JPH054896A - Production of coating film - Google Patents

Production of coating film

Info

Publication number
JPH054896A
JPH054896A JP15455191A JP15455191A JPH054896A JP H054896 A JPH054896 A JP H054896A JP 15455191 A JP15455191 A JP 15455191A JP 15455191 A JP15455191 A JP 15455191A JP H054896 A JPH054896 A JP H054896A
Authority
JP
Japan
Prior art keywords
film
hydrogen
carbon
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15455191A
Other languages
Japanese (ja)
Inventor
Yasushi Taniguchi
靖 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15455191A priority Critical patent/JPH054896A/en
Publication of JPH054896A publication Critical patent/JPH054896A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high-hardness coating film excellent in tight adhesion and useful as a protecting film by applying prescribed high-energy light rays to a hydrogenated amorphous carbon film, etc., formed on a base film and mainly composed of carbon and hydrogen and eliminating hydrogen without destruction of the film. CONSTITUTION:A film composed mainly of carbon and hydrogen is formed on a base film having a magnetic recording layer on the substrate by using plasma CVD method, ion-beam vacuum deposition method, etc. The formed film is composed of a hydrogenated amorphous carbon film or a diamond-state carbon film containing 15-35atm.% hydrogen. To the above-mentioned film formed on the base film, light rays having a higher energy (shorter wavelength) than that of the optical absorption edge of this film are applied, e.g. under vacuum or in an inert gas. Hydrogen is eliminated thereby without destruction of the film, thus giving the objective high-hardness protecting film excellent in tight adhesion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク、光磁気
ディスク、磁気ヘッドの表面保護膜などに有用な、高硬
度、高密着性、耐摩耗性、潤滑性に優れたダイヤモンド
状炭素膜、水素化アモルファス炭素膜などの被膜を製造
する方法に関する。
FIELD OF THE INVENTION The present invention relates to a diamond-like carbon film having high hardness, high adhesion, wear resistance and lubricity, which is useful for a magnetic disk, a magneto-optical disk, a surface protective film for a magnetic head, and the like. The present invention relates to a method for producing a coating such as a hydrogenated amorphous carbon film.

【0002】[0002]

【従来の技術】従来より、磁気ディスクや磁気ヘッド
は、磁気ディスク装置や光磁気ディスク装置としてコン
ピュータ端末の情報記憶装置などに利用されている。こ
の磁気ディスクは、例えば、アルミニウム金属板やプラ
スチック等の基体上に、フェライト、鉄、コバルト、ニ
ッケルまたはこれらの化合物、ネオジウム、サマリウ
ム、ガドリニウム、テルビウム等の希土類金属またはそ
れらの合金の磁性体をスパッタ法や塗布法によって形成
する等の方法で作製されている。磁気ディスク装置にお
いては、使用の際に磁気ディスクの回転停止を繰返すの
で、磁気ヘッドと磁気デイスクは相互に接触摩耗が繰り
返されることとなる。この接触摩耗により磁気ディスク
の磁気記録層(磁気記録媒体)が傷付いてしまい、記録
エラーが生じる場合がある。また、磁気記録層および光
磁気記録層は、双方共に環境に影響され腐食し易いもの
である。
2. Description of the Related Art Conventionally, magnetic disks and magnetic heads have been used as magnetic disk devices and magneto-optical disk devices in information storage devices of computer terminals. This magnetic disk is formed by sputtering a magnetic material of ferrite, iron, cobalt, nickel or a compound thereof, a rare earth metal such as neodymium, samarium, gadolinium or terbium, or an alloy thereof onto a substrate such as an aluminum metal plate or plastic. It is manufactured by a method such as forming by a coating method or a coating method. In the magnetic disk device, since the rotation of the magnetic disk is repeatedly stopped during use, the magnetic head and the magnetic disk are repeatedly contacted and worn. This contact wear may damage the magnetic recording layer (magnetic recording medium) of the magnetic disk, resulting in a recording error. Further, both the magnetic recording layer and the magneto-optical recording layer are easily affected by the environment and corroded.

【0003】そこで通常は、この様な損傷や腐食を防止
すべく磁気(光磁気)記録層上に保護被膜が形成されて
いる。この保護被膜としては、二酸化ケイ素(SiO
2 )、アルミナ(Al23 )等の酸化物またはカーボ
ン膜などが用いられている。このSiO2 やAl23
の保護被膜は、スパッタリング法や真空蒸着法で形成で
きる。またカーボン膜は、プラズマCVD法、イオン・
ビーム蒸着法、スパッタリング法等により形成できる。
Therefore, a protective film is usually formed on the magnetic (magneto-optical) recording layer in order to prevent such damage and corrosion. As this protective film, silicon dioxide (SiO 2
2 ), oxides such as alumina (Al 2 O 3 ) or carbon films are used. This SiO 2 and Al 2 O 3
The protective coating of can be formed by a sputtering method or a vacuum vapor deposition method. The carbon film is formed by plasma CVD, ion
It can be formed by a beam evaporation method, a sputtering method, or the like.

