JP4812521B2 - Foreign matter conditioning method - Google Patents

Foreign matter conditioning method Download PDF

Info

Publication number
JP4812521B2
JP4812521B2 JP2006152993A JP2006152993A JP4812521B2 JP 4812521 B2 JP4812521 B2 JP 4812521B2 JP 2006152993 A JP2006152993 A JP 2006152993A JP 2006152993 A JP2006152993 A JP 2006152993A JP 4812521 B2 JP4812521 B2 JP 4812521B2
Authority
JP
Japan
Prior art keywords
gas
insulating
container
foreign matter
conductive foreign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006152993A
Other languages
Japanese (ja)
Other versions
JP2007325415A (en
Inventor
潔 井波
信 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006152993A priority Critical patent/JP4812521B2/en
Publication of JP2007325415A publication Critical patent/JP2007325415A/en
Application granted granted Critical
Publication of JP4812521B2 publication Critical patent/JP4812521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Description

この発明は、異物コンディショニング方法、特に、ガス絶縁機器における導電性異物の除去に適用される異物コンディショニング方法に関する。   The present invention relates to a foreign matter conditioning method, and more particularly, to a foreign matter conditioning method applied to the removal of conductive foreign matter in a gas insulating device.

従来技術におけるガス絶縁機器は、絶縁ガスを封入した容器の内部に金属細片等の導電性異物が混入していると絶縁特性が低下するため、パーティクルトラップ等の低電界部を備え、運転電圧により挙動する導電性異物を捕捉している。また、その捕捉効果を高めるため、運転前に所定の電圧より低い電圧を段階的に印加して導電性異物を運動させ、パーティクルトラップに捕捉する異物コンディショニングが行われている。   Gas insulation equipment in the prior art is equipped with a low electric field part such as a particle trap because the insulation characteristics deteriorate if conductive foreign substances such as metal strips are mixed inside the container filled with insulating gas, and the operating voltage The conductive foreign matter that behaves by is captured. Further, in order to enhance the trapping effect, foreign matter conditioning is performed in which a conductive foreign matter is moved by applying a voltage lower than a predetermined voltage stepwise before operation and trapped in a particle trap.

従来技術では、絶縁ガスを封入した容器の内部に設けられた絶縁スペーサ近傍に導電性異物を捕捉するための溝(パーティクルトラップ)を設けており、通常運転状態における運転電圧で運動する導電性異物は捕捉され、絶縁スペーサに導電性異物を付着させることなく絶縁性能低下を防ぐことが提案されでいる(例えば、特許文献1参照)。   In the prior art, a groove (particle trap) for capturing conductive foreign matter is provided in the vicinity of the insulating spacer provided inside the container filled with the insulating gas, and the conductive foreign matter moves at the operating voltage in the normal operation state. Has been proposed to prevent deterioration of insulation performance without causing conductive foreign matter to adhere to the insulating spacer (see, for example, Patent Document 1).

また、運転前に導電性異物を効率よく捕捉させるため交流電圧と、導電性異物の運動がより活発となる直流電圧とを組み合わせることによる異物コンディショニングを実施することが提案されている(例えば、特許文献2参照)。   In addition, it has been proposed to perform foreign object conditioning by combining an alternating voltage and a direct current voltage that makes the movement of the conductive foreign substance more active in order to efficiently capture the conductive foreign substance before operation (for example, patents). Reference 2).

さらに、電子付着性の小さいガスと電子付着性の高いガスとを使い分け、耐圧試験前に、電子付着性の小さいガスを封入して低い電圧でコロナ測定を実施し導電性異物の検出を行うことが提案されている(例えば、特許文献3参照)。   In addition, a gas with low electron adhesion and a gas with high electron adhesion are used separately, and before the pressure test, a gas with low electron adhesion is sealed and corona measurement is performed at a low voltage to detect conductive foreign matter. Has been proposed (see, for example, Patent Document 3).

実開平5−2531号公報(4−5頁:段落[0009]、図1)Japanese Utility Model Publication No. 5-2531 (page 4-5: paragraph [0009], FIG. 1) 特開昭57−106320号公報JP-A-57-106320 特開2000−59935号公報(7頁:段落[0087]、図7)JP 2000-59935 A (page 7: paragraph [0087], FIG. 7)

従来のパーティクルトラップによる導電性異物の捕捉と異物コンディショニング方法では、運転電圧以下の電圧を印加したときの電界で導電性異物が自由に動き回ることを前提に実施されているが、絶縁ガスを封入した容器内面に防錆その他の目的で誘電体被膜により絶縁被覆した機器の場合には、導電性異物が電荷を得難くなるため、導電性異物の運動がし難くなり、その捕捉が難しくなる。
そのため、異物コンディショニングの実施時において、電圧を印加しながら容器に外部からハンマリング等何らかの方法で衝撃を与えるなどして容器を振動させることにより導電性異物を強制的に起立させ、運動し易くする必要があるという問題点があった。
In the conventional trapping method and particle conditioning method using a particle trap, it is assumed that the conductive particle moves freely in the electric field when a voltage lower than the operating voltage is applied. In the case of a device in which the inner surface of the container is covered with a dielectric coating for rust prevention or other purposes, it is difficult for the conductive foreign matter to obtain an electric charge, so that the movement of the conductive foreign matter is difficult and the trapping thereof becomes difficult.
Therefore, when conducting foreign matter conditioning, the conductive foreign matter is forced to stand up by making the container vibrate by applying an external impact to the container, such as hammering, while applying a voltage to facilitate movement. There was a problem that it was necessary.

この発明は、上述の課題を解決するためになされたもので、容器内面が絶縁被覆されているガス絶縁機器においても導電性異物を容易に運動させることができる異物コンディショニング方法を得ようとするものである。   The present invention has been made to solve the above-described problems, and seeks to obtain a foreign matter conditioning method capable of easily moving a conductive foreign matter even in a gas-insulated device whose inner surface is covered with an insulation. It is.

