JP4666347B2 - Evaporating apparatus and evaporating method for effervescent solution - Google Patents

Evaporating apparatus and evaporating method for effervescent solution Download PDF

Info

Publication number
JP4666347B2
JP4666347B2 JP2004372400A JP2004372400A JP4666347B2 JP 4666347 B2 JP4666347 B2 JP 4666347B2 JP 2004372400 A JP2004372400 A JP 2004372400A JP 2004372400 A JP2004372400 A JP 2004372400A JP 4666347 B2 JP4666347 B2 JP 4666347B2
Authority
JP
Japan
Prior art keywords
solution
evaporating
liquid
pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004372400A
Other languages
Japanese (ja)
Other versions
JP2006175378A (en
Inventor
友治 畑中
正隆 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Engineering Co Ltd
Original Assignee
Nisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Engineering Co Ltd filed Critical Nisso Engineering Co Ltd
Priority to JP2004372400A priority Critical patent/JP4666347B2/en
Publication of JP2006175378A publication Critical patent/JP2006175378A/en
Application granted granted Critical
Publication of JP4666347B2 publication Critical patent/JP4666347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、発泡性溶液の濃縮など沸騰を伴う操作において使用される発泡を抑止して溶媒を蒸発させるために好適な蒸発装置及び蒸発方法に関する。   TECHNICAL FIELD The present invention relates to an evaporation apparatus and an evaporation method suitable for evaporating a solvent while suppressing foaming used in operations involving boiling such as concentration of an effervescent solution.

発泡性溶液の蒸発濃縮、溶媒回収、蒸留など沸騰を伴う操作において、発泡を抑止して溶媒を蒸発させる場合は、本出願人らが開発した特許文献1に記載のものが好適である。この蒸発装置では、蒸発缶が缶上部の蒸気用取出口と、缶底部の濃縮液用取出口と、缶上部に取り付けられて缶内上側の気相部に突出された管端とを備え、処理対象の発泡性溶液を、加熱器と管端との間を接続している供給配管から管端へ過熱液として供給し、該管端より気液混合相として噴射する。換言すると、蒸発方法的には、加熱器により過熱された発泡性溶液を管端に至るまでの供給配管中で蒸発させて気液混混合相とし、かつ、管端付近に於ける気液混合相の流動形態を間欠流または環状流となるようにして、管端から噴射される液滴中の残過熱熱量の大部分を、缶内底部の液相部に至るまでの気相部中で蒸発潜熱として放出させて沸騰を完了させるものである。この技術は、液滴が蒸発缶内の液面に達したときに起こる液面下沸騰及び/又は蒸気の巻き込みによる発泡を防ぐ上で、蒸発缶内で発泡性溶液の発泡そのものを起こさないように予め気液混合相の流動形態を制御して発泡を抑制するものであり、従来の遠心力や高真空にするための装置を必要とせず、また、破泡のための機械的な可動部を設けたり、ガスや蒸気を吹き付けるという熱効率を損なうような操作を不要にできること等で優れている。 In the operation involving boiling such as evaporative concentration of effervescent solution, solvent recovery, and distillation, when evaporating the solvent while suppressing foaming, the one described in Patent Document 1 developed by the present applicants is suitable. In this evaporator, the evaporator includes a steam outlet at the top of the can, a concentrate outlet at the bottom of the can, and a pipe end that is attached to the top of the can and protrudes from the upper gas phase portion inside the can. the foamable solution to be processed, between the heater and the tube was supplied as superheated liquid from the supply pipe to the pipe end that is connected to inject a gas-liquid mixed-phase from the tube end. In other words, in terms of the evaporation method, the foamable solution heated by the heater is evaporated in the supply pipe up to the tube end to form a gas- liquid mixed phase, and the gas-liquid mixing in the vicinity of the tube end The flow form of the phase is set to intermittent flow or annular flow, and most of the residual heat quantity in the droplets ejected from the tube end is transferred to the liquid phase part at the bottom of the can. It is released as latent heat of vaporization to complete boiling. This technique prevents foaming due to subsurface boiling and / or steam entrainment that occurs when the droplet reaches the liquid level in the evaporator, and prevents foaming of the foamable solution itself in the evaporator. In order to suppress foaming by controlling the flow form of the gas-liquid mixed phase in advance, it does not require a conventional centrifugal force or a device for creating a high vacuum, and is a mechanically movable part for breaking bubbles. Or an operation that impairs the heat efficiency of blowing gas or steam is unnecessary.

特公平7−51201号公報Japanese Patent Publication No. 7-5201

ところで、上記特許文献1の技術では、装置を複雑化することなく発泡を効率よく抑止できるが、次のようなことが問題となる。
ア)、発泡性溶液としては、例えば、塗料、紙塗工、繊維加工あるいはプラスチックやゴムの製造などに使用される乳濁液(以下、エマルジョンという)も処理対象となることがある。そのようなエマルジョンを蒸発濃縮させる場合には、管端より噴射されたエマルジョンがミスト状となって蒸発缶の気相部内面に付着する。付着したエマルジョンは、水分が蒸発することにより流下せず乾燥し、缶内面に固着してしまう。該固着物は溶解し難く、そのまま残存し、粗粒子となって缶内面に滞る。このため、実際の操作では、缶内面の固着物を定期的に洗浄・除去しなければならず、稼動率の低下要因となる。特に、蒸発缶が大型の場合は、洗浄効率が悪かったり洗浄廃水が多量に排出され、その後処理にも経費がかかる。
イ)、また、前記固着物が剥がれ缶内の濃縮液に混入した場合には、蒸発缶に付設される配管系において閉塞の問題が発生するため濾過して取り除かなければならず、製品(濃縮液)の品質にも悪影響を及ぼしかねない。なお、蒸発缶は、通常、SS(鉄)やSUS(ステンレス)製であるが、前記の問題を解決するため、例えば、缶内表面を鏡面仕上げする方法(特開平11−269204、特開昭57−61004など)やテフロン(登録商標)コーティングやグラスライニングを施す方法、あるいは、固着防止材(特開平11−35625、特開平4−81404など)を塗布する方法が提案されている。しかし、それらの方法では、缶内表面にエマルジョンの皮膜が一旦生成されてしまうと効果が期待できない。
By the way, with the technique of the said patent document 1, although foaming can be suppressed efficiently, without complicating an apparatus, the following becomes a problem.
A) As an effervescent solution, for example, an emulsion (hereinafter referred to as an emulsion) used for coating, paper coating, fiber processing, or plastic or rubber production may be treated. In the case of evaporating and concentrating such an emulsion, the emulsion sprayed from the pipe end becomes mist and adheres to the inner surface of the vapor phase portion of the evaporator. The adhering emulsion dries without flowing down due to evaporation of moisture, and adheres to the inner surface of the can. The fixed matter is difficult to dissolve, remains as it is, becomes coarse particles, and stays on the inner surface of the can. For this reason, in actual operation, the fixed matter on the inner surface of the can must be periodically cleaned and removed, which causes a reduction in operating rate. In particular, when the evaporator is large, the cleaning efficiency is poor or a large amount of cleaning wastewater is discharged, and the subsequent processing is also expensive.
B) In addition, if the above-mentioned sticking material is peeled off and mixed in the concentrated liquid in the can, there is a problem of clogging in the piping system attached to the evaporator, so it must be filtered and removed. Liquid) quality may be adversely affected. Note that the evaporator is usually made of SS (iron) or SUS (stainless steel). 57-61004), Teflon (registered trademark) coating or glass lining, or a method of applying an anti-adhesive material (JP-A-11-35625, JP-A-4-81404, etc.) has been proposed. However, in these methods, once an emulsion film is formed on the inner surface of the can, an effect cannot be expected.