【0004】[0004]

【発明が解決しようとする課題】上述の保護被膜のうち
特にカーボン膜は、高硬度で摩擦係数が小さく、ガスや
水分の非透過性に優れている。そしてこのカーボン膜
は、主に炭素と水素を主成分とする被膜である。しか
し、この様な炭素と水素を主成分とする膜は、基体との
密着性が必ずしも十分でないという課題があった。すな
わち、従来の被膜においては膜剥離を生じたり、また被
膜を形成しても磁気記録層等が腐食する場合があった。
Of the above-mentioned protective coatings, the carbon coating, in particular, has a high hardness, a small friction coefficient, and excellent gas and moisture impermeability. This carbon film is a film mainly containing carbon and hydrogen. However, such a film containing carbon and hydrogen as the main components has a problem that the adhesion to the substrate is not always sufficient. That is, in the conventional coating, film peeling may occur, or the magnetic recording layer and the like may be corroded even if the coating is formed.

【0005】本発明の目的は、炭素と水素を主成分とす
る膜が有する高硬度、非透過性などの優れた特性を維持
しつつ、更に基体との密着性にも優れた被膜を製造でき
る方法を提供することにある。
An object of the present invention is to produce a coating film which is excellent in adhesion to a substrate while maintaining excellent characteristics such as high hardness and non-permeability of a film containing carbon and hydrogen as main components. To provide a method.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意検討を重ねた結果、特定の光照射によっ
て膜の内部応力を緩和することが非常に有効であること
を見出し本発明を完成するに至った。すなわち本発明
は、基体上に炭素と水素を主成分とする膜を形成し、該
膜の光学吸収端よりもエネルギーの高い光を該膜に照射
する工程を有する被膜の製造方法である。
As a result of intensive studies to achieve the above-mentioned object, the present inventor found that it is very effective to relieve the internal stress of the film by specific light irradiation. The invention was completed. That is, the present invention is a method for producing a coating film, which comprises a step of forming a film containing carbon and hydrogen as main components on a substrate and irradiating the film with light having energy higher than the optical absorption edge of the film.

【0007】従来より、炭素と水素を主成分とする膜
(炭素膜等)としては、ダイヤモンド状炭素膜(以下、
DLC膜と記す)、水素化アモルファス炭素膜(以下、
a−C:H膜と記す)等の炭素膜が知られている。これ
らは、膜中に水素を数十atom%含有するものであり、こ
の水素含有量が異なると膜の性質も大きく異なることと
なる。例えば、水素を50atom%以上含むa−C:H膜
は、光学的バンドギャップが大きく透明であるが、膜の
硬度が比較的低く内部応力も比較的小さいポリマーライ
クな炭素膜である。一方、水素を15〜35atom%含む
a−C:H膜は、硬度がビッカース硬度で2000〜4
000kg/mm2と非常に硬く、摩擦係数も0.2以下と滑
らかであるが、膜の内部応力が圧縮応力で〜1010dyn/
cm2 と大きい。この様な内部応力は、被膜の膜構造(炭
素と水素の結合状態)に起因するものと考えられる。そ
して、この内部応力が被膜の密着性に悪影響を及ぼして
いる。この内部応力を緩和するには、被膜を400℃以
上でアニールすることによって、膜中の水素を脱離させ
てsp3 構造を減らしsp2 構造を増加させる手段が考
えられる。しかし、この様な高温でアニールすると、基
体材質あるいは基体と該保護被膜の間に介在する膜材質
に悪影響を及ぼす場合もあるので適当な手段ではない。
Conventionally, as a film containing carbon and hydrogen as main components (carbon film, etc.), a diamond-like carbon film (hereinafter, referred to as
DLC film), hydrogenated amorphous carbon film (hereinafter,
Carbon films such as a-C: H film) are known. These contain several tens of atom% of hydrogen in the film, and if the hydrogen content is different, the properties of the film are also greatly different. For example, an aC: H film containing 50 atom% or more of hydrogen is a polymer-like carbon film that has a large optical band gap and is transparent, but has a relatively low film hardness and a relatively small internal stress. On the other hand, the hardness of the aC: H film containing 15 to 35 atom% of hydrogen is 2000 to 4 in Vickers hardness.
It is very hard at 000 kg / mm 2 and has a smooth friction coefficient of 0.2 or less, but the internal stress of the film is -10 10 dyn /
It is as large as cm 2 . Such internal stress is considered to be caused by the film structure of the film (bonding state of carbon and hydrogen). Then, this internal stress adversely affects the adhesion of the coating. In order to alleviate this internal stress, it is conceivable to anneal the film at 400 ° C. or higher to release hydrogen in the film and reduce the sp 3 structure to increase the sp 2 structure. However, annealing at such a high temperature may adversely affect the material of the substrate or the material of the film interposed between the substrate and the protective coating and is not an appropriate means.