この発明に係る異物コンディショニング方法では、内面に誘電体被膜による絶縁被覆が施されている容器と、前記容器の内部で絶縁支持された導体とを備え、前記導体の定常運転状態における絶縁性能を確保するため絶縁ガスを前記容器に封入したガス絶縁機器について前記容器内の導電性異物にコンディショニングを施すにあたり、前記絶縁ガスの絶縁性能を低下させた状態で前記容器内における導電性異物のコンディショニングを実施するようにしたものである。   The foreign matter conditioning method according to the present invention includes a container having an inner surface covered with an insulating coating with a dielectric coating, and a conductor that is insulated and supported inside the container, and ensures insulation performance in a steady operation state of the conductor. In order to condition the conductive foreign matter in the container with respect to the gas insulation device in which the insulating gas is sealed in the container, the conductive foreign matter is conditioned in the container with the insulation performance of the insulating gas lowered. It is what you do.

この発明の異物コンディショニング方法によれば、容器内面が絶縁被覆されているガス絶縁機器においても導電性異物を容易に運動させることができる。   According to the foreign matter conditioning method of the present invention, the conductive foreign matter can be easily moved even in a gas-insulated device in which the inner surface of the container is covered with insulation.

実施の形態1.
この発明による実施の形態1を図1から図3までについて説明する。図1は、この発明の異物コンディショニング方法を適用するガス絶縁装置の構成を示す断面図である。図2は、金属容器の内面が絶縁被覆されていない場合の導電性異物の挙動を示す説明図および電界の印加状況を示す線図である。図3は、金属容器の内面が絶縁被覆されている場合の導電性異物の挙動を示す説明図および電界の印加状況を示す線図である。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing the configuration of a gas insulating apparatus to which the foreign matter conditioning method of the present invention is applied. FIG. 2 is an explanatory view showing the behavior of the conductive foreign matter when the inner surface of the metal container is not covered with an insulating coating, and a diagram showing the applied state of the electric field. FIG. 3 is an explanatory view showing the behavior of the conductive foreign matter when the inner surface of the metal container is covered with an insulating coating, and a diagram showing the application state of the electric field.

図1は、この発明の異物コンディショニング方法を適用するガス絶縁機器の構成を示すもので、金属容器1の内部に導体2を収納し、絶縁スペーサ3により導体2を絶縁支持しており、金属容器1の内部にはSF等の絶縁ガス4が充填されている。そして、万一、金属容器1内に金属細片などの導電性異物5が混入または発生した場合に、導電性異物5を捕捉するパーティクルトラップ6が設置されている。そして、金属容器1の内面には防錆などの目的で誘電体被膜7によって絶縁被覆が施されている。
この発明は金属容器1の内面に誘電体被膜7によって絶縁被覆が施されているガス絶縁開閉装置などのガス絶縁機器に適用されるものであるが、このようなガス絶縁機器における導電性異物5に対する異物コンディショニング動作を、金属容器1の内面に誘電体被膜7による絶縁被覆が施されていないガス絶縁機器と対比して説明するため、以下の説明では、金属容器1の内面が絶縁被覆されていない場合と、金属容器1の内面が絶縁被覆されている場合とに区分して、それぞれ説明する。
FIG. 1 shows the configuration of a gas insulation device to which the foreign matter conditioning method of the present invention is applied. A conductor 2 is housed inside a metal container 1, and the conductor 2 is insulated and supported by an insulating spacer 3. insulating gas 4, such as SF 6 is filled inside the 1. In the unlikely event that a conductive foreign matter 5 such as a metal strip is mixed or generated in the metal container 1, a particle trap 6 for capturing the conductive foreign matter 5 is installed. The inner surface of the metal container 1 is provided with an insulating coating with a dielectric coating 7 for the purpose of rust prevention or the like.
The present invention is applied to a gas insulation device such as a gas insulation switchgear in which an inner surface of a metal container 1 is coated with a dielectric coating 7, and a conductive foreign material 5 in such a gas insulation device. In the following description, the inner surface of the metal container 1 is covered with an insulation coating. In the following description, the foreign matter conditioning operation with respect to the gas container is described in comparison with a gas insulating device in which the inner surface of the metal container 1 is not coated with the dielectric coating 7. A description will be given separately for a case where there is no metal case and a case where the inner surface of the metal container 1 is covered with insulation.

図2(a)は、金属容器1の内面が絶縁被覆されていない場合の導電性異物5の挙動を示すもので、〔α〕は初期に導電性異物5が平伏している状態、〔β〕は導体2への印加電圧を上昇して導電性異物5が起立し浮上する状態、〔γ〕は一旦浮上した導電性異物5が跳躍運動をしつづける状態を示している。
図2(b)は、図2(a)における〔α〕状態,〔β〕状態,〔γ〕状態のそれぞれの状態で生じる電界の強さを相対的に示すものである。
図2において、Eは導電性異物5近傍の電界、Eは金属容器1の内面に誘電体被膜7による絶縁被覆が施されていない場合の導電性異物5が起立し浮上する電界、Eは定常運転状態で導体2に印加される運転電圧に相当する運転電界、Qは導電性異物5に静電誘導により誘起される電荷量、Q,Qは導電性異物5が浮上直前に得た電荷量、Feは導電性異物5に作用する静電力、Fgは導電性異物5に作用する重力である。Aは定常運転状態における絶縁機能を確保する所定のガス条件での必要電界を示す電界変化曲線である。
FIG. 2A shows the behavior of the conductive foreign material 5 when the inner surface of the metal container 1 is not covered with insulation. [Α] is a state in which the conductive foreign material 5 is initially flattened, [β ] Shows a state in which the voltage applied to the conductor 2 is increased and the conductive foreign material 5 stands up and floats, and [γ] shows a state in which the conductive foreign material 5 once floated continues to jump.
FIG. 2 (b) shows the relative strength of the electric field generated in each of the [α] state, [β] state, and [γ] state in FIG. 2 (a).
In FIG. 2, E is a conductive foreign object 5 near the electric field, E 0 is the electric field conductive objects 5 in the case where the insulating coating of a dielectric film 7 on the inner surface of the metallic container 1 has not been subjected to standing floats, E 1 Is the operating electric field corresponding to the operating voltage applied to the conductor 2 in the steady operating state, Q is the amount of charge induced by electrostatic induction in the conductive foreign material 5, Q 0 and Q 1 are just before the conductive foreign material 5 is levitated. The amount of charge obtained, Fe is the electrostatic force acting on the conductive foreign matter 5, and Fg is the gravity acting on the conductive foreign matter 5. A is an electric field change curve showing a required electric field under a predetermined gas condition for ensuring an insulating function in a steady operation state.