本発明の目的は、以上のような発泡性溶液の蒸発濃縮過程で生じる蒸発缶の気相部内面の固着を防止して、濃縮溶液の回収効率を高め、品質向上と共に洗浄工程を極力削減できるようにすることにある。   The object of the present invention is to prevent sticking of the inner surface of the vapor phase portion of the evaporator that occurs in the process of evaporating and concentrating the foamable solution as described above, increasing the recovery efficiency of the concentrated solution, and improving the quality and reducing the cleaning process as much as possible. There is in doing so.

上記目的を達成するため請求項1の本発明は、蒸発缶が、缶上部に設けられた蒸気用の取出口と、缶底部に設けられた濃縮液用の取出口と、缶上部に取り付けられて缶内上側の気相部に突出される管端と、前記蒸発缶の缶内下側の濃縮液を前記濃縮液用の取出口から取り出し、加熱して前記管端に供給可能にする循環系の配管とを備え、処理対象である発泡性溶液を、前記配管から前記管端へ過熱液として供給し、該管端の下端より気液混合相として噴射する蒸発装置において、
前記蒸気缶が大筒形の本体および該本体の上部を絞った小筒形の首からなり、前記蒸発缶の缶外部に設けられて、前記首から前記缶内の気相部と対応した缶表面部を冷媒により冷却して缶内表面に付着した付着液を冷やして蒸発を抑制して缶内の濃縮液中に流下可能にする冷却手段を有していることを特徴としている。
以上の冷却手段としては、請求項2に特定したように、前記冷却手段が、前記首から前記缶内の気相部と対応した缶表面部と該缶表面部を覆う外壁との間の隙間に冷媒を流すジャケット型、前記首から前記缶表面部に巻かれた配管に冷媒を流すコイル型、前記首の上部に設けられたノズルから吐き出して前記首から前記缶内の気相部と対応した缶表面部の全体に冷媒を行き渡らせるシャワー型の何れかであることが好ましい。なお、前記シャワー型では、冷媒が液体の場合、缶外周にあって缶内の液面とほぼ同じ高さに前記ノズルより吐き出された冷媒を回収可能にする樋等が設けられる。
In order to achieve the above object, according to the present invention of claim 1, the evaporator is attached to the steam outlet provided at the top of the can, the concentrate outlet provided at the bottom of the can, and the top of the can. A pipe end protruding to the upper gas phase portion in the can and a circulation that allows the concentrated liquid in the lower can of the evaporator to be taken out from the outlet for the concentrated liquid and heated to be supplied to the pipe end In an evaporation apparatus comprising a system pipe, supplying a foamable solution to be treated as superheated liquid from the pipe to the pipe end, and jetting it as a gas-liquid mixed phase from the lower end of the pipe end,
The steam can comprises a large cylindrical main body and a small cylindrical neck with the upper portion of the main body squeezed, and is provided outside the can of the evaporation can, and the can surface corresponding to the gas phase portion in the can from the neck It is characterized by having a cooling means that cools the portion with a refrigerant and cools the adhering liquid adhering to the inner surface of the can to suppress evaporation and flow down into the concentrated liquid in the can .
As the above cooling means, as specified in claim 2, the cooling means has a gap between the neck and the can surface portion corresponding to the gas phase portion in the can and the outer wall covering the can surface portion. corresponding jacketed flow refrigerant coil type allowing the refrigerant to flow through the pipe that is wound around the can surface portion from the neck, from the neck by discharging from nozzles provided in the upper portion of the neck and the gas phase portion in the can to It is preferable that it is either of the shower type which distributes a refrigerant | coolant to the whole can surface part. In the shower type, when the refrigerant is a liquid, a tub or the like is provided on the outer periphery of the can to collect the refrigerant discharged from the nozzle at substantially the same height as the liquid level in the can.