【0008】一方、本発明の方法においては、膜の光学
吸収端よりもエネルギーの高い光を照射することによっ
て膜の内部応力を緩和するので、基体等に悪影響を与え
ることなく密着性を向上させることができる。この光照
射による内部応力の減少のメカニズムについては不明の
点もあるが、炭素と水素の結合において水素を解離し膜
構造が変化することによって、膜の内部応力が緩和する
ものと考えられる。
On the other hand, in the method of the present invention, the internal stress of the film is relaxed by irradiating the film with light having a higher energy than the optical absorption edge of the film, so that the adhesion is improved without adversely affecting the substrate or the like. be able to. Although there is some unclear point about the mechanism of the decrease of internal stress due to this light irradiation, it is considered that the internal stress of the film is relaxed by dissociating hydrogen and changing the film structure in the bond of carbon and hydrogen.

【0009】以下、本発明の製造方法を工程に沿って詳
細に説明する。
The manufacturing method of the present invention will be described below in detail along with the steps.

【0010】本発明の方法においては、まず基体上に炭
素と水素を主成分とする膜を形成する。基体としては、
例えば、ガラス、セラミックス、有機樹脂、金属など、
従来より炭素と水素を主成分とする材料で被覆されて用
いられる各種部材が使用可能であり、本発明において特
に限定はない。ただし、適当な支持体上に磁気(光磁
気)記録層を形成したものを基体として用い、この上に
炭素と水素を主成分とする膜を形成する場合が特に有効
である。炭素と水素を主成分とする膜としては、上述し
た様なDLC膜やa−C:H膜を代表的に挙げることが
できる。また、上述した様な水素を15〜35atom%含
むa−C:H膜やDLC膜を用いる場合が特に有効であ
る。
In the method of the present invention, first, a film containing carbon and hydrogen as main components is formed on a substrate. As the substrate,
For example, glass, ceramics, organic resins, metals, etc.
Various members conventionally used by being coated with a material containing carbon and hydrogen as main components can be used, and there is no particular limitation in the present invention. However, it is particularly effective to use a magnetic (magneto-optical) recording layer formed on an appropriate support as a substrate and form a film containing carbon and hydrogen as main components on the substrate. Typical examples of the film containing carbon and hydrogen as the main components include the DLC film and the aC: H film as described above. Further, it is particularly effective to use the aC: H film or DLC film containing 15 to 35 atom% of hydrogen as described above.

【0011】膜を基体上に形成する方法には特に限定は
無く、プラズマCVD法、ECR−プラズマCVD法
(以下、ECR−PCVD法と記す)、イオンビーム蒸
着法、イオンビーム・スパッタ法、プラズマ・スパッタ
法など各種の方法が挙げられる。また、膜厚としては、
50オングストローム〜1μm程度が望ましい。CVD
法等で使用する原料ガスとしては、含炭素ガスであるメ
タン、エタン、プロパン、エチレン、ベンゼン、アセチ
レン等の炭化水素;塩化メチレン、四塩化炭素、クロロ
ホルム、トリクロルエタン等のハロゲン化炭化水素;メ
チルアルコール、エチルアルコール等のアルコール類、
(CH32CO、(C652 CO等のケトン類;
CO、CO2 等のガス、およびこれらのガスにN2 、H
2 、O2 、H2 O、Ar等のガスを混合したもの等が挙
げられる。
The method for forming the film on the substrate is not particularly limited, and includes plasma CVD method, ECR-plasma CVD method (hereinafter referred to as ECR-PCVD method), ion beam evaporation method, ion beam sputtering method, and plasma.・ Various methods such as sputtering method can be used. Also, as the film thickness,
It is preferably about 50 Å to 1 μm. CVD
As the raw material gas used in the method, hydrocarbons such as methane, ethane, propane, ethylene, benzene, and acetylene, which are carbon-containing gases; halogenated hydrocarbons such as methylene chloride, carbon tetrachloride, chloroform, and trichloroethane; methyl. Alcohols such as alcohol and ethyl alcohol,
Ketones such as (CH 3 ) 2 CO and (C 6 H 5 ) 2 CO;
CO, CO 2 and other gases, and N 2 and H for these gases
Examples include a mixture of gases such as 2 , O 2 , H 2 O and Ar.