図3(a)は、金属容器1の内面に誘電体被膜7が施され誘電体被膜金属容器1の内面が絶縁被覆されている場合の導電性異物の挙動を示す図で、〔α〕は初期に導電性異物が平伏している状態、〔β〕は導体2への低い印加電圧のとき外部から金属容器1に振動を与え、導電性異物が電荷を得る状態、〔γ〕は静止のまま導体2への印加電圧を更に上昇したときに導電性異物が電荷を得る状態を示すものである。
図3(b)は、図3(a)における〔α〕状態,〔β〕状態,〔γ〕状態のそれぞれの状態で生じる電界の強さを相対的に示すものである。
図3において、Eは導電性異物5近傍の電界、Eは金属容器1の内面に誘電体被膜7による絶縁被覆が施されていない場合の導電性異物5が起立し浮上する電界、Eは定常運転状態で導体2に印加される運転電圧に相当する運転電界、Q,Qは導電性異物5が浮上直前に得た電荷量、Feは導電性異物5に作用する静電力、Fgは導電性異物5に作用する重力である。Bは定常運転状態における絶縁ガス4の絶縁機能を確保する所定のガス条件での必要電界を示す電界変化曲線、Cはこの発明による絶縁ガス4の絶縁機能を低下させた所定のガス条件での必要電界を示す電界変化曲線である。
FIG. 3 (a) is a diagram showing the behavior of conductive foreign matter when the dielectric coating 7 is applied to the inner surface of the metal container 1 and the inner surface of the dielectric coating metal container 1 is insulated, and [α] is In the initial state, the conductive foreign matter is flattened, [β] is a state in which the metal container 1 is vibrated from the outside when a low applied voltage is applied to the conductor 2, and the conductive foreign matter obtains a charge, [γ] is stationary In this state, the conductive foreign matter obtains a charge when the voltage applied to the conductor 2 is further increased.
FIG. 3B shows the relative strength of the electric field generated in each of the [α] state, [β] state, and [γ] state in FIG.
In FIG. 3, E is a conductive foreign object 5 near the electric field, E 0 is the electric field conductive objects 5 in the case where the insulating coating of a dielectric film 7 on the inner surface of the metallic container 1 has not been subjected to standing floats, E 1 Is the operating electric field corresponding to the operating voltage applied to the conductor 2 in the steady operating state, Q a and Q b are the amount of charge obtained immediately before the conductive foreign material 5 is levitated, Fe is the electrostatic force acting on the conductive foreign material 5, Fg is the gravity acting on the conductive foreign material 5. B is an electric field change curve indicating a required electric field under a predetermined gas condition for ensuring the insulating function of the insulating gas 4 in a steady operation state, and C is a predetermined gas condition with a reduced insulating function of the insulating gas 4 according to the present invention. It is an electric field change curve which shows a required electric field.

次に、動作について説明する。まず、金属容器1の内面が絶縁被覆されていない場合、図2(a)における〔α〕状態において、導体2に電圧が印加され電界変化曲線Aに示す電界が印加されると、平伏している導電性異物5には静電誘導により電荷Qが誘起される。このときの導電性異物5周辺の電界をEとすると、導電性異物5には大まかには静電力Fe=QEが作用し、Feが導電性異物の重力Fgを上回ると図2(a)における〔β〕状態に示すように起立し浮上する。そして、一旦浮上した導電性異物5は、浮上直前に得た電荷量Qと交流電界Eに応じてある高さまで浮上した後、重力により落下し、金属容器1の底面に衝突してそのときの電圧位相に応じた電荷Qを得、図2(a)における〔γ〕状態に示すように再度浮上する。導電性異物5の絶縁性能への影響は、その長さが長いほど大きいが、更に電圧を上昇し電界を高くすると、より短い導電性異物5も起立浮上するようになり、電界に応じて様々な大きさの導電性異物5が起立浮上し、通常運転状態において導体2に印加される運転電圧に相当する運転電界Eで起立浮上する導電性異物5は全て運動し続ける。
このように、一旦浮上した導電性異物5は跳躍運動を繰返し、金属容器1の底面への衝突の角度や電界の歪等により移動する。そしてパーティクルトラップ6に達すると、パーティクルトラップ6により形成される低電界部に入り、重力を上回る静電力を得ることができなくなって運動が停止し捕捉される。
Next, the operation will be described. First, when the inner surface of the metal container 1 is not covered with insulation, when a voltage is applied to the conductor 2 and an electric field shown in the electric field change curve A is applied in the [α] state in FIG. A charge Q is induced in the conductive foreign material 5 by electrostatic induction. Assuming that the electric field around the conductive foreign material 5 at this time is E, electrostatic force Fe = QE acts on the conductive foreign material 5 roughly, and when Fe exceeds the gravitational force Fg of the conductive foreign material in FIG. As shown in the [β] state, it stands and rises. Then, the electrically conductive foreign material 5 that has been levitated rises to a certain height according to the charge amount Q 0 and the alternating electric field E 0 obtained immediately before the levitating, then falls due to gravity, and collides with the bottom surface of the metal container 1. resulting charge Q 1 in accordance with the voltage phase when, again floated as shown in [γ] state in FIG. 2 (a). The influence of the conductive foreign material 5 on the insulation performance increases as the length increases. However, when the voltage is further increased to increase the electric field, the shorter conductive foreign material 5 also rises and rises depending on the electric field. The conductive foreign matter 5 having a large size rises and rises, and all the conductive foreign matters 5 that stand up and rise in the operating electric field E 1 corresponding to the operating voltage applied to the conductor 2 in the normal operation state continue to move.
As described above, the electrically conductive foreign material 5 that has been levitated repeatedly repeats the jumping motion, and moves due to the angle of collision with the bottom surface of the metal container 1 or the distortion of the electric field. When the particle trap 6 is reached, it enters a low electric field portion formed by the particle trap 6 and can no longer obtain an electrostatic force exceeding gravity, and the movement is stopped and captured.