また、請求項3と4の発明は、上記の蒸発装置を用いて、処理対象の発泡性溶液を蒸発し濃縮する蒸発方法として捉えたものである。すなわち、請求項3の発明は、前記冷却手段により前記缶内の気相部と対応した缶表面部を冷却処理するとともに、前記発泡性溶液を蒸発し濃縮によって減少した容量に対応して、原料である蒸発濃縮前の発泡性溶液を前記循環系の配管内の当該処理中の発泡性溶液に追加・補充し、缶内溶液の液面を設定範囲に保つことを特徴としている。請求項4の発明は、請求項3において、前記蒸発缶内の液面を検出する液面検出手段を有し、該液面検出手段で得られた検出値に基づいて、缶内溶液の液面を設定範囲に保つことを特徴としている。
なお、以上の蒸発方法は、請求項1または2の発明装置を用いて、例えば、蒸発缶表面部の温度上昇に同期して、冷却手段により蒸発缶内の気相部と対応した缶外表面部を冷却処理するが、その点を除いて特許文献1の方法と実質的に同じである。すなわち、この方法では、例えば、管端付近に於ける気液混相流の流動形態が間欠流または環状流となるように制御することと、発泡性溶液を過熱して管端に至るまでの配管内で蒸発させることで、気液混相流として液表面に気液の速度差による剪断力を与え配管中での発泡を抑止し、かつ、残りの蒸発が容易に行われるように蒸発缶内の管端からでる蒸気の噴射力によって液滴を生成し表面積を増大させ、液滴が蒸発缶の底部側液面に至るまでに蒸発を完了させる。このような操作では、缶内から流出する蒸発分量だけ原液(新たな発泡性溶液)を補うことにより缶内の発泡性溶液(濃縮液)を一定に保つようにする。
The inventions of claims 3 and 4 are regarded as an evaporation method for evaporating and concentrating the foamable solution to be processed using the above-described evaporation apparatus. That is, the invention according to claim 3 is that the cooling means cools the can surface portion corresponding to the gas phase portion in the can, and the raw material corresponding to the volume reduced by evaporation and concentration of the foamable solution. the foamable solution before evaporation is added or supplemented to foamable solution in the process of the inner circulation system of pipes, it is characterized by keeping the liquid level in the can in the solution set range. The invention of claim 4 has liquid level detection means for detecting the liquid level in the evaporator in claim 3, and based on the detection value obtained by the liquid level detection means, the liquid of the solution in the can It is characterized by keeping the surface within a set range.
The above evaporation method uses the inventive device according to claim 1 or 2, for example, the outer surface of the can corresponding to the gas phase portion in the evaporator by the cooling means in synchronization with the temperature rise of the evaporator surface portion. The part is cooled, but the method of Patent Document 1 is substantially the same except for this point. That is, in this method, for example, control is performed so that the flow form of the gas-liquid mixed phase flow in the vicinity of the pipe end becomes an intermittent flow or an annular flow, and piping from the overheating of the foamable solution to the pipe end By evaporating in the evaporator, shearing force due to the gas-liquid speed difference is applied to the liquid surface as a gas-liquid mixed phase flow to suppress foaming in the piping, and the remaining evaporation can be performed easily. A droplet is generated by the jetting force of the vapor from the end of the tube to increase the surface area, and the evaporation is completed until the droplet reaches the bottom side liquid level of the evaporator. In such an operation, the foamable solution (concentrated liquid) in the can is kept constant by supplementing the stock solution (new foamable solution) by the amount of evaporation flowing out from the can.

・請求項1の発明では、発泡性溶液の濃縮過程において、冷却手段により蒸発缶外部にあって缶内の気相部と対応した缶表面部を冷却することで、缶内表面に付着した付着液を冷やして蒸発を抑制して、該付着液が缶内の濃縮液中に自然流下する現象を確実に維持し、それにより蒸発乾燥に起因した固着を防止可能にする。また、缶内濃縮液表面での突沸を抑え、発泡を抑えることができる。この結果、本発明装置では、例えば、処理対象の発泡性溶液がエマルジョンであっても、缶内面への固着を抑えて装置稼働率を向上したり、品質低下要因を解消して信頼性を具備できる。
・請求項2の発明は、冷却手段としてジャケット型、コイル型、シャワー型の態様だと既存の蒸発缶にも設置が容易であり、付着した液滴を効率よく冷却することができる。
・請求項3と4の発明は、蒸発缶内にある濃縮処理中の発泡性溶液の高さを一定に保つ、つまり、気相容量を一定に保つことによって、当該溶液の加熱などの熱エネルギー損失を最小限にとどめることができる。また、缶内の気相部と対応した缶表面を冷却することによって、溶液表面部分も多少冷却され、溶液表面での突沸を緩和して発泡を抑える効果もある。
In the first aspect of the invention, in the process of concentrating the foamable solution, the surface attached to the inner surface of the can is cooled by cooling the can surface portion corresponding to the gas phase portion inside the can by the cooling means. The liquid is cooled to suppress evaporation, so that the phenomenon that the adhering liquid naturally flows into the concentrated liquid in the can is reliably maintained, thereby making it possible to prevent sticking due to evaporation and drying. Moreover, bumping on the surface of the concentrated liquid in the can can be suppressed and foaming can be suppressed. As a result, in the apparatus of the present invention, for example, even if the foamable solution to be processed is an emulsion, the apparatus operation rate is improved by suppressing the sticking to the inner surface of the can, and the quality deterioration factor is eliminated to provide reliability. it can.
The invention of claim 2 can be easily installed in an existing evaporator if the cooling means is a jacket type, a coil type, or a shower type, and the attached droplets can be cooled efficiently.
The inventions of claims 3 and 4 are characterized in that the height of the foamable solution in the evaporator during the concentration process is kept constant, that is, the heat energy such as heating the solution by keeping the gas phase volume constant. Loss can be minimized. Further, by cooling the can surface corresponding to the gas phase portion in the can, the solution surface portion is also somewhat cooled, and there is an effect of reducing foaming by reducing bumping on the solution surface.

本発明の最良な形態を図面の形態例を参照しながら説明する。図1は第1形態、図2は第2形態、図3は第3形態を示している。以下の説明では、第1形態により装置の基本構造を述べ、次に第2形態と第3形態の変更点に言及した後、実施例を挙げて本発明の有用性を明らかにする。なお、各形態例では、同一又は類似する部材に同じ符号を付し、重複した説明を極力省く。   The best mode of the present invention will be described with reference to the embodiments shown in the drawings. 1 shows a first form, FIG. 2 shows a second form, and FIG. 3 shows a third form. In the following description, the basic structure of the apparatus will be described according to the first embodiment, and after referring to the changes between the second and third embodiments, the usefulness of the present invention will be clarified with examples. In each form example, the same numerals are given to the same or similar member, and duplicate explanation is omitted as much as possible.

