JPH0549065B2 - - Google Patents

Info

Publication number
JPH0549065B2
JPH0549065B2 JP2207886A JP2207886A JPH0549065B2 JP H0549065 B2 JPH0549065 B2 JP H0549065B2 JP 2207886 A JP2207886 A JP 2207886A JP 2207886 A JP2207886 A JP 2207886A JP H0549065 B2 JPH0549065 B2 JP H0549065B2
Authority
JP
Japan
Prior art keywords
vacuum container
stator coil
pressure
conductivity detection
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2207886A
Other languages
Japanese (ja)
Other versions
JPS62180282A (en
Inventor
Hayami Sugyama
Seiya Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP61022078A priority Critical patent/JPS62180282A/en
Publication of JPS62180282A publication Critical patent/JPS62180282A/en
Publication of JPH0549065B2 publication Critical patent/JPH0549065B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエアコンモータなどの低圧回転機の絶
縁欠陥(傷)非破壊で電気的に検査するための方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for non-destructively electrically inspecting insulation defects (flaws) in low-pressure rotating machines such as air conditioner motors.

より具体的には、低圧回転機の絶縁欠陥(傷)
を検出するに当り、パツシエンの原理を利用して
真空容器中に検査すべきステータコイルなどを置
き、その周囲に所定の間隔を保つて互に電気的に
絶縁されるようにして、導電性の検出用電極で囲
み、両者をそれぞれ電源の反対の極に接続して通
電し、容器内を減圧して、真空にし、さらに真空
容器内に揮発性ガスを導入し、放電電圧を低くさ
せて火花放電を発生しやすくするのに加え、発生
したアークを揮発性ガスにより着色させ絶縁不良
個所の視認を極めて容易に観察可能にして、非破
壊検査を行う方法である。
More specifically, insulation defects (scratches) in low-voltage rotating machines.
In order to detect the Surround it with detection electrodes, connect both to opposite poles of the power supply, apply electricity, reduce the pressure inside the container to create a vacuum, introduce volatile gas into the vacuum container, lower the discharge voltage, and generate a spark. In addition to making it easier to generate electric discharge, this method also colors the generated arc with volatile gas, making it extremely easy to visually identify insulation defects, and performing non-destructive testing.

(従来技術) エアコンモータなど高信頼性の要求される低圧
回転機では、故障率は0.05%以下であるが、回転
機のユーザとして不良率をさらに低下させるのに
懸命である。しかし、これを実現されるために
は、現行と抜き取り検査による品質管理では不充
分であり、全数検査が是非とも必要であり、それ
には全数チエツク手段としての非破壊検査方法が
確立されちなければならないのであるが、現行行
われている方法は殆んど被検査物が破壊をうける
検査であり、また非破壊検査方法であつても微小
の欠陥まで検出し得るには充分なものではなかつ
た。
(Prior Art) Low-pressure rotating machines that require high reliability, such as air conditioner motors, have a failure rate of 0.05% or less, but as users of rotating machines, we are working hard to further reduce the defective rate. However, in order to achieve this, the current quality control through sampling inspection is insufficient, and 100% inspection is absolutely necessary, and a non-destructive testing method as a means of 100% inspection must be established. However, most of the currently used methods involve the destruction of the inspected object, and even non-destructive testing methods are not sufficient to detect even the smallest defects. .

第3図は従来技術による検査方法の1つでJIS
規格の定められているピンボール試験法の準じた
ものであるが、例えばモータの固定子1(ステー
タコイル2の巻かれたもの)を、フエノールフタ
レンを含む食塩溶液3′中に浸し、ステータコイ
ル(固定子コイル)2のリード線4′食塩溶液
3′の間に直流電源5′と電圧を印加すると、食塩
溶液3′中のステータコイル2の傷(絶縁欠陥)
が存在すれば、その傷部分を通じて電流が流れ電
気分解が生じる。その結果水酸化ナトリウムが発
生して、フエノールとの反応で食塩溶液のその部
分は赤色となり、このような色の変化によつて傷
の存在位置が容易に目視される。
Figure 3 shows one of the inspection methods based on the conventional technology.
This method is based on the standard pinball test method. For example, the stator 1 of the motor (stator coil 2 wound around it) is immersed in a salt solution 3' containing phenolphthalene. When a DC power supply 5' and a voltage are applied between the lead wire 4' of the coil (stator coil) 2' and the saline solution 3', the stator coil 2 will be damaged (insulation defect) in the saline solution 3'.
If present, current will flow through the scratched area and electrolysis will occur. As a result, sodium hydroxide is generated and reacts with the phenol, turning that part of the saline solution red, and this color change makes it easy to visually identify the location of the flaw.