【0012】上述の様にして基体上に形成した炭素と水
素を主成分とする膜に対し、膜の光学吸収端よりもエネ
ルギーの高い光を照射する。この光照射により膜の内部
応力が緩和できる。炭素と水素を主成分とする膜の光学
吸収端は、一般に0.4eV〜2.8eVの範囲にあ
る。したがって、照射する光はこれよりもエネルギーの
高いものであればよい。ただし、光学吸収端近傍のエネ
ルギー値よりも、より一層高いエネルギーの光を用いる
とより有効である。なお、ここで照射エネルギーの範囲
に関しては、膜中の水素を脱離するために必要なトータ
ルのエネルギー量(照射光エネルギーの積分量)が問題
となる。したがって、照射光のエネルギー密度やパワー
密度としては膜を破壊せず最大の水素脱離効果が得られ
る強度に適宜すればよく、照射光の種類によって出力の
大きさやスペクトルが異なるので一律にはその大きさを
規定できない。なお、膜表面への照射エネルギーのトー
タル量は1×103 J/cm2 以上であることが望まし
い。
The film containing carbon and hydrogen as main components formed on the substrate as described above is irradiated with light having higher energy than the optical absorption edge of the film. This light irradiation can alleviate the internal stress of the film. The optical absorption edge of a film containing carbon and hydrogen as main components is generally in the range of 0.4 eV to 2.8 eV. Therefore, the light to be irradiated may have a higher energy than this. However, it is more effective to use light having a higher energy than the energy value near the optical absorption edge. Here, regarding the range of irradiation energy, the total energy amount (integrated amount of irradiation light energy) necessary for desorbing hydrogen in the film becomes a problem. Therefore, the energy density and power density of the irradiation light may be appropriately adjusted to the intensity that can achieve the maximum hydrogen desorption effect without destroying the film. The size cannot be specified. The total amount of irradiation energy applied to the film surface is preferably 1 × 10 3 J / cm 2 or more.

【0013】光学吸収端よりもエネルギーの高い光と
は、光学吸収端の波長よりも短波長の光を意味する。光
の強度および照射時間は、適宜最適な値をとればよい。
なお本発明においては、光の強度を変化させて調整する
方が時間を変化させるよりも望ましい。光照射する際の
雰囲気は、真空中、窒素中、もしくはHe、Ne、A
r、Kr、Xe等の不活性ガス中、またはこれらの一種
以上の混合ガス中とすることが望ましい。また、温度に
よっては空気中であっても良い。照射光の光源として
は、超高圧水銀灯、Ar+ レーザ、He−Cdレーザや
エキシマレーザあるいは、高エネルギーのX線源(例え
ばSOR)がある。
Light having a higher energy than the optical absorption edge means light having a shorter wavelength than the wavelength of the optical absorption edge. The light intensity and the irradiation time may take appropriate values as appropriate.
In the present invention, it is preferable to adjust the light intensity by changing it, rather than changing the time. The atmosphere for light irradiation is vacuum, nitrogen, or He, Ne, A
It is desirable to use an inert gas such as r, Kr, or Xe, or a mixed gas of one or more of these. Further, it may be in air depending on the temperature. As a light source of irradiation light, there is an ultrahigh pressure mercury lamp, an Ar + laser, a He-Cd laser, an excimer laser, or a high energy X-ray source (for example, SOR).

【0014】次に、本発明の方法を実施するための光照
射装置に関して、図面を用いて詳細に説明する。
Next, a light irradiation device for carrying out the method of the present invention will be described in detail with reference to the drawings.

【0015】図1は、本発明の方法を実施するための光
照射装置の一例を示す模式的断面図である。この光照射
装置は、基体1を設置する基体ホルダー2をチャンバー
3内に備え、チャンバー3の内部に所望のガスを導入す
るためのガス導入系4を備えている。そして、チャンバ
ー3の外にKrFのエキシマ・レーザー5を備え、この
レーザー光を、レンズ系6、ミラー7を介してチャンバ
ー3の窓8に導き、基体1に照射できる構成となってい
る。この基体1上に照射される光のエネルギー分布は一
様になる。また、このレーザー光自体を走査させること
もできる構成、あるいは基体1を走査回転させることも
できる構成であってもよい。
FIG. 1 is a schematic sectional view showing an example of a light irradiation apparatus for carrying out the method of the present invention. This light irradiation device includes a substrate holder 2 for mounting the substrate 1 in a chamber 3, and a gas introduction system 4 for introducing a desired gas into the chamber 3. Then, a KrF excimer laser 5 is provided outside the chamber 3, and this laser light can be guided to the window 8 of the chamber 3 via the lens system 6 and the mirror 7 and irradiated onto the substrate 1. The energy distribution of the light with which the substrate 1 is irradiated becomes uniform. Further, the laser light itself may be scanned, or the substrate 1 may be scanned and rotated.

【0016】図2は、本発明の方法を実施するための光
照射装置の他の一例を示す模式的断面図である。この光
照射装置は、Ar+ レーザー9を備え、この光をX軸方
向に回転するミラー10と、Y軸方向に回転するミラー
11とを有しており、基体1上で光を走査して、基体全
面に照射できる構成となっている。
FIG. 2 is a schematic sectional view showing another example of a light irradiation device for carrying out the method of the present invention. This light irradiation device is provided with an Ar + laser 9, and has a mirror 10 that rotates this light in the X-axis direction and a mirror 11 that rotates this light in the Y-axis direction. The entire surface of the substrate can be irradiated.

【0017】なお、光照射装置と成膜装置とを一体化し
て、本発明の方法における成膜および光照射工程を連続
的に実施する装置にすることもできる。
The light irradiation device and the film forming device may be integrated so that the film forming and light irradiation steps in the method of the present invention can be continuously performed.