一方、金属容器1の内面が誘電体被膜7で絶縁被覆されている場合、図3(a)における〔α〕状態において、誘電体被膜7上の導電性異物には電界が加わっても、誘電体被膜7により絶縁被覆されていない場合のように電荷が誘起されず、図2(a)における〔β〕状態において起立浮上した電界Eとなっても起立浮上し得ない。そこで、更に電界を上昇し、図3(a)における〔β〕状態に示すように外部から金属容器1に振動を与えてある程度起立させると、導電性異物5先端の電界が上昇し、導電性異物5と誘電体被膜7との接触点や、導電性異物5端部の電界集中部で部分放電が生じると導電性異物5は電荷Qを得て浮上し、図2(a)における〔β〕状態および〔γ〕状態と同様に跳躍運動を可能とする。
また、更に運転電界E以上に電界を上昇させ、平伏状態でも導電性異物5と誘電体被膜7との接触点や、導電性異物5端部の電界集中部で部分放電が生じるようになると、導電性異物5は電荷Qを得て起立浮上することができ、図3(a)における〔γ〕状態となって、図2(a)における〔γ〕状態と同様に跳躍運動を繰返すようになる。
しかし、上記のように導電性異物5が部分放電するためには印加電圧を上昇し、図3(b)の電界変化曲線Bのように、通常の運転電界Eに比べて高くする必要がある。
On the other hand, when the inner surface of the metal container 1 is covered with the dielectric coating 7, even if an electric field is applied to the conductive foreign matter on the dielectric coating 7 in the [α] state in FIG. Electric charges are not induced as in the case where the insulating film is not covered with the body coating 7, and even if the electric field E 0 is raised in the [β] state in FIG. Therefore, when the electric field is further increased and the metal container 1 is vibrated from the outside as shown in the [β] state in FIG. 3A, the electric field at the tip of the conductive foreign material 5 is increased to increase the conductivity. When a partial discharge occurs at the contact point between the foreign matter 5 and the dielectric coating 7 or at the electric field concentration portion at the end of the conductive foreign matter 5, the conductive foreign matter 5 obtains a charge Qa and floats, and [ The jumping movement is made possible as in the [β] state and the [γ] state.
Also, further increase the electric field in the operating field E 1 or more, and the contact point between the conductive materials 5 and the dielectric film 7 in the lying state, the partial discharge in the electric field concentration portion of the conductive foreign object 5 end is to occur conductive materials 5 can be erected floating obtain a charge Q b, becomes [γ] state in FIG. 3 (a), repeated jumping motion as with [γ] states in FIGS. 2 (a) It becomes like this.
However, in order to partially discharge the conductive foreign material 5 as described above, it is necessary to increase the applied voltage and make it higher than the normal operating electric field E 1 as shown in the electric field change curve B of FIG. is there.

そこで、この発明による実施の形態1では、金属容器1に封入されているSF等の絶縁ガス4の圧力を低下させることにより絶縁ガス4の絶縁性能を低下させて導電性異物5での部分放電を生じやすくし、図3(b)の電界変化曲線Cのように運転電界E以下でも、平伏している導電性異物5が部分放電を発生するまで絶縁ガス4の絶縁性能を低下させると、導電性異物5は図3(a)における〔γ〕状態となって運転電界E以下で導電性異物5を運動させることができる。 Therefore, in the first embodiment according to the present invention, the insulation performance of the insulating gas 4 is lowered by lowering the pressure of the insulating gas 4 such as SF 6 enclosed in the metal container 1, so that the portion of the conductive foreign matter 5 is reduced. discharge was easily generated, in operation the electric field E 1 below as field change curve C in FIG. 3 (b), reducing the insulating performance of the insulating gas 4 to conductive foreign object 5 that fell generates partial discharge Then, the conductive foreign material 5 is in the [γ] state in FIG. 3A, and the conductive foreign material 5 can be moved with the operating electric field E 1 or less.

この発明による実施の形態1においては、内面に誘電体被膜7による絶縁被覆が施されている金属容器1の内部で絶縁スペーサ3によって絶縁支持された導体2の定常運転状態における運転電圧に対する絶縁性能を確保するため絶縁ガス4を所定の圧力で金属容器1に封入したガス絶縁機器に異物コンディショニングを施すにあたり、絶縁ガス4の圧力を低下させ絶縁ガス4の絶縁性能を低下させた状態で導電性異物5の運動をし易くさせ、定常運転状態における運転電圧に相当する運転電界Eよりも低い電界変化曲線Cに相当する電圧を導体2に印加して金属容器1の内部における導電性異物5のコンディショニングを実施するものであって、絶縁ガス4の絶縁性能を低下させた状態で導電性異物5の運動をし易くさせることによって、図3(a)における〔α〕状態から〔γ〕状態へ導電性異物5を容易に移行させ、導電性異物5をパーティクルトラップ6(図1参照)により形成される低電界部へ効率的に捕捉できるものである。 In the first embodiment according to the present invention, the insulation performance with respect to the operating voltage in the steady operation state of the conductor 2 that is insulated and supported by the insulating spacer 3 inside the metal container 1 whose inner surface is coated with the dielectric coating 7. In order to assure foreign matter, in conducting the foreign matter conditioning to the gas insulating device in which the insulating gas 4 is enclosed in the metal container 1 at a predetermined pressure, the pressure of the insulating gas 4 is lowered and the insulation performance of the insulating gas 4 is lowered. The foreign object 5 is easily moved, and a voltage corresponding to an electric field change curve C lower than the operating electric field E 1 corresponding to the operating voltage in the steady operation state is applied to the conductor 2 to thereby cause the conductive foreign object 5 inside the metal container 1 to be moved. In order to facilitate the movement of the conductive foreign material 5 in a state in which the insulating performance of the insulating gas 4 is reduced, The conductive foreign material 5 is easily shifted from the [α] state in FIG. 3A to the [γ] state, and the conductive foreign material 5 is efficiently transferred to the low electric field portion formed by the particle trap 6 (see FIG. 1). It can be captured.