第4図に示すのは、従来検査方法の第2例を示
すもので、固定子1に巻かれたステータテータコ
イル2の外周は導電性フイルム6′によつて覆わ
れているので、真空ポンプP等を用いて導電性フ
イルム6′内の空気を抜けば、フイルム6′はステ
ータコイル2に密着する。フイルム6′はリード
線間に電圧を印加し、回路中に電流計7′を接続
しておけば、ステータコイルのどこかに傷が存在
すればその傷を介して電流が流れるため電流計
7′の指針の振れからの傷の存在を確認できる。
FIG. 4 shows a second example of the conventional inspection method, in which the outer periphery of the stator stator coil 2 wound around the stator 1 is covered with a conductive film 6'. When the air inside the conductive film 6' is removed using P or the like, the film 6' is brought into close contact with the stator coil 2. The film 6' applies voltage between the lead wires, and if an ammeter 7' is connected in the circuit, if there is a flaw somewhere on the stator coil, current will flow through the flaw, so the ammeter 7 It is possible to confirm the presence of scratches from the deflection of the pointer.

以上述べた従来検査方法によれば、第3図に示
した方法では、水溶液を用いた化学的方法による
目視検査であるため試験に要する時間が長くなる
という不都合があり、さらに食塩水に浸漬するた
め後処理として水洗や乾燥作業が必要になる。
According to the conventional inspection method described above, the method shown in Figure 3 has the disadvantage that the test takes a long time because it is a visual inspection using a chemical method using an aqueous solution. Therefore, post-treatment such as washing with water and drying is required.

またこの方法は、基本的には破壊試験であるた
め製品検査の方法としては本質的に不都合なもの
である。
Furthermore, since this method is basically a destructive test, it is essentially inconvenient as a product inspection method.

一方、第4図に示す検査方法は、本質的に傷と
フイルムの電極とが接触することを期待し100V
程度の低い電圧を印加する方法であるが、コイル
表面の傷は比較的大きなものから微小なものまで
種々あり、微小の傷の場合には導電性フイルム電
極6の傷への密着性が不充分となつて、微小な傷
までを検知するのは不可能となる不都合がある。
On the other hand, the inspection method shown in Figure 4 essentially expects contact between the scratch and the film electrode, and
Although this is a method of applying a low voltage, scratches on the coil surface vary from relatively large to minute scratches, and in the case of minute scratches, the adhesion of the conductive film electrode 6 to the scratches is insufficient. Therefore, there is a disadvantage that it is impossible to detect even minute scratches.

また第4図の方法には、元来傷とフイルム電極
の直接接触によるものであり、放電を起させて欠
陥を検知しようとする発想は皆無である上に傷が
存在する位置を特定することができない。
In addition, the method shown in Figure 4 originally involves direct contact between the scratch and the film electrode, and there is no idea of detecting the defect by causing an electric discharge. I can't.

(発明が解決しようとする問題点) 本発明は、かかる従来技術を欠点をパツシエン
の原理により解決するものであり、減圧された気
体中では比較的低い電圧で放電が起こる現象を利
用し、固定子コイルの外側に存在する傷を低電圧
により、非破壊でしかも短時間に検査するととも
に、傷の存在の有無とその位置を着色されたアー
クによつて肉眼により極めて容易に観察可能とし
た検査方法を提供するものである。
(Problems to be Solved by the Invention) The present invention solves the drawbacks of the prior art using Patschen's principle, and uses the phenomenon that discharge occurs at a relatively low voltage in a reduced pressure gas to This test uses low voltage to inspect for flaws on the outside of the child coil non-destructively and in a short time, and the presence or absence of flaws and their location can be observed extremely easily with the naked eye using a colored arc. The present invention provides a method.