(第1形態)図1は蒸発装置の全体構成を模式的に示している。この蒸発装置は、縦型の蒸発缶1と、蒸発缶1の上側取出口を形成している取出筒2と、蒸発缶1内に吊り下げた状態に配置されている複数の管端3と、各管端3の上端にフレキシブルホース等を介して連結している共通管4と、蒸発缶1の底部に設けられている取出口1aと共通管4との間を配管5で連通し、かつ配管5の途中に設けられるポンプ6、ヒーター7、原液a用の導入部等を有した循環系8と、缶内の気相部と対応した缶表面部を冷媒により冷却する冷却手段9などを備えている。 (First Embodiment) FIG. 1 schematically shows the entire structure of an evaporator. The evaporator includes a vertical evaporator 1, an extraction cylinder 2 that forms an upper outlet of the evaporator 1, and a plurality of pipe ends 3 that are arranged in a suspended state in the evaporator 1. The pipe 5 communicates between the common pipe 4 connected to the upper end of each pipe end 3 via a flexible hose and the like, and the outlet 1a provided at the bottom of the evaporator 1 and the common pipe 4. In addition, a pump 6 provided in the middle of the pipe 5, a heater 7, a circulation system 8 having an introduction portion for the stock solution a, and the like, a cooling means 9 for cooling the can surface portion corresponding to the gas phase portion in the can with a refrigerant, and the like It has.

ここで、蒸発缶1は、SSやSUS製などであり、大筒形の本体10および該本体10の上部を絞った小筒形の首11とからなり、取出筒2を首11に連結している。取出筒2は本体1内から蒸気を取り出す取出口となる。通常は、図示を省略したが、取出筒2が配管を介してデミスターに連結される。そして、蒸発缶1内の蒸気は、そのデミスターに導入され、該デミスターによってミストを除去した蒸気として凝縮器に導出されて凝縮液として処理される。これに対し、取出口1aは、配管5に付設された開閉弁8a,8bの切換操作等によって、缶内の濃縮液を導出して、製品用として回収可能にしたり、缶内の濃縮液(処理中の発泡性溶液)を循環系8を介して過熱液として再び管端3から噴射可能にする。   Here, the evaporator 1 is made of SS, SUS, or the like, and includes a large cylindrical main body 10 and a small cylindrical neck 11 with the upper portion of the main body 10 being narrowed, and the take-out cylinder 2 is connected to the neck 11. Yes. The take-out cylinder 2 serves as an take-out port for taking out the steam from the main body 1. Usually, although not shown, the take-out cylinder 2 is connected to a demister through a pipe. And the vapor | steam in the evaporator 1 is introduce | transduced into the demister, and is derived | led-out to a condenser as vapor | steam which removed mist with this demister, and is processed as a condensate. On the other hand, the take-out port 1a leads to the concentrated liquid in the can by deriving it by switching the on-off valves 8a and 8b attached to the pipe 5 so that it can be recovered for use as a product, or the concentrated liquid ( The foamable solution under treatment) can be sprayed again from the pipe end 3 as superheated liquid via the circulation system 8.

各管端3は、本体10の鏡面12にあって、首11を中心とした同心円上に二重管13等を介し垂直に保持されており、処理対象の発泡性溶液が循環系8および共通管4を介し過熱液として供給されると、缶内上側の気相部に突出している管下端より気液混合相として噴射する。管端3の本数は装置の処理能力等を考慮して任意に決められる。循環系8は、配管5のうちポンプ6とヒーター7との間の配管部に接続されて原液供給部から発泡性溶液(原液a)を導入し、又は、蒸発缶1内の発泡性溶液(濃縮途中の発泡性溶液)を取出口1aからポンプ6を介して取り出し、それらをヒーター7により所定温度に加熱し、過熱液として共通管4から各端管3に供給可能にする。 Each tube end 3 is on the mirror surface 12 of the main body 10 and is held vertically on a concentric circle centered on the neck 11 via a double tube 13 or the like, and the foamable solution to be treated is shared with the circulation system 8. When supplied as a superheated liquid through the tube 4, to inject a gas-liquid mixed-phase from the pipe lower end which projects into the gas phase portion of the upper within the can. The number of tube ends 3 is arbitrarily determined in consideration of the processing capability of the apparatus. The circulation system 8 is connected to a pipe section between the pump 6 and the heater 7 in the pipe 5 and introduces a foamable solution (stock solution a) from the stock solution supply section, or a foamable solution in the evaporator 1 ( The effervescent solution in the middle of concentration is taken out from the outlet 1a via the pump 6, heated to a predetermined temperature by the heater 7, and can be supplied from the common pipe 4 to each end pipe 3 as a superheated liquid.

また、以上の蒸発装置では、蒸発缶1内の発泡性溶液の総量が、取出筒2から流出される蒸発量から逆算することにより、又は、蒸発缶1に付設された不図示の液面検出手段により把握することにより、逐次計測管理されるようになっている。そして、装置稼働時には、発泡性溶液を蒸発し濃縮によって減少した容量に対応して、原液aを当該処理中の発泡性溶液に追加・補充し、缶内溶液の液面を設定範囲に保つよう制御される。   Further, in the above evaporation apparatus, the total amount of the foamable solution in the evaporator 1 is calculated by back-calculating from the amount of evaporation flowing out from the take-out tube 2, or the liquid level detection (not shown) attached to the evaporator 1 is detected. By grasping by means, the measurement is managed sequentially. When the apparatus is in operation, the stock solution a is added to or supplemented to the foaming solution being processed in accordance with the volume reduced by evaporation and concentration of the foaming solution, and the liquid level of the solution in the can is kept within the set range. Be controlled.

冷却手段9は、蒸発缶1のうち、缶内の気相部と対応した缶外表面部に隙間16を保ってSSやSUS製または断熱性の外壁部材15を付設したジャケット構成である。該外壁部材15は、本体10の缶内溶液の液面高さから首11までを覆っていて、下周囲が本体10側に水密状態に固着され、上周囲が首11のフランジ側に水密状態に固着されている。外壁部材15には、下周囲箇所に冷媒を隙間16に導入するための入口15aと、上周囲箇所に冷媒を隙間16から外へ排出するための出口15bとが設けられている。冷媒としては、気体に限られず、液体であっても差し支えない。この冷媒は、専用機器から所定圧ないしは流量で入口15aに供給される。なお、このような隙間16には、冷媒の上昇速度や流出速度を制御する邪魔板やフィン等が付設されることもある。また、構造的には、冷媒の入口と出口とを逆に設定してもよい。   The cooling means 9 has a jacket configuration in which an outer wall member 15 made of SS, SUS, or heat insulation is attached to the outer surface portion of the can corresponding to the gas phase portion in the can with the gap 16 being maintained. The outer wall member 15 covers from the liquid level of the solution in the can of the main body 10 to the neck 11, the lower periphery is fixed to the main body 10 side in a watertight state, and the upper periphery is watertight to the flange side of the neck 11. It is fixed to. The outer wall member 15 is provided with an inlet 15a for introducing the refrigerant into the gap 16 at the lower peripheral portion and an outlet 15b for discharging the refrigerant out of the gap 16 at the upper peripheral portion. The refrigerant is not limited to gas but may be liquid. This refrigerant is supplied from the dedicated device to the inlet 15a at a predetermined pressure or flow rate. In addition, a baffle plate, a fin, or the like for controlling the rising speed or the outflow speed of the refrigerant may be attached to the gap 16. Further, structurally, the refrigerant inlet and outlet may be set in reverse.