【0018】[0018]

【実施例】以下、実施例により本発明を更に詳細に説明
する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0019】実施例1 まず、図3に模式的に示すECR−PCVD装置を用
い、以下の様にして、基体上に炭素と水素を主成分とす
る膜(水素化アモルファス炭素膜 a−C:H膜)を形
成した。
Example 1 First, using an ECR-PCVD apparatus schematically shown in FIG. 3, a film containing carbon and hydrogen as main components (hydrogenated amorphous carbon film a-C: H film) was formed.

【0020】図3に示すECR−PCVD装置は、空胴
共振器タイプのプラズマ室12、ガス導入系13、マイ
クロ波導入窓14、マイクロ波導波管15、電磁石16
を備える装置であり、これにCo−Ni−P系の記録層
が形成されたAl基体17を基体ホルダー18に設置し
た。この後、内部を1×10-7Torrまで排気した。次
に、ガス導入系13よりCH4 :25sccmを導入し、ガ
ス圧を1×10-4Torrとした後、2.45GHz のマイク
ロ波を、マイクロ波導入管15より900Wのパワーで
マイクロ波導入窓14より導入した。このとき、プラズ
マ室12の外部より電磁石16により、磁場を印加し、
ECRプラズマを形成した。
The ECR-PCVD apparatus shown in FIG. 3 has a cavity resonator type plasma chamber 12, a gas introduction system 13, a microwave introduction window 14, a microwave waveguide 15, and an electromagnet 16.
An Al substrate 17 on which a Co—Ni—P-based recording layer was formed was placed in a substrate holder 18. After this, the inside was evacuated to 1 × 10 −7 Torr. Next, CH 4 : 25 sccm was introduced from the gas introduction system 13, the gas pressure was set to 1 × 10 −4 Torr, and then a microwave of 2.45 GHz was introduced from the microwave introduction tube 15 at a power of 900 W. It was introduced through the window 14. At this time, a magnetic field is applied from the outside of the plasma chamber 12 by the electromagnet 16.
An ECR plasma was formed.

【0021】磁場の強度は、マイクロ波導入窓14の入
口で、1500gauss 、プラズマ室の出口部分で875
gauss のECR条件とし、基体17の位置で550gaus
s となるようにした。さらに不図示の13.56MHz の
RF電源により、基体17に200WのRFバイアスを
印加し、基体17を加熱することなく、基体上に水素化
アモルファス炭素膜(a−C:H膜)を1000オング
ストローム厚形成した。ここで同条件でSiウェハー上
に形成したa−C:H膜について、水素含有量、膜硬
度、摩擦係数および内部応力を評価したところ、水素含
有量(ERDA(Elastic Recoil Detection Analysis)
により評価)は約25atom%であり、膜硬度(ヌープ硬
度計により評価)は2000kg/mm2であり、摩擦係数
(直径5mmのAl23 −TiC合金球とのピンオンデ
ィスク方式で測定)は0.1であり、内部応力(光学的
手法(円板法)により評価)は2×1010dyn/cm2 であ
った。
The strength of the magnetic field is 1500 gauss at the entrance of the microwave introduction window 14 and 875 at the exit of the plasma chamber.
550 gaus at the position of the base 17 under the ECR condition of gauss
s. Further, by applying an RF bias of 200 W to the base 17 by an RF power source of 13.56 MHz (not shown), a hydrogenated amorphous carbon film (aC: H film) is formed on the base 17 to 1000 angstrom without heating the base 17. Formed thick. When the hydrogen content, film hardness, friction coefficient and internal stress of the aC: H film formed on the Si wafer under the same conditions were evaluated, the hydrogen content (ERDA (Elastic Recoil Detection Analysis)
Is about 25 atom%, the film hardness (evaluated by Knoop hardness meter) is 2000 kg / mm 2 , and the friction coefficient (measured by a pin-on-disc method with an Al 2 O 3 —TiC alloy sphere having a diameter of 5 mm). Was 0.1 and the internal stress (evaluated by an optical method (disk method)) was 2 × 10 10 dyn / cm 2 .

【0022】次に、図1に示した光照射装置に、上述の
様にしてa−C:H膜を形成した基体(Co−Ni−P
系記録層、Al基体の磁気ディスク)を基体ホルダー2
に設置し、ガス導入系4よりN2 ガスをチャンバー3内
に導入した。引き続きKrFのエキシマ・レーザー5か
らの光(パルス幅15ns、100mJ/パルス繰り返し周
期 100Hz)を、レンズ系6、ミラー7により窓8に導
き、基体1に1mJ/cm2のエネルギー密度で10秒間照射
した。ここで同条件でSiウェハー上に形成したa−
C:H膜に同条件で光を照射し、水素含有量、膜硬度、
摩擦係数、内部応力を評価したところ、膜硬度、摩擦係
数は変化しておらず、水素含有量は5atom%に減少し、
内部応力も6×108 dyn/cm2 に減少していた。
Next, a substrate (Co-Ni-P) having the aC: H film formed on the light irradiation apparatus shown in FIG. 1 as described above is formed.
System recording layer, Al-based magnetic disk) as a base holder 2
Then, N 2 gas was introduced into the chamber 3 from the gas introduction system 4. Subsequently, light from the excimer laser 5 of KrF (pulse width 15 ns, 100 mJ / pulse repetition period 100 Hz) is guided to the window 8 by the lens system 6 and the mirror 7, and the substrate 1 is irradiated with the energy density of 1 mJ / cm 2 for 10 seconds. did. Here, a- formed on the Si wafer under the same conditions
C: H film was irradiated with light under the same conditions to obtain hydrogen content, film hardness,
When the friction coefficient and the internal stress were evaluated, the film hardness and the friction coefficient did not change, and the hydrogen content decreased to 5 atom%.
The internal stress was also reduced to 6 × 10 8 dyn / cm 2 .