第2図はパツシエンの原理を示すもので、減圧
室内の圧力(X軸)が低下すれば、電圧を印加さ
れた試料と対向する検出用電極間の放電電圧は或
る値までは低下するが再び上昇するので、電圧を
連続的に低下して行けば、いずれかの点で放電開
始に至る現象に着目したものである。
Figure 2 shows the Patsien principle; if the pressure in the vacuum chamber (X-axis) decreases, the discharge voltage between the voltage-applied sample and the opposing detection electrode will decrease up to a certain value. Since the voltage rises again, attention is paid to the phenomenon that if the voltage is continuously lowered, discharge will start at some point.

(問題点を解決するための手段) 本発明によれば、検査すべき試料、たとえば固
定子コイル(ステータコイル)の外周に、検出用
電極を複列又は単列に、電極相互の間は電気的に
絶縁され減圧下でアークが発生する程度の間隔を
保つて配置し、真空容器内に入れステータコイル
のリード線を電極(直流又は交流のいずれもよ
い)の一方、例えば正極に接続し、検出用電極
を、電流計を経て電極の負極に直列に接続する。
真空ポンプにより真空容器内を0.〜2mmに減圧し
リード線とこれら電極間に電圧を引加し、スイツ
チの一つをONにすると、そのスイツチに接続さ
れている検出用電極に接しているステータコイル
の部分に絶縁不良を起す傷が存在すれば、傷と電
極との間に放電による電流が電流計でも検知さ
れ、その検出用電極の囲まれているコイル部分に
傷が存在していることを検知ることができる。
(Means for Solving the Problems) According to the present invention, detection electrodes are arranged in double rows or in a single row on the outer periphery of a sample to be inspected, for example, a stator coil, and the electrodes are electrically connected between each other. The stator coils are insulated and placed at a distance sufficient to generate an arc under reduced pressure, placed in a vacuum container, and the lead wire of the stator coil is connected to one of the electrodes (either direct current or alternating current), for example, the positive electrode. A detection electrode is connected in series to the negative electrode of the electrode via an ammeter.
The pressure inside the vacuum container is reduced to 0.-2 mm using a vacuum pump, a voltage is applied between the lead wire and these electrodes, and when one of the switches is turned on, the lead wire is in contact with the detection electrode connected to that switch. If there is a flaw that causes insulation failure in the stator coil, the current due to discharge between the flaw and the electrode will be detected by an ammeter, indicating that the flaw exists in the coil area surrounding the detection electrode. can be detected.

この場合、印加する電圧を連続的に変化させる
と共に真空容器内に、ドライアイス、ナフタリン
または水銀などの揮発性物質を入れておくと、放
電に際しアークが着色するので目視判定に極めて
有効である。減圧された真空容器内の揮発性ガス
導入し放電を起させると放電アークがその揮発性
ガスに依存して特有の色に着色されること自体
は、ガイスラー管やネオン管等に代表される放電
管において周知の現象であり、例えばドライアイ
スから生じる二酸化炭素ガスが導入されると、青
みがかつた緑色を呈する。
In this case, if the applied voltage is changed continuously and a volatile substance such as dry ice, naphthalene, or mercury is placed in the vacuum container, the arc will be colored during discharge, which is extremely effective for visual judgment. When a volatile gas is introduced into a vacuum vessel under reduced pressure and a discharge is caused, the discharge arc is colored in a unique color depending on the volatile gas. This is a well-known phenomenon in tubes, where, for example, when carbon dioxide gas from dry ice is introduced, they take on a bluish green color.