(第2形態)図2は前記冷却手段を変更した構成例である。この冷却手段9は、缶内の気相部と対応した缶外表面部に配管17を巻き付けたパイプ構成である。配管17は断面が図2のような円形に限らず、パイプを半割にした形状、いわゆるコイルジャケット型でも良い。該配管17は、本体10の缶内溶液の液面高さあたりから首11までを所定ピッチで巻き付けていて、下端の入口17aから導入される冷媒を上端の出口17bから排出する。この場合も冷媒は、気体あるいは液体であり、専用機器から所定圧ないしは流量で入口17aに供給される。構造的には、図1の同様に入口と出口とを逆に設定することも可能である。 (Second Embodiment) FIG. 2 shows a configuration example in which the cooling means is changed. The cooling means 9 has a pipe configuration in which a pipe 17 is wound around the outer surface portion of the can corresponding to the gas phase portion in the can. The pipe 17 is not limited to the circular shape as shown in FIG. 2, but may be a so-called coil jacket type in which the pipe is halved. The pipe 17 is wound around the liquid level height of the solution in the can of the main body 10 to the neck 11 at a predetermined pitch, and discharges the refrigerant introduced from the lower end inlet 17a from the upper end outlet 17b. Also in this case, the refrigerant is a gas or a liquid, and is supplied from the dedicated device to the inlet 17a at a predetermined pressure or flow rate. Structurally, it is possible to reversely set the inlet and the outlet as in FIG.

(第3形態)図3は前記冷却手段を更に変更した他の構成例である。この冷却手段9は、缶上部に設けられたノズル18から吐き出して缶内の気相部と対応した缶外表面全体に冷媒を行き渡らせるシャワー構成である。つまり、ノズル18は、例えば、首11の外周にリング状に巻かれ、入口18から導入される冷媒をリング状の管部分に設けた複数の孔から下向きに吐き出すようにする。また、この例では、本体10の缶内溶液の液面高さに対応した箇所に樋19が周設されている。該樋19は、上向きに開口していて、ノズル18からシャワー状に吐き出される冷媒である液体を受け入れ、出口19aから回収可能にする。 (Third Embodiment) FIG. 3 shows another configuration example in which the cooling means is further changed. The cooling means 9 has a shower configuration in which the refrigerant is discharged from the nozzle 18 provided in the upper portion of the can and spread over the entire outer surface of the can corresponding to the gas phase portion in the can. That is, for example, the nozzle 18 is wound around the outer periphery of the neck 11 in a ring shape, and the refrigerant introduced from the inlet 18 is discharged downward from a plurality of holes provided in the ring-shaped tube portion. Further, in this example, a collar 19 is provided around the body 10 at a location corresponding to the liquid level of the solution in the can. The eaves 19 are open upward and receive liquid, which is a refrigerant discharged from the nozzle 18 in a shower shape, and can be collected from the outlet 19a.

次に、以上の蒸発装置を用いてエマルジョンを蒸発濃縮する操作例について述べる。まず、蒸発缶1には、原液aが循環系8を利用して所定量だけ所定温度で収容される。その後は、循環系8によりエマルジョンをヒーター7で所定温度まで過熱し、又、蒸発缶1の缶内が所定の内圧に調整される。そして、循環系8の過熱液が気液二相流として、各管端3に入り下端から噴射されると、缶上部の気相部で液適と蒸気とに分離される。分離された液滴は、その表面積を増大させつつその過熱熱量を蒸発缶1内の液面に到達するまで蒸発潜熱として放出し飽和液滴として液面に到達する。分離された蒸気は、取出筒2から不図示のデミスター側へ導入される。また、各管端3から噴射された液滴は、適度な液滴径となり、装置の始動時に起こり易い圧力変動などの外乱によって発生した液面上の泡を液滴の衝突による衝撃力によって消泡する。通常稼動時において、発泡を抑止するための運転条件としては、管端3や共通管4付近に於ける気液混合相の流動形態が間欠流または環状流となるよう制御する。但し、実際には多少の発泡が発生しても、前記の液滴の衝突による破泡速度と発泡速度とがバランスして泡の層が一定の高さ以上にならなければ運転可能である。これらは特許文献1のものと同じである。以上のようにして、缶内のエマルジョンは、循環系8により缶内より取り出されて再度過熱され、同様の濃縮操作が繰り返し行われる。蒸発濃縮が進むと、蒸発量に対応して缶内の液面(不図示の液面検出手段にて計測される)が下がるので、原液a(エマルジョン)がその蒸発量に対応した分だけ追加補充され、缶内の液面をほぼ一定に保ちながら蒸発濃縮を行う。設定濃度まで濃縮した濃縮液は、缶内下部の排出管5aより回収部へ排出される。   Next, an operation example for evaporating and concentrating the emulsion using the above-described evaporation apparatus will be described. First, the stock solution a is stored in the evaporator 1 at a predetermined temperature by a predetermined amount using the circulation system 8. Thereafter, the emulsion is heated to a predetermined temperature by the circulation system 8 with the heater 7 and the inside of the evaporator 1 is adjusted to a predetermined internal pressure. And if the superheated liquid of the circulation system 8 enters each pipe end 3 and is injected from a lower end as a gas-liquid two-phase flow, it will be isolate | separated into liquid suitability and a vapor | steam in the gaseous-phase part of can upper part. The separated droplets are released as latent heat of vaporization until reaching the liquid level in the evaporator 1 while increasing the surface area, and reach the liquid level as saturated droplets. The separated steam is introduced from the take-out tube 2 to a demister (not shown). In addition, the droplets ejected from each tube end 3 have an appropriate droplet diameter, and bubbles on the liquid surface generated by disturbances such as pressure fluctuations that are likely to occur at the start of the apparatus are extinguished by the impact force caused by the collision of the droplets. Foam. As an operating condition for suppressing foaming during normal operation, control is performed so that the flow form of the gas-liquid mixed phase in the vicinity of the pipe end 3 and the common pipe 4 becomes an intermittent flow or an annular flow. However, in practice, even if some foaming occurs, operation is possible if the foam breaking speed and the foaming speed due to the collision of the droplets are balanced and the foam layer does not exceed a certain height. These are the same as those of Patent Document 1. As described above, the emulsion in the can is taken out from the can by the circulation system 8 and reheated again, and the same concentration operation is repeated. As the evaporation and concentration progresses, the liquid level in the can (measured by a liquid level detection means not shown) falls in accordance with the evaporation amount, so the stock solution a (emulsion) is added by the amount corresponding to the evaporation amount. It is replenished and evaporative concentration is performed while keeping the liquid level in the can almost constant. The concentrated solution concentrated to the set concentration is discharged from the discharge pipe 5a in the lower part of the can to the recovery unit.