このように、この発明による実施の形態1の異物コンディショニング方法においては、絶縁ガス4の圧力を低下させることにより絶縁ガス4の絶縁性能を低下させて実施するものである。したがって、振動を与える必要がなく、運転電界Eより高くすることなく導電性異物5を運動しやすい状態にコンディショニングすることができる。 As described above, in the foreign matter conditioning method according to the first embodiment of the present invention, the insulation performance of the insulating gas 4 is lowered by lowering the pressure of the insulating gas 4. Therefore, it is not necessary to provide a vibration may be conditioned to easily state exercise the conductive materials 5 without higher than the operating field E 1.

この発明による実施の形態1によれば、内面に誘電体被膜7による絶縁被覆が施されている金属容器1と、前記金属容器1の内部で絶縁スペーサ3により絶縁支持された導体2とを備え、前記導体2の定常運転状態における絶縁性能を確保するため所定圧力の絶縁ガス4を前記金属容器1に封入したガス絶縁機器について金属容器1の内部の導電性異物5にコンディショニングを施すにあたり、前記絶縁ガス4の圧力を低下させて前記絶縁ガス4の絶縁性能を低下させた状態で前記金属容器1の内部における導電性異物5のコンディショニングを実施するようにしたので、前記絶縁ガス4の圧力を低下させた状態で前記金属容器1の内部における導電性異物5のコンディショニングを実施することにより、金属容器1の内面が絶縁被覆されているガス絶縁機器においても導電性異物5を容易に運動させることができ効率よく導電性異物5を捕捉することができる。   According to Embodiment 1 of the present invention, a metal container 1 having an inner surface covered with an insulating coating with a dielectric film 7 and a conductor 2 insulated and supported by an insulating spacer 3 inside the metal container 1 are provided. In order to ensure the insulation performance of the conductor 2 in the steady operation state, the conductive foreign matter 5 inside the metal container 1 is conditioned on the gas insulating device in which the insulating gas 4 having a predetermined pressure is sealed in the metal container 1. Since the conductive foreign matter 5 is conditioned inside the metal container 1 with the pressure of the insulating gas 4 lowered to reduce the insulating performance of the insulating gas 4, the pressure of the insulating gas 4 is reduced. By conducting the conditioning of the conductive foreign material 5 inside the metal container 1 in the lowered state, the inner surface of the metal container 1 is insulated and coated. The conductive materials 5 even in gas-insulated equipment can be captured efficiently conducting foreign substance 5 can be easily move that.

なお、上記説明では単一の絶縁ガスが封入されているガス絶縁機器の場合を例に説明したが、例えばSFとNの混合ガスやSF以外の代替ガス等を封入するガス絶縁機器においても同様な効果がある。 In the above description, the case of a gas insulating device in which a single insulating gas is sealed has been described as an example. However, for example, a gas insulating device in which a mixed gas of SF 6 and N 2 or an alternative gas other than SF 6 is sealed. Has the same effect.

実施の形態2.
この発明による実施の形態2を説明する。この実施の形態2において、実施の形態2における異物コンディショニング方法を適用するガス絶縁機器の構成は実施の形態1における図1に示す構成と同一の構成内容を具備し、実施の形態2における導電性異物5の挙動および電界印加状況は実施の形態1における図2(a)および図2(b)と対比して記載された図3(a)および図3(b)に示される導電性異物5の挙動および電界印加状況と同様の挙動および電界印加状況を呈するものであり、同様の作用を奏するものである。
Embodiment 2. FIG.
A second embodiment according to the present invention will be described. In the second embodiment, the configuration of the gas insulating apparatus to which the foreign matter conditioning method in the second embodiment is applied has the same configuration as the configuration shown in FIG. 1 in the first embodiment, and the conductivity in the second embodiment. Conductive foreign matter 5 shown in FIGS. 3 (a) and 3 (b) described in comparison with FIGS. 2 (a) and 2 (b) in the first embodiment is shown in FIG. This exhibits the same behavior and electric field application status as the above and the electric field application status, and exhibits the same action.