本願発明は、前述したように減圧された容器内
においてアークが発生し易くなる現象を利用し、
モータなどの電気機器の絶縁不良の有無を非破壊
的に検査するため、被検査機器を減圧された真空
容器内に収容して絶縁不良があれば放電アークを
発生させるとともに、放電管において前記の放電
アークがその内部に導入された揮発性ガスに依存
して特有の色に着色される現象を組み合わせて、
アーク発生の有無と発生の位置を目視で明確に判
定できる非破壊検査方法を提供することにより問
題点を解決したものである。
The present invention utilizes the phenomenon that arcs are more likely to occur in a reduced pressure container as described above,
In order to nondestructively test electrical equipment such as motors for insulation defects, the equipment to be tested is housed in a depressurized vacuum container, and if there is an insulation defect, a discharge arc is generated, and the above-mentioned Combining the phenomenon that the discharge arc is colored in a unique color depending on the volatile gas introduced into it,
This problem has been solved by providing a non-destructive testing method that can clearly visually determine the presence or absence of arc occurrence and the location of arc occurrence.

(実施例) 第1図は本考案の実施例を示すもので、第3図
及び第4図の部品と同一又は同等の部品には同一
の参照符号を付しその説明を省略する。第1図に
おいて、固定子の軸方向両端の固定子コイル(ス
テータコイル)2のそれぞれの外周を包囲する導
電性で網目状に成形された絶縁欠陥検出用電極9
は、軸方法に所定の間隔を保つて、2列に配置さ
れ、それぞれが電極4の負極の直列に接続されて
いる。一方、電極は正極は固定子コイル2のリー
ド線3と固定子1とに接続されている。この状態
で真空ポンプ6を用いて真空容器9を減圧する。
(Embodiment) FIG. 1 shows an embodiment of the present invention, and parts that are the same as or equivalent to those in FIGS. 3 and 4 are given the same reference numerals and their explanations will be omitted. In FIG. 1, conductive mesh-shaped insulation defect detection electrodes 9 surround the outer periphery of each stator coil (stator coil) 2 at both axial ends of the stator.
are arranged in two rows with a predetermined spacing in the axial direction, and each is connected in series to the negative electrode of the electrode 4. On the other hand, the positive electrode is connected to the lead wire 3 of the stator coil 2 and the stator 1. In this state, the vacuum container 9 is depressurized using the vacuum pump 6.

真空容器9内にドライアイス、ナフタリン、ま
たは水銀などの揮発性物質を入れておけば、容器
内の圧力が低下するのに伴なつてそれらが気化し
放電の際アークが特有の色で発光するので目視判
定に有効である。
If volatile substances such as dry ice, naphthalene, or mercury are placed in the vacuum container 9, they will vaporize as the pressure inside the container decreases and the arc will emit a unique color during discharge. Therefore, it is effective for visual judgment.

検出用電極8に接続されているスイツチをON
にすると、リード線とこの電極との間に電圧が印
加される。この電極に囲まれているステータコイ
ルの部分に傷があればパツシエンの原理による減
圧下の放電により電流が流れるのでアークが発生
した部分では着色したアークにより、傷の位置を
直接観察でき、また電流計5によつても傷が存在
していることが検知される。
Turn on the switch connected to detection electrode 8
, a voltage is applied between the lead wire and this electrode. If there is a flaw in the part of the stator coil surrounded by these electrodes, a current will flow due to discharge under reduced pressure based on the Patsien principle, so the position of the flaw can be directly observed by the colored arc in the area where the arc occurs, and the current The presence of scratches can also be detected by Total 5.

本発明の検査方法は気中での火花放電のパツシ
エンの原理と、さらに揮発性物質によるアークの
着色を利用したものである。すなわち第2図に示
すように気中で間隔dを隔てて置かれた対向電極
に火花が飛び始める電圧(V)は気中の圧力(mmHg)
が減少する程停電圧のものとなる現象を利用した
ものである。
The inspection method of the present invention utilizes Patschien's principle of spark discharge in air and the coloring of the arc by volatile substances. In other words, as shown in Figure 2, the voltage (V) at which sparks begin to fly between opposing electrodes placed at a distance d in the air is the pressure in the air (mmHg).
This method takes advantage of the phenomenon that the more the voltage decreases, the more the outage voltage becomes.