以上の蒸発濃縮操作では、冷却手段9により蒸発缶1のうち缶内の気相部と対応した缶外表面部を冷却することにより、缶内表面に付着した付着液(液滴)を冷やして蒸発を抑制する。これは、付着した液滴が缶内の濃縮液中に自然流下する現象を確実に維持し、それにより蒸発乾燥に起因した固着を防止可能にするためである。また、その冷却構造として、上記した3つの冷却手段9を比べると、冷却効率(熱効率)としては図1のジャケット型が最も良い。但し、ジャケット型は、管端3の数が多くなると、缶上側を覆っている外壁部材15に各管端3又はブラケット13用の切欠部を設けなければならないので、管端3が少ない蒸発缶に適している。図2のコイル型は、ジャケット型より伝熱面積が少なく冷却効率が低いが、管端3が多くなっても設置上の制約を受けたり複雑化することもない点で優れている。図4のノズル型は設備費用を抑える上で好適であり、簡易かつ簡明であるためメンテナンス性にも優れている。   In the above evaporative concentration operation, by cooling the can outer surface portion corresponding to the gas phase portion in the can of the evaporator 1 by the cooling means 9, the adhering liquid (droplet) adhering to the inner surface of the can is cooled. Suppresses evaporation. This is in order to reliably maintain the phenomenon that the adhered droplets naturally flow down into the concentrated liquid in the can, thereby preventing sticking caused by evaporation and drying. Further, as compared with the three cooling means 9 as the cooling structure, the jacket type in FIG. 1 is the best as the cooling efficiency (thermal efficiency). However, in the jacket type, when the number of the tube ends 3 increases, the outer wall member 15 covering the upper side of the can must be provided with a notch for each tube end 3 or the bracket 13, and thus the evaporator can with a small number of tube ends 3. Suitable for The coil type of FIG. 2 has a smaller heat transfer area and lower cooling efficiency than the jacket type, but is superior in that it does not suffer from installation restrictions or become complicated even if the tube ends 3 are increased. The nozzle type shown in FIG. 4 is suitable for reducing the equipment cost, and it is simple and simple, so that it is excellent in maintainability.

以下の実施例は、上記と同様な装置にて濃縮処理を行った例である。すなわち、実施例1と2及び比較例で用いた蒸発装置は、冷却手段9の有無で異なり、それ以外は蒸発缶が容量35L、内径300mmの大きさで、管端及び循環系も同じ設定である。発泡性溶液として合成ゴムラテックス(固形分約45%)を濃縮する例である。また、実施例1と2の冷却手段9は図2のコイル型の例である。   The following examples are examples in which the concentration treatment was performed using the same apparatus as described above. In other words, the evaporators used in Examples 1 and 2 and the comparative example differ depending on the presence or absence of the cooling means 9, otherwise the evaporator can have a capacity of 35 L and an inner diameter of 300 mm, and the pipe end and the circulation system have the same settings. is there. This is an example of concentrating synthetic rubber latex (solid content of about 45%) as an effervescent solution. The cooling means 9 of the first and second embodiments is an example of the coil type shown in FIG.

(実施例1)この濃縮操作では、蒸発缶に合成ゴムラテックス(固形分約45%)を11kg仕込み、缶内の圧力20torr、ヒーター温度50℃(温水)にて過熱すると同時に、蒸発缶に巻かれたパイプに、2℃の冷水を流しながら蒸発濃縮を進行した。この操作では、ミスト状のラテックスが気相部に舞い缶内面に付着するが、すぐに缶内の濃縮液中へ流れ落ち、固化することなく処理操作を進行できた。また、缶内の濃縮液表面での発泡は運転開始時に数センチ高さ程度確認されたが、定常運転状態になるとほとんど発泡は納まり、問題なく運転できた。なお、濃縮が進むと、缶内の液面が下がり、缶内に設けられた液面検出手段の計測値に連動し、原液としてラテックス(固形分約45%)を減量分だけ追加した。そして、設定濃度である固形分60%のラテックスになるまで問題なく運転ができた。 (Example 1) In this concentration operation, 11 kg of synthetic rubber latex (solid content: about 45%) was charged into an evaporator, and heated at a pressure of 20 torr and a heater temperature of 50 ° C. (hot water). The evaporative concentration proceeded while flowing cold water of 2 ° C. through the pipe. In this operation, the mist-like latex flew to the gas phase and adhered to the inner surface of the can, but immediately dropped into the concentrated liquid in the can and the processing operation could proceed without solidifying. In addition, foaming on the surface of the concentrated liquid in the can was confirmed to be about several centimeters high at the start of operation. As the concentration progressed, the liquid level in the can decreased, and latex (solid content of about 45%) was added as a stock solution by a reduced amount in conjunction with the measured value of the liquid level detection means provided in the can. And it was able to drive | operate without a problem until it became latex of 60% of solid content which is a setting density | concentration.