【0023】本実施例で得た磁気ディスク(a−C:H
系の保護被膜、Co−Ni−P系記録層、Al基体)は
保護被膜の密着性に優れており、TiC製ボールとのピ
ンオンディスクによる耐摩耗試験において、乾燥空気中
で10万個の回転を行っても膜の剥離や傷の発生が見ら
れず、摩擦係数も0.1以下であった。
The magnetic disk (aC: H) obtained in this example.
The protective coating of the system, the Co-Ni-P recording layer, and the Al substrate) have excellent adhesion to the protective coating, and in a wear resistance test using a pin-on-disk with a TiC ball, 100,000 of them were dried in air. No peeling or scratching of the film was observed even after rotation, and the coefficient of friction was 0.1 or less.

【0024】実施例2 まず、図4に模式的に示すRF−PCVD装置を用い、
以下の様にして、基体上に炭素と水素を主成分とする膜
(ダイヤモンド状炭素膜 DLC膜)を形成した。
Example 2 First, using the RF-PCVD apparatus schematically shown in FIG.
In the following manner, a film containing carbon and hydrogen as main components (diamond-like carbon film DLC film) was formed on the substrate.

【0025】図4に示すRF−PCVD装置は、反応室
19、電極20、ガス導入系21、排気系22を備える
装置であり、これにGdTbFeCo(RE−TM合
金)の記録層が形成されたガラス基体23を電極20間
に設置した。この後、反応室19の内部を排気系22よ
り1×10-7Torrに排気した後、ガス導入系21より、
CH4 :50sccm,H2:15sccm導入し、ガス圧を
0.015Torrとした。次に、電極20間にRF電源2
4によりRFパワー550Wを印加するとともに、基体
23に対し、DC電源25により、−300Vの負バイ
アスを印加し、基体を200℃に加熱した状態でダイヤ
モンド状炭素膜(DLC膜)を厚1000オングストロ
ーム厚形成した。
The RF-PCVD apparatus shown in FIG. 4 is an apparatus equipped with a reaction chamber 19, an electrode 20, a gas introduction system 21, and an exhaust system 22, on which a recording layer of GdTbFeCo (RE-TM alloy) was formed. The glass substrate 23 was placed between the electrodes 20. Then, after exhausting the inside of the reaction chamber 19 to 1 × 10 −7 Torr from the exhaust system 22, the gas introducing system 21
CH 4 : 50 sccm, H 2 : 15 sccm were introduced, and the gas pressure was 0.015 Torr. Next, the RF power source 2 is placed between the electrodes 20.
RF power of 550 W is applied to the substrate 23, and a negative bias of −300 V is applied to the substrate 23 by the DC power source 25 to heat the substrate to 200 ° C. and the diamond-like carbon film (DLC film) is formed to a thickness of 1000 angstroms. Formed thick.

【0026】ここで同条件でSiウェハー上に形成した
DLC膜について、実施例1と同様の方法によって、水
素含有量、膜硬度、摩擦係数、内部応力を評価したとこ
ろ、水素含有量=20atom%、膜硬度=2500kg/m
m2、摩擦係数=0.15、内部応力=8×109 dyn/cm
2 であった。
The hydrogen content, film hardness, friction coefficient and internal stress of the DLC film formed on the Si wafer under the same conditions were evaluated in the same manner as in Example 1. The hydrogen content was 20 atom%. , Film hardness = 2500kg / m
m 2 , friction coefficient = 0.15, internal stress = 8 × 10 9 dyn / cm
Was 2 .

【0027】次に、上述の様にしてDLC膜を形成した
基体(GdTbFeCo系記録層、ガラス基体の磁気デ
ィスク)に対し、実施例1と同様の装置を用い光の照射
を行った。ただし、光源にはKrFエキシマ・レーザー
5ではなく、100Wの超高圧水銀灯からの光を分光し
て365nmの輝線を用いた。また、膜面での照射電力密
度を20mW/cm2とし、15時間照射した。ここで同条件
でSiウエハー上に形成したDLC膜に同条件で光を照
射し、水素含有量、膜硬度、摩擦係数、内部応力を評価
したところ、膜硬度、摩擦係数は変化しておらず、水素
含有量は8atom%に減少し、内部応力も7×108 dyn/
cm2 に減少していた。
Next, the substrate (GdTbFeCo recording layer, glass-based magnetic disk) on which the DLC film was formed as described above was irradiated with light using the same apparatus as in Example 1. However, as the light source, not the KrF excimer laser 5, but the light from a 100 W ultra-high pressure mercury lamp was dispersed and a bright line of 365 nm was used. The irradiation power density on the film surface was set to 20 mW / cm 2 and irradiation was performed for 15 hours. Here, the DLC film formed on the Si wafer under the same conditions was irradiated with light under the same conditions, and the hydrogen content, the film hardness, the friction coefficient, and the internal stress were evaluated. The film hardness and the friction coefficient did not change. , The hydrogen content was reduced to 8 atom%, and the internal stress was 7 × 10 8 dyn /
It was reduced to cm 2 .