従つて、本発明においては真空ポンプによつて
容器9内をおよそ0.5mmHgまでに減圧するので火
花放電は、400〜700Vの低い電圧で行われ得るこ
とになる。
Therefore, in the present invention, since the pressure inside the container 9 is reduced to approximately 0.5 mmHg using a vacuum pump, spark discharge can be performed at a low voltage of 400 to 700V.

従つて、固定子コイルに存在する傷の部分で検
査のために火花放電が起つても、僅か400〜700V
の低電圧よる放電であるためコイルの傷が拡大さ
れるおそれは全くなく結局非破壊でコイルの傷の
有無とその存在位置を特定し得る検査が可能とな
るものである。
Therefore, even if a spark discharge occurs for inspection at a flaw in the stator coil, the voltage is only 400 to 700V.
Since the electric discharge is performed at a low voltage, there is no risk of the damage to the coil being enlarged, and after all, it is possible to carry out a non-destructive inspection that can identify the presence or absence of damage to the coil and its location.

この実施例では網目状電極を用いたが、これに
限定されるものではない、しかしアークの発生場
所を観察するには網目状の物で便利であり、傷と
の間隔が100mm程度でもアークが発生することが
確認できた。
In this example, a mesh electrode was used, but it is not limited to this. However, a mesh electrode is convenient for observing the location where the arc occurs, and even if the distance from the scratch is about 100 mm, the arc can be detected. We have confirmed that this occurs.

揮発性物質として、水銀、ドライアイス、ナフ
タリンなどを用いたのはそれらが固体又は液状で
あるため、特に配管などを必要とせず簡単な容器
に入れておくだけでよいからである。
The reason why mercury, dry ice, naphthalene, etc. are used as volatile substances is because they are solid or liquid and do not require any particular piping and can be placed in a simple container.

(発明の効果) 本発明は、下記のような利点を有する。(Effect of the invention) The present invention has the following advantages.

(1) 固定子コイルの外周に内部を観察できる検出
用電極を適当な間隔を保つて配置し、夫々を介
して電源に接続し、減圧された真空容器中で揮
発性物質と併用し、検査すべきステータコイル
との間に電圧を印加するだけでコイルに存在す
る傷の位置をも肉眼で観察し特定することがで
きる。
(1) Detection electrodes are placed around the outer circumference of the stator coil at appropriate intervals so that the inside can be observed, and each is connected to a power source through each electrode, and the detection electrodes are used together with a volatile substance in a depressurized vacuum container for inspection. By simply applying a voltage between the stator coil and the stator coil, it is possible to visually observe and identify the location of any flaws in the coil.

(2) また検出用電極を用い、真空容器内での減圧
によつて検査を行うものであるから、低電圧で
微小な傷まで検査が可能なり、その結果非破壊
で短時間による検査が可能となり、700v以下
の低電圧なので放電により傷が拡大されること
もなく製品の全数検査に有効である。
(2) In addition, since the detection electrode is used to perform the inspection under reduced pressure inside the vacuum container, it is possible to inspect even the smallest flaws with low voltage, and as a result, non-destructive inspection is possible in a short time. Since it is a low voltage of 700v or less, it is effective for 100% inspection of products without causing damage to the product due to discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明考案の実施例を示す概略図、第
2図は本考案に利用するパツシエンの原理を説明
するためのグラフ、第3図及び第4図は従来のコ
イル絶縁欠陥を検査する方法を説明するための概
略図である。 1……固定子、2……ステータコイル、3……
リード線、4……電源、5……電流計、6……真
空ポンプ、7……揮発性物質、8……網目状検出
電極、9……真空容器。
Fig. 1 is a schematic diagram showing an embodiment of the invention, Fig. 2 is a graph for explaining the principle of patching used in the invention, and Figs. 3 and 4 are conventional methods for inspecting coil insulation defects. FIG. 2 is a schematic diagram for explaining the method. 1... Stator, 2... Stator coil, 3...
Lead wire, 4...Power source, 5...Ammeter, 6...Vacuum pump, 7...Volatile substance, 8...Mesh detection electrode, 9...Vacuum container.