(実施例2)この濃縮操作では、蒸発缶に合成ゴムラテックス(固形分約45%)を12.5kg仕込み、缶内圧力25torr、ヒーター温度60℃(温水)にて過熱すると同時に、蒸発缶に巻かれたパイプに、2℃の冷水を流しながら蒸発濃縮を進行した。この操作において、気相部表面に着いたラテックスは、実施例1と同じくすぐ流れ落ち、固化することはなかった。また、泡の発生はほとんどみられず、設定濃度である固形分60%のラテックスになるまで問題なく運転ができた。 (Example 2) In this concentration operation, 12.5 kg of synthetic rubber latex (solid content: about 45%) was charged into an evaporator, heated at an internal pressure of 25 torr, and a heater temperature of 60 ° C. (warm water). The evaporative concentration proceeded while flowing cold water of 2 ° C. through the wound pipe. In this operation, the latex that adhered to the surface of the gas phase part immediately flowed down as in Example 1 and did not solidify. Moreover, almost no foam was observed, and operation was possible without any problems until the latex had a solid content of 60%, which was the set concentration.

(比較例)この濃縮操作では、蒸発缶に合成ゴムラテックス(固形分約45%)を13.2kg仕込み、缶内圧力25torrという一定真空度に保持し、ヒーター温度60℃(温水)にてラテックスを過熱、管端より噴霧し、蒸発濃縮運転を行った。運転開始後、管端より噴霧したラテックスがミストで気相部に舞い、気相部内面に白く付着し、皮膜(ポリマーフィルム)となって固化してしまった。固化した皮膜がラテックス溶液に混入した場合には、変質したラテックスになってしまうこともあり、十分な蒸発濃縮工程は不可能と判断した。これは、使用したラテックスが熱安定性に欠け、熱で変質する傾向があったことも影響している。 (Comparative Example) In this concentration operation, 13.2 kg of synthetic rubber latex (solid content: about 45%) was charged into an evaporation can, maintained at a constant vacuum of 25 torr in the can, and latex at a heater temperature of 60 ° C. (hot water). Was heated and sprayed from the end of the tube, and an evaporative concentration operation was performed. After the start of operation, the latex sprayed from the end of the tube flew into the gas phase part by mist, adhered white on the inner surface of the gas phase part, and solidified as a film (polymer film). When the solidified film was mixed in the latex solution, it might be a deteriorated latex, and it was judged that a sufficient evaporation and concentration process was impossible. This also has the effect that the latex used lacks thermal stability and tends to be altered by heat.

以上説明したように、本発明は請求項1の要件を充足すればよく、細部は上記した形態例および実施例を参照して種々変形したり展開可能なものである。   As described above, the present invention only needs to satisfy the requirements of claim 1, and details can be variously modified and developed with reference to the above-described embodiments and examples.

第1形態に係る蒸発装置の要部を模式的に示す構成図である。It is a block diagram which shows typically the principal part of the evaporation apparatus which concerns on a 1st form. 第2形態に係る蒸発装置の要部を模式的に示す構成図である。It is a block diagram which shows typically the principal part of the evaporation apparatus which concerns on a 2nd form. 第3形態に係る蒸発装置の要部を模式的に示す構成図である。It is a block diagram which shows typically the principal part of the evaporation apparatus which concerns on a 3rd form.

1…蒸発缶(1aは取出口、10は本体、11は首)
2…取出筒(取出口)
3…管端
4…共通管
5…配管
6…ポンプ
7…ヒーター(加熱器)
8…循環系
9…冷却手段
1 ... Evaporator (1a is the outlet, 10 is the main body, 11 is the neck)
2 ... Take-out tube (outlet)
3 ... pipe end 4 ... common pipe 5 ... pipe 6 ... pump 7 ... heater (heater)
8 ... Circulation system 9 ... Cooling means

Claims (4)

蒸発缶が、缶上部に設けられた蒸気用の取出口と、缶底部に設けられた濃縮液用の取出口と、缶上部に取り付けられて缶内上側の気相部に突出される管端と、前記蒸発缶の缶内下側の濃縮液を前記濃縮液用の取出口から取り出し、加熱して前記管端に供給可能にする循環系の配管とを備え、処理対象である発泡性溶液を、前記配管から前記管端へ過熱液として供給し、該管端の下端より気液混合相として噴射する蒸発装置において、
前記蒸気缶が大筒形の本体および該本体の上部を絞った小筒形の首からなり、
前記蒸発缶の缶外部に設けられて、前記首から前記缶内の気相部と対応した缶
表面部を冷媒により冷却して缶内表面に付着した付着液を冷やして蒸発を抑制して缶内の濃縮液中に流下可能にする冷却手段を有していることを特徴とする発泡性溶液の蒸発装置。
The evaporator is provided with a steam outlet provided at the top of the can, a concentrate outlet provided at the bottom of the can, and a pipe end attached to the top of the can and projecting into the upper gas phase. And a recirculating system pipe that allows the concentrated liquid in the lower side of the evaporator to be taken out from the outlet for the concentrated liquid and heated to be supplied to the pipe end, and is a foamable solution to be processed Is supplied as superheated liquid from the pipe to the pipe end, and is ejected as a gas-liquid mixed phase from the lower end of the pipe end.
The steam can is composed of a large cylindrical body and a small cylindrical neck with the upper part of the main body squeezed,
The can is provided outside the can of the evaporating can, and the can surface portion corresponding to the gas phase portion in the can is cooled from the neck by the refrigerant to cool the adhering liquid adhering to the inner surface of the can, thereby suppressing evaporation. An evaporating apparatus for evaporating solution, characterized by having cooling means for allowing flow down into the concentrated liquid inside .
前記冷却手段が、前記首から前記缶内の気相部と対応した缶表面部と該缶表面部を覆う外壁との間の隙間に冷媒を流すジャケット型、前記首から前記缶表面部に巻かれた配管に冷媒を流すコイル型、前記首の上部に設けられたノズルから吐き出して前記首から前記缶内の気相部と対応した缶表面部の全体に冷媒を行き渡らせるシャワー型の何れかである請求項1に記載の発泡性溶液の蒸発装置。 Said cooling means, a jacket type allowing the refrigerant to flow through the gap between the outer wall covering the can surface portion corresponding with the gas phase and the can surface portion of said can from said neck, around the said can surface portion from the neck Either a coil type that allows a refrigerant to flow through the pipe, or a shower type that discharges from the nozzle provided at the top of the neck and distributes the refrigerant from the neck to the entire surface of the can corresponding to the gas phase portion in the can. The apparatus for evaporating a foamable solution according to claim 1. 請求項1または2に記載の蒸発装置を用いて、処理対象の発泡性溶液を蒸発し濃縮する蒸発方法であって、
前記冷却手段により前記缶内の気相部と対応した缶表面部を冷却処理するとともに、前記発泡性溶液を蒸発し濃縮によって減少した容量に対応して、原料である蒸発濃縮前の発泡性溶液を前記循環系の配管内の当該処理中の発泡性溶液に追加・補充し、缶内溶液の液面を設定範囲に保つことを特徴とする発泡性溶液の蒸発方法。
An evaporation method for evaporating and concentrating a foamable solution to be treated using the evaporation apparatus according to claim 1 or
The cooling means cools the can surface portion corresponding to the gas phase portion in the can, and the foaming solution before evaporation and concentration is a raw material corresponding to the volume reduced by concentration by evaporating the foamable solution. Is added to or supplemented to the foaming solution being treated in the piping of the circulation system, and the liquid level of the solution in the can is kept within a set range.
前記蒸発缶内の液面を検出する液面検出手段を有し、該液面検出手段で得られた検出値に基づいて、缶内溶液の液面を設定範囲に保つことを特徴とする請求項3に記載の発泡性溶液の蒸発方法。 The liquid level detection means for detecting the liquid level in the evaporator can be maintained, and the liquid level of the solution in the can is maintained within a set range based on the detection value obtained by the liquid level detection means. Item 4. A method for evaporating a foamable solution according to Item 3.
JP2004372400A 2004-12-24 2004-12-24 Evaporating apparatus and evaporating method for effervescent solution Active JP4666347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372400A JP4666347B2 (en) 2004-12-24 2004-12-24 Evaporating apparatus and evaporating method for effervescent solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372400A JP4666347B2 (en) 2004-12-24 2004-12-24 Evaporating apparatus and evaporating method for effervescent solution

