸発装置例を示す模
式図である。FIG. 1 is a schematic diagram showing an example of an evaporation device used in an evaporation method of the present invention.
【図2】前記蒸発装置の管端に至る直線配管部に使用さ
れる捻れ管例を示す図である。FIG. 2 is a view showing an example of a twisted pipe used in a straight pipe portion reaching a pipe end of the evaporation device.
【図3】工学上に於ける気液混相流の流動形態を示す分
類図である。FIG. 3 is a classification diagram showing a flow form of a gas-liquid mixed phase flow in engineering.
【図4】本実施例に於ける理論的な気液混相流の流動形
態分布図である。FIG. 4 is a theoretical distribution diagram of a gas-liquid mixed phase flow in the present embodiment.
【図5】前記分布図を実際の操作に修正した流動形態分
布図である。FIG. 5 is a flow pattern distribution diagram in which the distribution diagram is modified to an actual operation.
1 蒸発缶、 2 循環ポンプ 3 加熱器、 4 配管 5 管端、 6 流量計 7 温度調節計、 8 インバーター 10 温度計。 1 evaporation can, 2 circulation pump 3, heater, 4 piping 5, pipe end, 6 flow meter 7, temperature controller, 8 inverter 10 thermometer.
Claims (2)
溶液を所定温度に過熱する加熱器と、缶内上部の気相部
には蒸気取出口と缶内底部の液相部に向けて配置される
管端とを有するとともに、前記過熱された発泡性溶液が
配管を通じて前記管端に供給され、前記管端から前記液
相部に向けて噴射される蒸発缶とを備え、前記加熱器で
過熱された発泡性溶液を前記管端に至るまでの配管中で
蒸発させて気液混合相となし、かつ前記管端付近に於け
る気液混合相の流動形態が間欠流または環状流となるよ
うに前記加熱器に於ける発泡性溶液の流量と前記加熱器
出口に於ける過熱温度とを制御することを特徴とする発
泡性溶液の蒸発方法。1. A heater for heating a predetermined amount of a foaming solution supplied through a pump to a predetermined temperature, a vapor outlet in the upper part of the can, and a liquid outlet part in the bottom of the can. And a pipe end disposed therein, the superheated foaming solution is supplied to the pipe end through a pipe, and the evaporator is sprayed from the pipe end toward the liquid phase portion. The effervescent solution superheated in (1) is evaporated in the pipe leading to the pipe end to form a gas-liquid mixed phase, and the flow form of the gas-liquid mixed phase near the pipe end is an intermittent flow or an annular flow. A method for evaporating a foaming solution, wherein the flow rate of the foaming solution in the heater and the superheat temperature at the outlet of the heater are controlled so that
る請求項1に記載の発泡性溶液の蒸発方法。2. The method for evaporating a foaming solution according to claim 1, wherein the straight pipe portion reaching the pipe end is a twisted pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3045768A JPH0751201B2 (en) | 1991-02-18 | 1991-02-18 | Evaporative solution evaporation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3045768A JPH0751201B2 (en) | 1991-02-18 | 1991-02-18 | Evaporative solution evaporation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0549801A true JPH0549801A (en) | 1993-03-02 |
JPH0751201B2 JPH0751201B2 (en) | 1995-06-05 |
Family
ID=12728472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3045768A Expired - Lifetime JPH0751201B2 (en) | 1991-02-18 | 1991-02-18 | Evaporative solution evaporation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0751201B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006175378A (en) * | 2004-12-24 | 2006-07-06 | Nisso Engineering Co Ltd | Evaporation device of foamable solution and its evaporation method |
WO2011077652A1 (en) | 2009-12-22 | 2011-06-30 | 花王株式会社 | Liquid cooling method |
JP2011148763A (en) * | 2009-12-22 | 2011-08-04 | Kao Corp | Method for cooling liquid |
CN103599641A (en) * | 2013-11-15 | 2014-02-26 | 华东理工大学 | Heat exchanging and swirl degassing coupler and flash separation method and device applying same |
US20140158308A1 (en) * | 2011-08-18 | 2014-06-12 | Asahi Glass Company, Limited | Process for concentrating and recovering surfactant aqueous solution |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5540601A (en) * | 1978-05-02 | 1980-03-22 | Sumitomo Chem Co Ltd | New 3-(3,4-dihydroxyphenyl)serine derivative |
-
1991