Claims (1)

【特許請求の範囲】 1 真空容器内に収容された固定子コイルの外周
を包囲して互いに電気的に絶縁されるだけの間隔
を保つて導電性検出用電極を配置し、電源の一方
の極を前記固定子コイルのリード線に、他方のの
極を前記導電性検出用電極に直列接続して通電
し、前記真空容器内を減圧するとともに、前記真
空容器内に揮発性ガスを導入し、前記固定子コイ
ルに存在する傷の部分と前記導電性検出用電極と
の間に発生するアークを着色することにより、前
記固定子コイルに存在する絶縁欠陥の有無とその
位置が非破壊的に極めて容易に目視で検知可能に
されていることを特徴とする低圧回転機絶縁欠陥
の非破壊検査方法。 2 特許請求の範囲第1項に記載の方法におい
て、前記真空容器内に揮発性ガスを導入する方法
として、前記真空容器内に予め、水銀、ドライア
イス、ナフタリンなどの液状または固体の揮発性
物質を置き、前記真空容器内を減圧することによ
り、それぞれをガスとして気化させることを特徴
とする低圧回転機絶縁欠陥の非破壊検査方法。 3 特許請求の範囲第1項または第2項に記載の
方法において、前記真空容器内に配置する導電性
検出用電極が網目状の導電性材料から成形されて
いることを特徴とする低圧回転機絶縁欠陥の非破
壊検査方法。
[Claims] 1. Conductivity detection electrodes are arranged to surround the outer periphery of a stator coil housed in a vacuum container and are spaced apart enough to be electrically insulated from each other, and one pole of a power source is is connected in series to the lead wire of the stator coil, and the other pole is connected in series to the conductivity detection electrode and energized to reduce the pressure in the vacuum container and introduce a volatile gas into the vacuum container, By coloring the arc generated between the flaws in the stator coil and the conductivity detection electrode, the existence and location of insulation defects in the stator coil can be determined non-destructively. A non-destructive inspection method for insulation defects in low-voltage rotating machines, characterized in that the defects can be easily detected visually. 2. In the method according to claim 1, the method for introducing a volatile gas into the vacuum container is to introduce a liquid or solid volatile substance such as mercury, dry ice, or naphthalene into the vacuum container in advance. A non-destructive inspection method for insulation defects in a low-pressure rotating machine, characterized in that each of the components is vaporized as a gas by placing the vacuum container and reducing the pressure in the vacuum container. 3. A low-pressure rotary machine according to claim 1 or 2, characterized in that the conductivity detection electrode disposed within the vacuum container is formed from a mesh-like conductive material. Non-destructive testing method for insulation defects.
JP61022078A 1986-02-05 1986-02-05 Nondestructive inspecting method for defect in insulation of low-pressure rotary machine Granted JPS62180282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022078A JPS62180282A (en) 1986-02-05 1986-02-05 Nondestructive inspecting method for defect in insulation of low-pressure rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022078A JPS62180282A (en) 1986-02-05 1986-02-05 Nondestructive inspecting method for defect in insulation of low-pressure rotary machine

Publications (2)

Publication Number Publication Date
JPS62180282A JPS62180282A (en) 1987-08-07
JPH0549065B2 true JPH0549065B2 (en) 1993-07-23

Family

ID=12072848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022078A Granted JPS62180282A (en) 1986-02-05 1986-02-05 Nondestructive inspecting method for defect in insulation of low-pressure rotary machine

Country Status (1)