実施の形態1では、単一の絶縁ガスが封入されているガス絶縁機器において、ガス圧力を低下した状態でコンディショニングするようにしたが、この実施の形態2では、例えばSFとNの混合ガス等2種以上のガスが導体2の通常運転状態における絶縁性能を確保するため絶縁ガス4として封入されているガス絶縁機器の場合、絶縁性能の比較的高いガスを除き絶縁性能の比較的低い方のガスのみを封入し絶縁ガス4の絶縁性能を低下させた状態で、異物コンディショニングを実施するようにしたものである。
絶縁ガス4として2種の混合ガスGa,Gbを用い、ガスGbがガスGaよりも絶縁性能が低いものとすると、絶縁性能の比較的高いガスGaを除き絶縁性能の比較的低いガスGbのみを絶縁ガス4として封入し、絶縁ガス4の絶縁性能を低下させた状態で、異物コンディショニングを実施する。
絶縁ガス4として3種の混合ガスGa,Gb,Gcを用い、ガスGa,ガスGb,ガスcの順で絶縁性能が高いものとすると、比較的絶縁性能が高いガスGa、あるいは、ガスGaおよびガスGbを除き、比較的絶縁性能が低いガスGbおよびガスGc、あるいは、ガスGcのみを絶縁ガス4として封入し、絶縁ガス4の絶縁性能を低下させた状態で、異物コンディショニングを実施する。
このように、2種以上の混合ガスからなる絶縁ガス4を用い、絶縁性能が最も高いガスを除き、他の任意のガスの少なくとも一つを封入して、絶縁ガス4の絶縁性能を低下させた状態で、異物コンディショニングを実施することが可能である。
In the first embodiment, the gas insulation device in which a single insulating gas is sealed is conditioned in a state where the gas pressure is lowered. However, in the second embodiment, for example, a mixture of SF 6 and N 2 is used. In the case of gas-insulated equipment in which two or more kinds of gases such as gas are sealed as the insulating gas 4 in order to ensure the insulation performance in the normal operation state of the conductor 2, the insulation performance is relatively low except for the gas having a relatively high insulation performance. In this state, foreign matter conditioning is performed in a state where only one gas is sealed and the insulating performance of the insulating gas 4 is lowered.
If two kinds of mixed gases Ga and Gb are used as the insulating gas 4, and the gas Gb has a lower insulating performance than the gas Ga, only the gas Gb having a relatively low insulating performance except for the gas Ga having a relatively high insulating performance is used. Foreign matter conditioning is performed in a state where the insulating gas 4 is sealed and the insulating performance of the insulating gas 4 is lowered.
When three kinds of mixed gases Ga, Gb, and Gc are used as the insulating gas 4 and the insulating performance is high in the order of the gas Ga, the gas Gb, and the gas c, the gas Ga having a relatively high insulating performance, or the gas Ga and With the exception of the gas Gb, the gas Gb and the gas Gc having relatively low insulation performance, or only the gas Gc is sealed as the insulation gas 4, and the foreign matter conditioning is performed in a state where the insulation performance of the insulation gas 4 is lowered.
As described above, the insulating gas 4 composed of two or more kinds of mixed gases is used, and the insulating performance of the insulating gas 4 is lowered by enclosing at least one of other arbitrary gases except for the gas having the highest insulating performance. In this state, it is possible to perform foreign object conditioning.

このようにすれば、導電性異物5が部分放電を生じやすくなるため、定常運転状態における運転電圧に相当する運転電界E以下でも導電性異物5を運動させることができ、異物コンディショニングを効率的に実施することができる。 In this way, since the conductive foreign material 5 is likely to cause partial discharge, the conductive foreign material 5 can be moved even at an operating electric field E 1 or less corresponding to the operating voltage in the steady operation state, and the foreign material conditioning is performed efficiently. Can be implemented.

この発明による実施の形態2によれば、内面に誘電体被膜7による絶縁被覆が施されている金属容器1と、前記金属容器1の内部で絶縁支持された導体2とを備え、前記導体2の定常運転状態における絶縁性能を確保するため2種以上の混合ガスからなる絶縁ガス4を前記金属容器1に封入したガス絶縁機器について金属容器1の内部の導電性異物5にコンディショニングを施すにあたり、比較的絶縁性能が高いガスを除き絶縁性能の比較的低い方のガスのみを充填した状態で前記金属容器1内における導電性異物5のコンディショニングを実施するようにしたので、前記2種以上の混合ガスからなる絶縁ガス4のうち比較的絶縁性能が高いガスを除き絶縁性能の比較的低い方のガスのみを充填した状態で前記金属容器1の内部における導電性異物5のコンディショニングを実施することにより、金属容器1の内面が絶縁被覆されているガス絶縁機器においても導電性異物5を容易に運動させることができ効率よく導電性異物5を捕捉できる異物コンディショニング方法を得ることができる。   According to Embodiment 2 of the present invention, a metal container 1 having an inner surface covered with an insulating coating with a dielectric film 7 and a conductor 2 insulated and supported inside the metal container 1 are provided. In order to ensure the insulation performance in the steady operation state of the gas container in which the insulating gas 4 composed of two or more kinds of mixed gas is sealed in the metal container 1, the conductive foreign matter 5 inside the metal container 1 is conditioned. Since the conductive foreign material 5 is conditioned in the metal container 1 in a state where only the gas having a relatively low insulation performance is filled except for a gas having a relatively high insulation performance, the mixing of the two or more kinds is performed. Conductivity in the metal container 1 is filled with only the gas having a relatively low insulation performance except for the gas having a relatively high insulation performance among the insulating gas 4 made of gas. By performing the conditioning of the foreign matter 5, the foreign matter conditioning method can easily move the conductive foreign matter 5 and efficiently capture the conductive foreign matter 5 even in a gas-insulated device in which the inner surface of the metal container 1 is insulated. Can be obtained.

実施の形態3.
この発明による実施の形態3を説明する。この実施の形態3において、実施の形態3における異物コンディショニング方法を適用するガス絶縁機器の構成は実施の形態1における図1に示す構成と同一の構成内容を具備し、実施の形態3における導電性異物5の挙動および電界印加状況は実施の形態1における図2(a)および図2(b)と対比して記載された図3(a)および図3(b)に示される導電性異物5の挙動および電界印加状況と同様の挙動および電界印加状況を呈するものであり、同様の作用を奏するものである。
Embodiment 3 FIG.
Embodiment 3 according to the present invention will be described. In the third embodiment, the configuration of the gas insulating apparatus to which the foreign matter conditioning method in the third embodiment is applied has the same configuration as the configuration shown in FIG. 1 in the first embodiment, and the conductivity in the third embodiment. Conductive foreign matter 5 shown in FIGS. 3 (a) and 3 (b) described in comparison with FIGS. 2 (a) and 2 (b) in the first embodiment is shown in FIG. This exhibits the same behavior and electric field application status as the above and the electric field application status, and exhibits the same action.