【0028】本実施例で得た磁気ディスク(DLC系の
保護被膜、GdTbFeCo系記録層、ガラス基体)は
保護被膜の密着性に優れており、実施例1と同様の良好
な性能が得られた。
The magnetic disk (DLC-based protective coating, GdTbFeCo-based recording layer, glass substrate) obtained in this example has excellent adhesion of the protective coating, and the same good performance as in Example 1 was obtained. .

【0029】実施例3 まず、実施例1と同様にして基体上にa−C:H膜を形
成した。次に、図2に示した光照射装置を用いて、この
a−C:H膜を形成した基体(Co−Ni−P系記録
層、Al基体の磁気ディスク)に光照射を行なった。照
射方法は、Ar+レーザー9の光をX軸方向回転ミラー
10とY軸方向回転ミラー11によって、基体1上で光
を走査して、基体全面に照射することによって行なっ
た。このときレーザは、106 W/cm2 のパワー密度とな
るよう調整し、20ms照射した。上述の様にして得た被
膜についても、実施例1と同様の良好な性能が得られ
た。
Example 3 First, an aC: H film was formed on a substrate in the same manner as in Example 1. Next, using the light irradiation device shown in FIG. 2, light irradiation was performed on the base body (Co—Ni—P recording layer, Al base magnetic disk) on which the aC: H film was formed. The irradiation method was performed by scanning the light of the Ar + laser 9 on the substrate 1 by the X-axis direction rotating mirror 10 and the Y-axis direction rotating mirror 11 and irradiating the entire surface of the substrate. At this time, the laser was adjusted to have a power density of 10 6 W / cm 2 and irradiated for 20 ms. With the coating film obtained as described above, the same good performance as in Example 1 was obtained.

【0030】[0030]

【発明の効果】以上説明したように、本発明の方法にお
いては、被膜の光学吸収端よりもエネルギーの高い光を
その被膜に照射することによって被膜の内部応力を緩和
するので、基体等に悪影響を与えることなく密着性を向
上させることができる。すなわち、本発明の方法により
得た被膜は、炭素と水素を主成分とする膜が有する高硬
度、非透過性などの優れた特性を維持しつつ、更に基体
との密着性にも優れたものとなる。保護被膜の密着性が
向上すれば、例えば、磁気(光磁気)ディスク等におけ
る保護被膜剥離や磁気記録層等の腐食を良好に防止する
ことができる。
As described above, in the method of the present invention, the internal stress of the coating is relaxed by irradiating the coating with light having a higher energy than the optical absorption edge of the coating, which adversely affects the substrate and the like. Adhesion can be improved without giving. That is, the coating film obtained by the method of the present invention maintains excellent characteristics such as high hardness and non-permeability of a film containing carbon and hydrogen as main components, and further has excellent adhesion to a substrate. Becomes If the adhesion of the protective coating is improved, it is possible to favorably prevent the protective coating from peeling off or the corrosion of the magnetic recording layer or the like in a magnetic (magneto-optical) disk or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を実施するための光照射装置
の一例を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a light irradiation device for carrying out the manufacturing method of the present invention.

【図2】本発明の製造方法を実施するための光照射装置
の他の一例を示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing another example of a light irradiation device for carrying out the manufacturing method of the present invention.

【図3】実施例1および3で使用したECR−PCVD
装置を模式的に示す断面図である。
FIG. 3 ECR-PCVD used in Examples 1 and 3
It is sectional drawing which shows a device typically.

【図4】実施例2で使用したRF−PCVD装置を模式
的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing the RF-PCVD apparatus used in Example 2.