Publications (2)

Publication Number Publication Date
JP2006175378A JP2006175378A (en) 2006-07-06
JP4666347B2 true JP4666347B2 (en) 2011-04-06

Family

ID=36729978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372400A Active JP4666347B2 (en) 2004-12-24 2004-12-24 Evaporating apparatus and evaporating method for effervescent solution

Country Status (1)

Country Link
JP (1) JP4666347B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024790A1 (en) * 2011-08-18 2013-02-21 旭硝子株式会社 Method for concentrating and recovering aqueous solution of a surfactant
JP6285531B2 (en) * 2013-03-12 2018-03-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Continuously providing superheated liquid to the tank
CN104399268B (en) * 2014-11-28 2015-12-30 青岛欧莱仓储设备有限公司 Prepare the upper cover of concentrate
CN104474726B (en) * 2014-11-28 2015-11-11 龚柱 Prepare the method for designing of the upper cover of concentrate
CN105013199B (en) * 2015-07-14 2017-04-05 河北智同生物制药股份有限公司 A kind of single-effect external circulation concentrator and its application
CN110251988A (en) * 2019-06-21 2019-09-20 广西施乐农化科技开发有限责任公司 A kind of circumfluence distillation concentrator and technique
KR102302082B1 (en) * 2021-02-01 2021-09-13 박연희 Electric concentrated extraction apparatus capable of rapid extraction and concentration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156901A (en) * 1990-10-22 1992-05-29 Asahi Chem Ind Co Ltd Method and device for continuously concentrating viscous solution
JPH0549801A (en) * 1991-02-18 1993-03-02 Nisso Eng Kk Method for evaporating foaming solution
JPH1057702A (en) * 1996-08-26 1998-03-03 Sasakura Eng Co Ltd Auto-vapor compression type concentration method of water solution and device therefor
JP2004202374A (en) * 2002-12-25 2004-07-22 Sasakura Engineering Co Ltd Method and apparatus for vaporizing/concentrating spumous liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156901A (en) * 1990-10-22 1992-05-29 Asahi Chem Ind Co Ltd Method and device for continuously concentrating viscous solution
JPH0549801A (en) * 1991-02-18 1993-03-02 Nisso Eng Kk Method for evaporating foaming solution
JPH1057702A (en) * 1996-08-26 1998-03-03 Sasakura Eng Co Ltd Auto-vapor compression type concentration method of water solution and device therefor
JP2004202374A (en) * 2002-12-25 2004-07-22 Sasakura Engineering Co Ltd Method and apparatus for vaporizing/concentrating spumous liquid

Also Published As

Publication number Publication date
JP2006175378A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4666347B2 (en) Evaporating apparatus and evaporating method for effervescent solution
US10786753B2 (en) Liquid separator and concentrator
US4341085A (en) Freeze concentration apparatus and method
US9254451B2 (en) Method and apparatus for evaporating hydrogen halide and water from biomass hydrolyzates containing halogen acid
US5203286A (en) Apparatus for heating and degassing water
JP2005536710A (en) Method and apparatus for producing clean steam
JPS59545B2 (en) Purification equipment for synthesis gas generated by coal gasification
EP3741741B1 (en) Method of producing (meth)acrylic acid or ester thereof
JPS60216880A (en) Apparatus for separating ice from slurry and washing
CN108779194A (en) Method for extracting polyolefin
KR900006420B1 (en) Spray cryslallization
WO2000027494A1 (en) Method and device for treating water for evaporation
JPS6245242B2 (en)
KR20240065123A (en) Falling film device and method of use
US4384835A (en) Apparatus for the production of beads from molten materials
EP3046642A1 (en) Method and system for improved purification of desiccants
US5201366A (en) Process and equipment for the preheating and multi-stage degassing of water
JP4138473B2 (en) Method and apparatus for evaporating and concentrating foaming liquid
JP4397021B2 (en) Evaporating apparatus and evaporating method for effervescent solution
RU2271999C1 (en) Water treatment apparatus and method
SU997789A1 (en) Multitube direct-flow reactor
SU1722324A1 (en) Device for degassing of milk
JP7147567B2 (en) Method for producing (meth)acrylic acid or its ester
JPH11100410A (en) Operation for recovering unreacted monomer from vinyl chloride polymer latex
CN208642373U (en) A kind of emulsified asphalt recycling can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250