- 1991-02-18 JP JP3045768A patent/JPH0751201B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5540601A (en) * | 1978-05-02 | 1980-03-22 | Sumitomo Chem Co Ltd | New 3-(3,4-dihydroxyphenyl)serine derivative |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006175378A (en) * | 2004-12-24 | 2006-07-06 | Nisso Engineering Co Ltd | Evaporation device of foamable solution and its evaporation method |
JP4666347B2 (en) * | 2004-12-24 | 2011-04-06 | 日曹エンジニアリング株式会社 | Evaporating apparatus and evaporating method for effervescent solution |
WO2011077652A1 (en) | 2009-12-22 | 2011-06-30 | 花王株式会社 | Liquid cooling method |
JP2011148763A (en) * | 2009-12-22 | 2011-08-04 | Kao Corp | Method for cooling liquid |
US8961657B2 (en) | 2009-12-22 | 2015-02-24 | Kao Corporation | Method for cooling liquid |
US9459049B2 (en) | 2009-12-22 | 2016-10-04 | Kao Corporation | Method for cooling liquid |
EP3159641A1 (en) | 2009-12-22 | 2017-04-26 | Kao Corporation | Method for cooling liquid |
US20140158308A1 (en) * | 2011-08-18 | 2014-06-12 | Asahi Glass Company, Limited | Process for concentrating and recovering surfactant aqueous solution |
JPWO2013024790A1 (en) * | 2011-08-18 | 2015-03-05 | 旭硝子株式会社 | Method for concentrating and recovering aqueous surfactant solution |
CN103599641A (en) * | 2013-11-15 | 2014-02-26 | 华东理工大学 | Heat exchanging and swirl degassing coupler and flash separation method and device applying same |
Also Published As
Publication number | Publication date |
---|---|
JPH0751201B2 (en) | 1995-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4019657A (en) | Aerosol containers for foaming and delivering aerosols | |
RU2314127C2 (en) | Beverage container sterilization apparatus | |
KR20050044629A (en) | High flow rate bubbler system and method | |
CN107667265B (en) | Multi-stage distribution system for evaporators | |
Judson King | Spray drying: retention of volatile compounds revisited | |
BR0208633B1 (en) | nozzle for granule growth liquid dispensing devices in fluid bed granulation apparatus. | |
JPH0549801A (en) | Method for evaporating foaming solution | |
KR940004538B1 (en) | Method and apparatus for foaming of bitumen | |
US9459049B2 (en) | Method for cooling liquid | |
Otani et al. | Growth and deposition of saline droplets covered with a monolayer of surfactant | |
GB1588467A (en) | Method of utilizing an apparatus for the production of coagulated polymer latex | |
US3512570A (en) | Method for thermo-mechanically breaking polymer dispersion foam and separating the resulting liquid-vapor dispersion phases | |
KR960000462B1 (en) | Method for manufacturing carbonated water | |
US5332477A (en) | Method for reducing pressure drop in a packed column | |
JP2007167764A (en) | Apparatus for concentrating foamable liquid | |
JP2021090933A (en) | Mist discharge mechanism and gas-liquid mixing device | |
RU2009702C1 (en) | Packing heat exchange column fluid distributor | |
JP6081691B2 (en) | Liquid cooling method | |
JP6081690B2 (en) | Liquid cooling method | |
RU2049965C1 (en) | Air humidifier | |
CN103717281A (en) | Method for concentrating and recovering aqueous solution of a surfactant | |
JP2018176115A (en) | Mist generator | |
JPS6130827B2 (en) | ||
JPH08303710A (en) | Deaerator | |
JP3567762B2 (en) | Liquefied gas spray filling method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090605 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20090605 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 15 Free format text: PAYMENT UNTIL: 20100605 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 15 Free format text: PAYMENT UNTIL: 20100605 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110605 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 16 Free format text: PAYMENT UNTIL: 20110605 |