実施の形態2では、2種以上の混合ガスが絶縁ガス4として封入されているガス絶縁機器において、絶縁性能の低い方のガスのみを封入し絶縁ガス4の絶縁性能を低下させた状態で異物コンディショニングを実施するようにしたが、この実施の形態3では、2種以上の混合ガスが導体2の通常運転状態における絶縁性能を確保するため絶縁ガス4として封入されているガス絶縁機器において、その絶縁ガス4の混合率を変えることで絶縁ガス4の絶縁性能を低下させ、絶縁性異物5での部分放電を生じやすくした状態で導電性異物5のコンディショニングを実施するようにしたものであり、上記実施の形態2と同様の効果がある。   In the second embodiment, in a gas-insulated device in which two or more kinds of mixed gases are sealed as the insulating gas 4, only the gas having the lower insulating performance is sealed to reduce the insulating performance of the insulating gas 4. In the third embodiment, in the gas insulation apparatus in which two or more kinds of mixed gases are sealed as the insulation gas 4 in order to ensure the insulation performance in the normal operation state of the conductor 2, the conditioning is performed. By changing the mixing ratio of the insulating gas 4, the insulating performance of the insulating gas 4 is lowered, and the conductive foreign material 5 is conditioned in a state in which partial discharge of the insulating foreign material 5 is likely to occur. There is an effect similar to that of the second embodiment.

この発明による実施の形態3によれば、内面に誘電体被膜7による絶縁被覆が施されている金属容器1と、前記金属容器1の内部で絶縁スペーサ3により絶縁支持された導体2とを備え、前記導体2の定常運転状態における絶縁性能を確保するため2種以上の混合ガスからなる絶縁ガス4を混合率を所定の値として前記金属容器1に封入したガス絶縁機器について金属容器1の内部の導電性異物5にコンディショニングを施すにあたり、絶縁ガス4の混合率を所定の値と異なる状態にして前記絶縁ガス4の絶縁性能を低下させ前記金属容器1の内部における導電性異物5のコンディショニングを実施するようにしたので、2種以上の混合ガスからなる絶縁ガス4を混合率を所定の値と異なる状態とし前記絶縁ガス4の絶縁性能を低下させて前記金属容器1の内部における導電性異物5のコンディショニングを実施することにより、金属容器1の内面が絶縁被覆されているガス絶縁機器においても導電性異物5を容易に運動させることができ効率よく導電性異物5を捕捉できる異物コンディショニング方法を得ることができる。   According to Embodiment 3 of the present invention, a metal container 1 having an inner surface covered with an insulating coating with a dielectric film 7 and a conductor 2 insulated and supported by an insulating spacer 3 inside the metal container 1 are provided. In order to ensure the insulation performance of the conductor 2 in a steady operation state, the inside of the metal container 1 is a gas-insulated device in which an insulating gas 4 composed of two or more kinds of mixed gases is sealed in the metal container 1 with a mixing ratio as a predetermined value. When conditioning the conductive foreign material 5, the insulating gas 4 is mixed in a state different from a predetermined value to reduce the insulating performance of the insulating gas 4, thereby conditioning the conductive foreign material 5 inside the metal container 1. Since the insulating gas 4 composed of two or more kinds of mixed gases is in a state where the mixing rate is different from a predetermined value, the insulating performance of the insulating gas 4 is lowered before By conditioning the conductive foreign material 5 inside the metal container 1, the conductive foreign material 5 can be easily moved even in a gas-insulated device in which the inner surface of the metal container 1 is covered with insulation. A foreign matter conditioning method capable of capturing the foreign matter 5 can be obtained.

実施の形態1の異物コンディショニング方法を適用しているガス絶縁機器の構成を示す断面図である。It is sectional drawing which shows the structure of the gas insulation apparatus to which the foreign material conditioning method of Embodiment 1 is applied. 金属容器の内面が絶縁被覆されていない場合の導電性異物の挙動を示す説明図および電界の印加状況を示す線図である。It is explanatory drawing which shows the behavior of the electroconductive foreign material when the inner surface of a metal container is not insulation-coated, and the diagram which shows the application condition of an electric field. 金属容器の内面が絶縁被覆されている場合の導電性異物の挙動を示す説明図および電界の印加状況を示す線図である。It is explanatory drawing which shows the behavior of the conductive foreign material in case the inner surface of a metal container is insulation-coated, and a diagram which shows the application condition of an electric field.

符号の説明Explanation of symbols

1 金属容器、2 導体、3 絶縁スペーサ、4 絶縁ガス、5 導電性異物、6 パーティクルトラップ、7 誘電体被膜。
1 metal container, 2 conductor, 3 insulating spacer, 4 insulating gas, 5 conductive foreign matter, 6 particle trap, 7 dielectric coating.

Claims (4)