【符号の説明】[Explanation of symbols]

1 基体 2 基体ホルダー 3 チャンバー 4 ガス導入系 5 KrFエキシマ・レーザー 6 レンズ系 7 ミラー 8 窓 9 Ar+ レーザー 10 X軸方向回転ミラー 11 Y軸方向回転ミラー 12 空胴共振器(プラズマ室) 13 ガス供給系 14 マイクロ波導入窓 15 マイクロ波導入管 16 電磁石 17 基体 18 基体ホルダー 19 反応室 20 電極 21 ガス導入系 22 排気系 23 基体 24 RF電源 25 DC電源1 substrate 2 substrate holder 3 chamber 4 gas introduction system 5 KrF excimer laser 6 lens system 7 mirror 8 window 9 Ar + laser 10 X-axis rotating mirror 11 Y-axis rotating mirror 12 cavity resonator (plasma chamber) 13 gas Supply system 14 Microwave introduction window 15 Microwave introduction tube 16 Electromagnet 17 Base 18 Base holder 19 Reaction chamber 20 Electrode 21 Gas introduction system 22 Exhaust system 23 Base 24 RF power supply 25 DC power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G11B 5/187 E 6789−5D 5/72 7215−5D // G11B 11/10 A 9075−5D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G11B 5/187 E 6789-5D 5/72 7215-5D // G11B 11/10 A 9075-5D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基体上に炭素と水素を主成分とする膜を
形成し、該膜の光学吸収端よりもエネルギーの高い光を
該膜に照射する工程を有する被膜の製造方法。
1. A method for producing a coating film, which comprises a step of forming a film containing carbon and hydrogen as main components on a substrate and irradiating the film with light having energy higher than an optical absorption edge of the film.
【請求項2】 炭素と水素を主成分とする膜が、水素を
15〜35atom%含む水素化アモルファス炭素膜である
請求項1に記載の製造方法。
2. The manufacturing method according to claim 1, wherein the film containing carbon and hydrogen as main components is a hydrogenated amorphous carbon film containing 15 to 35 atom% of hydrogen.
【請求項3】 炭素と水素を主成分とする膜が、ダイヤ
モンド状炭素膜である請求項1に記載の製造方法。
3. The manufacturing method according to claim 1, wherein the film containing carbon and hydrogen as main components is a diamond-like carbon film.
JP15455191A 1991-06-26 1991-06-26 Production of coating film Pending JPH054896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15455191A JPH054896A (en) 1991-06-26 1991-06-26 Production of coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15455191A JPH054896A (en) 1991-06-26 1991-06-26 Production of coating film

Publications (1)

Publication Number Publication Date
JPH054896A true JPH054896A (en) 1993-01-14

Family

ID=15586725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15455191A Pending JPH054896A (en) 1991-06-26 1991-06-26 Production of coating film

Country Status (1)

Country Link
JP (1) JPH054896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595564A2 (en) * 1992-10-29 1994-05-04 TDK Corporation Magnetic recording medium
EP0752487A1 (en) * 1995-07-02 1997-01-08 Research Development Corporation Of Japan Synthesis of diamond single crystal from hydrogenated amorphous carbon
KR101304215B1 (en) * 2011-08-31 2013-09-05 주식회사 테스 Process for forming amorphous carbon film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595564A2 (en) * 1992-10-29 1994-05-04 TDK Corporation Magnetic recording medium
EP0595564A3 (en) * 1992-10-29 1994-06-15 Tdk Corp Magnetic recording medium
EP0752487A1 (en) * 1995-07-02 1997-01-08 Research Development Corporation Of Japan Synthesis of diamond single crystal from hydrogenated amorphous carbon
KR101304215B1 (en) * 2011-08-31 2013-09-05 주식회사 테스 Process for forming amorphous carbon film

Similar Documents

Publication Publication Date Title
EP0293662B1 (en) A process for making a thin film metal alloy magnetic recording disk with a hydrogenated carbon overcoat
US5677051A (en) Magnetic recording medium having a specified plasma polymerized hydrogen containing carbon film and lubricant
US20080187781A1 (en) Magnetic recording head and media overcoat
JPH0680805A (en) Polyethylene terephthalate material of plane form with slightly rough surface, and its production and use
US6485614B2 (en) Method to stabilize a carbon alignment layer for liquid crystal displays
JPH054896A (en) Production of coating film
JP2006114182A (en) Magnetic recording medium and its manufacturing method
JP3755765B2 (en) Manufacturing method of magnetic disk
JP3082979B2 (en) Method for forming a-DLC-Si film
JPH0222012A (en) Stamper for molding and manufacture thereof
JP2001192826A (en) Surface treatment system, surface treatment method, and surface treated article
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
US6946166B2 (en) Magnetic recording medium, a method of manufacturing the same, and a magnetic storage device using the magnetic recording medium
US11322176B2 (en) Method of manufacturing magnetic recording medium
JP2000285437A (en) Magnetic recording medium and its manufacture
EP0655733B1 (en) Magnetic recording medium and method for producing the same
Wang et al. Radio frequency ion beam deposition of diamond‐like carbon for sliders and heads
US8771850B2 (en) Carbon-deuterium protective overcoat layer
JPH05174354A (en) Magnetic recording medium and production thereof and apparatus for producing the same
JP3219696B2 (en) Magneto-optical recording medium
JP2003301257A (en) Method for forming carbonaceous film and method for manufacturing magnetic disc
JP2507531B2 (en) Method of manufacturing magnetic recording medium
JP2002020870A (en) Method for depositing diamondlike carbon film
JP2003288720A (en) Information recording medium and manufacturing method therefor
JPH04114317A (en) Magnetic disk and production thereof