Country Link
JP (1) JPS62180282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281653A (en) * 2009-06-04 2010-12-16 Aisin Aw Co Ltd Nondestructive inspection method of coil and device therefor
DE112009000074T5 (en) 2008-06-25 2011-01-13 Aisin AW Co., Ltd., Anjo-shi Inspection method and inspection device for an insulation-coated conductor
WO2020110870A1 (en) * 2018-11-28 2020-06-04 株式会社豊田自動織機 Inspection system for stator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943302A (en) * 1995-08-02 1997-02-14 Matsushita Electric Ind Co Ltd Insulation test method and its device
JP4812521B2 (en) * 2006-06-01 2011-11-09 三菱電機株式会社 Foreign matter conditioning method
CN102608530B (en) * 2012-03-02 2015-02-18 合肥凯邦电机有限公司 Vacuum test device for testing induction motor stator performance
WO2020075494A1 (en) * 2018-10-08 2020-04-16 株式会社豊田自動織機 Stator inspection method and inspection system
JP7213425B2 (en) * 2018-10-08 2023-01-27 株式会社豊田自動織機 STATOR INSPECTION METHOD AND INSPECTION SYSTEM
JP7213426B2 (en) * 2018-10-08 2023-01-27 株式会社豊田自動織機 STATOR INSPECTION METHOD AND INSPECTION SYSTEM
JP7213424B2 (en) * 2018-10-08 2023-01-27 株式会社豊田自動織機 STATOR INSPECTION METHOD AND INSPECTION SYSTEM
WO2020075492A1 (en) * 2018-10-08 2020-04-16 株式会社豊田自動織機 Stator inspection method and inspection system
WO2020075493A1 (en) * 2018-10-08 2020-04-16 株式会社豊田自動織機 Stator inspection method and inspection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154701A (en) * 1974-06-03 1975-12-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154701A (en) * 1974-06-03 1975-12-13

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000074T5 (en) 2008-06-25 2011-01-13 Aisin AW Co., Ltd., Anjo-shi Inspection method and inspection device for an insulation-coated conductor
US8115496B2 (en) 2008-06-25 2012-02-14 Aisin Aw Co., Ltd. Insulation coated conductor inspection method and inspection apparatus
DE112009000074B4 (en) * 2008-06-25 2014-05-15 Aisin Aw Co., Ltd. Inspection method and inspection device for an insulation-coated conductor
JP2010281653A (en) * 2009-06-04 2010-12-16 Aisin Aw Co Ltd Nondestructive inspection method of coil and device therefor
WO2020110870A1 (en) * 2018-11-28 2020-06-04 株式会社豊田自動織機 Inspection system for stator

Also Published As

Publication number Publication date
JPS62180282A (en) 1987-08-07

Similar Documents

Publication Publication Date Title
JPH0549065B2 (en)
US7688076B2 (en) Insulation inspection apparatus
JP7056998B2 (en) Systems and methods for AC-DC high voltage leak detection
JP5315814B2 (en) Insulation coated conductor inspection method and apparatus
US2806991A (en) Electrical vapor detector
US3555414A (en) Method and apparatus for detecting faults in the enamel coating of a vessel having electrically conductive tantalum plugs wherein a passivating insulating layer is formed on the plugs
JP3633511B2 (en) Coil insulation coating inspection method and apparatus
KR100705121B1 (en) Method and apparatus of nondestructive insulation test for small electric machine
MXPA03005430A (en) Method and device for examining multi-layered films and containers produced therefrom.
JP2799361B2 (en) Inspection method of sealed container
JPS62115383A (en) Method of testing insulation defect
CN205982395U (en) Silk tube -type evaporator voltage detection device
CN112255509B (en) System and method for detecting insulation defect of equipment based on low-temperature plasma
JP2005121442A (en) Device for inspecting coil insulation
JP3738775B2 (en) Coil insulation coating inspection method and apparatus
JP2594661Y2 (en) COD measurement device that can detect abnormalities
JP2799360B2 (en) Inspection method of sealed container
JPS63253838A (en) Winding defect detector
JP2836097B2 (en) Defect detection device and detection method
JP2004020474A (en) Apparatus and method for inspecting defect in coating
SU1177779A1 (en) Method of determining quality of non-conducting coatings on electric-conducting base
JPH0587194B2 (en)
JPH0726788U (en) Rotating electric machine winding defect detection device
US3866040A (en) Method for the continuous testing of long components for leakage, and system for performance thereof
JPS6260444A (en) Detector for defect of winding