内面に誘電体被膜による絶縁被覆が施されている容器と、前記容器の内部で絶縁支持された導体とを備え、前記導体の定常運転状態における絶縁性能を確保するため絶縁ガスを前記容器に封入したガス絶縁機器について前記容器内の導電性異物にコンディショニングを施すにあたり、前記絶縁ガスの絶縁性能を低下させた状態で前記容器内における導電性異物のコンディショニングを実施することを特徴とする異物コンディショニング方法。   A container having an inner surface coated with a dielectric coating and a conductor insulated and supported inside the container, and an insulating gas sealed in the container to ensure insulation performance in a steady operation state of the conductor When conditioning the conductive foreign matter in the container with respect to the gas insulation device, the foreign matter conditioning method is characterized in that the conductive foreign matter is conditioned in the container in a state where the insulation performance of the insulating gas is reduced. . 内面に誘電体被膜による絶縁被覆が施されている容器と、前記容器の内部で絶縁支持された導体とを備え、前記導体の定常運転状態における絶縁性能を確保するため所定圧力の絶縁ガスを前記容器に封入したガス絶縁機器について前記容器内の導電性異物にコンディショニングを施すにあたり、前記絶縁ガスの圧力を低下させて前記絶縁ガスの絶縁性能を低下させた状態で前記容器内における導電性異物のコンディショニングを実施することを特徴とする異物コンディショニング方法。
A container having an inner surface coated with an insulating coating with a dielectric coating; and a conductor insulated and supported inside the container, and the insulating gas at a predetermined pressure is used to ensure insulation performance in a steady operation state of the conductor. In conditioning the conductive foreign matter in the container with respect to the gas insulation device sealed in the container, the conductive foreign matter in the container is reduced in a state where the insulating gas pressure is lowered to reduce the insulation performance of the insulating gas . A foreign matter conditioning method characterized by performing conditioning.
内面に誘電体被膜による絶縁被覆が施されている容器と、前記容器の内部で絶縁支持された導体とを備え、前記導体の定常運転状態における絶縁性能を確保するため2種以上の混合ガスからなる絶縁ガスを前記容器に封入したガス絶縁機器について前記容器内の導電性異物にコンディショニングを施すにあたり、前記絶縁ガスから絶縁性能の比較的高いガスを除いて絶縁ガスの絶縁性能を低下させた状態で前記容器内における導電性異物のコンディショニングを実施することを特徴とする異物コンディショニング方法。   A container having an inner surface coated with an insulating coating with a dielectric coating; and a conductor insulated and supported inside the container; in order to ensure insulation performance in a steady operation state of the conductor, A state in which the insulating performance of the insulating gas is reduced by excluding the gas having a relatively high insulating performance from the insulating gas when conditioning the conductive foreign matter in the container for the gas insulating device in which the insulating gas is sealed in the container. A method for conditioning foreign matter, comprising conducting conditioning of conductive foreign matter in the container. 内面に誘電体被膜による絶縁被覆が施されている容器と、前記容器の内部で絶縁支持された導体とを備え、前記導体の定常運転状態における絶縁性能を確保するため2種以上の混合ガスからなる絶縁ガスを混合率を所定の値として前記容器に封入したガス絶縁機器について前記容器内の導電性異物にコンディショニングを施すにあたり、絶縁ガスの混合率を所定の値と異なる状態にして前記絶縁ガスの絶縁性能を低下させ前記容器内における導電性異物のコンディショニングを実施することを特徴とする異物コンディショニング方法。
A container having an inner surface coated with an insulating coating with a dielectric coating; and a conductor insulated and supported inside the container; in order to ensure insulation performance in a steady operation state of the conductor, When conditioning the conductive foreign matter in the container for the gas-insulated equipment in which the insulating gas is mixed in the container at a predetermined value, the insulating gas is mixed with the insulating gas in a state different from the predetermined value. A foreign matter conditioning method characterized in that the insulating performance of the conductive material is reduced to condition the conductive foreign matter in the container.
JP2006152993A 2006-06-01 2006-06-01 Foreign matter conditioning method Expired - Fee Related JP4812521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152993A JP4812521B2 (en) 2006-06-01 2006-06-01 Foreign matter conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152993A JP4812521B2 (en) 2006-06-01 2006-06-01 Foreign matter conditioning method

Publications (2)

Publication Number Publication Date
JP2007325415A JP2007325415A (en) 2007-12-13
JP4812521B2 true JP4812521B2 (en) 2011-11-09

Family

ID=38857714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152993A Expired - Fee Related JP4812521B2 (en) 2006-06-01 2006-06-01 Foreign matter conditioning method

Country Status (1)

Country Link
JP (1) JP4812521B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149096A (en) * 2015-08-18 2015-12-16 华北电力大学 Metal particle trap for direct-current gas-insulated power transmission line

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554746B2 (en) 2011-05-06 2014-07-23 株式会社日立製作所 Gas insulation bus and method for removing foreign matter from gas insulation bus
CN112670041B (en) * 2020-11-20 2022-09-02 华北电力大学 Ceramic post insulator assembly for gas insulated high voltage electrical equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162228U (en) * 1985-03-29 1986-10-07
JPS62180282A (en) * 1986-02-05 1987-08-07 Shinko Electric Co Ltd Nondestructive inspecting method for defect in insulation of low-pressure rotary machine
JPH03269274A (en) * 1990-03-19 1991-11-29 Hitachi Ltd Diagnostic method of partial discharge or gas-insulated apparatus
JP2000059935A (en) * 1998-08-18 2000-02-25 Toshiba Corp Gas filling method of gas-insulated electric apparatus, and its foreign-matter inspecting method
JP2000166065A (en) * 1998-11-24 2000-06-16 Mitsubishi Electric Corp Gas-insulated switchgear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149096A (en) * 2015-08-18 2015-12-16 华北电力大学 Metal particle trap for direct-current gas-insulated power transmission line

Also Published As

Publication number Publication date
JP2007325415A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP5208013B2 (en) Fluid insulated electrical equipment
JP5065994B2 (en) Sealed insulation device and operation method thereof
EP2405550A1 (en) Hermetically-sealed insulated device
Prakash et al. Movement of particles in compressed SF/sub 6/GIS with dielectric coated enclosure
JP4812521B2 (en) Foreign matter conditioning method
Hosokawa et al. Particle-initiated breakdown characteristics and reliability improvement in SF6 gas insulation
EP0610768A1 (en) Enclosed electric conductor arrangement
JPWO2015111236A1 (en) Gas insulated electrical equipment
JP3143077B2 (en) Gas insulation equipment
JP5379279B2 (en) Gas insulated electrical equipment
JP5425591B2 (en) Gas insulated switchgear
EP3487019B1 (en) Gas-insulated electric apparatus and manufacturing method for gas-insulated electric apparatus
JP3433004B2 (en) DC gas insulated busbar
JP2002315118A (en) Gas insulating apparatus
CN104917070A (en) Spherical-crown type particle capturing apparatus and power transmission and transformation equipment
JP2008172976A (en) Dc-gas insulated bus-bar
Zhu et al. Behavior of water droplet on electrically stressed polymeric coating surface
WO2017098553A1 (en) Gas insulation apparatus
JP5584717B2 (en) Gas insulated electrical equipment
JP6189002B1 (en) Gas insulated electrical equipment and method for manufacturing gas insulated electrical equipment
JP2009268294A (en) Gas insulated electric device
JP5128023B1 (en) Current transformer for instrument
JP2008193787A (en) Gas-insulated switchgear
JPS61135312A (en) Trapping of impurities for gas insulated electric equipment
JPS5854817Y2 (en) Pipe busbar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4812521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees