JPH0548678B2 - - Google Patents

Info

Publication number
JPH0548678B2
JPH0548678B2 JP59009000A JP900084A JPH0548678B2 JP H0548678 B2 JPH0548678 B2 JP H0548678B2 JP 59009000 A JP59009000 A JP 59009000A JP 900084 A JP900084 A JP 900084A JP H0548678 B2 JPH0548678 B2 JP H0548678B2
Authority
JP
Japan
Prior art keywords
diaphragm
carbon fiber
resin
molding
montmorillonite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59009000A
Other languages
Japanese (ja)
Other versions
JPS60153298A (en
Inventor
Shinya Mizone
Tamotsu Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onkyo Corp
Original Assignee
Onkyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onkyo Corp filed Critical Onkyo Corp
Priority to JP900084A priority Critical patent/JPS60153298A/en
Publication of JPS60153298A publication Critical patent/JPS60153298A/en
Publication of JPH0548678B2 publication Critical patent/JPH0548678B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は電気音響変換器用振動板の改良に関
し、特に剛性が高く、成形が非常に容易なる材料
より構成された振動板に関する。 近年、電気音響変換器用振動板において主とし
て剛性を増す目的から振動板構成材料の一部材と
してカーボン繊維を用いたものが考えられ、かつ
実用に供されている。 この種の振動板を例示すると (1) カーボン繊維とバルブ繊維を混抄した後、フ
エノール樹脂等を用いて賦形した振動板 (2) ポリプロピレン樹脂等の熱可塑性樹脂にカー
ボン繊維を混合してシート成形し、これを真空
成形した振動板、又は上記材料を混合して射出
成形した振動板 (3) カーボン繊維の織布又は不織布に熱硬化性樹
脂を含浸してプレプレグとし、これをプレス成
形した振動板 等が実用化されている。 しかるに、上記従来の振動板は種々の欠点を有
している。 たとえば(1)においてはカーボン繊維の特徴であ
る高弾性特性が充分に生かされず50wt%カーボ
ン繊維混入量でもヤング率はせいぜい5×
1010dyn/cmである。 これはカーボン繊維とパルプ繊維の混合率に対
するヤング率にピーク値が生じ、カーボン繊維の
混合率に制限があるためである。 又、(2)においてはシート成形時における混合物
の流動性、吐出ノズルの寸法からカーボン繊維混
入量が制限を受ける。 たとえば、0.3〜0.5mm厚のシートではカーボン
繊維の混合量はせいぜい20wt%である。 また、上記混合量は真空成形工程からの制限も
受ける。 一方、射出成形では上記混合量はせいぜい
15wt%である。 したがつて、振動板の剛性を充分に上げること
ができない。 更に(3)は上記2例から比べると剛性の高い振動
板が得られるが、一旦織布として組織化された一
枚の平らな布をコーン状又はドーム状に成形する
にはカーボン繊維自体の伸縮が期待できない以上
織目ズレを利用して賦形しなければならないの
で、予備成形等の数々の工程を経て賦形が可能と
なるため製造コストが極めて高く、又頂角の大き
い形状やコルゲーシヨンリブの一体成形等の賦雑
な形状の振動板が成形困難であつた。 そこでこの発明では硬化剤又は硬化促進剤を層
間に吸着せしめたモンモリロナイトと熱硬化性樹
脂モノマーとカーボン繊維を主要材料とする複合
材料と無機鱗片状物質、例えばグラフアイト微粉
末、マイカ微粉末等の混合物を加熱成形すること
により物性の優れた振動板を提供すると共に成形
を容易にしたものであり、以下実施例について詳
細に説明する。 この発明の目的には硬化剤又は硬化促進剤を層
間に吸着せしめた含水アルミケイ酸塩の一種であ
るモンモリロナイト(Al2O3・4Si2O・nH2O、別
名ベントナイト)が重要である。 当該モンモリロナイトを硬化剤又は硬化促進剤
を適当な溶剤に溶かした溶液中に浸漬(60℃、数
時間)する。 これによつてモンモリロナイトのシリケート層
間に硬化剤又は硬化促進剤が吸着される。 これを溶液洗浄した後、乾燥せしめて硬化剤又
は硬化促進剤との複合体を得る。 次に 複合体(硬化剤としてジアミノジフエニールメタ
ン吸着) 10部 エポキシ樹脂モノマー(商品名アラルダイト
6071) 35部 硬化剤(ジアミノジフエニールスルホン) 4.4部 離型剤(ステアリン酸亜鉛) 1部 カーボン繊維(ポリアクニロニトリル系カーボン
繊維 平均長0.35mm) 50部 上記配合物を加温下(85℃)で撹拌して均一に
配合し、しかる後に冷却せしめて粉砕し粉末状の
複合材料を得た。 当該複合材料にグラフアイト微粉末(325メシ
ユ全通)を10部均一に混合して所定形状の金型に
より温度160℃、プレス圧85Kg/cm2、成形時間10
分でプレス成形して開口径85mm、頂部径30mm、全
高19mmのコーン型振動板(試料1)を得た。 上記振動板(試料1)とクラフトパルプ50wt
%、カーボン繊維35wt%、フエーノール樹脂
15wt%よりなる振動板(試料2)、ポリプロピレ
ン樹脂に15wt%のカーボン繊維を混合し射出成
形してなる振動板(試料3)との物性(密度ρ、
ヤング率E)を測定した結果を第1表に示す。
The present invention relates to an improvement in a diaphragm for an electroacoustic transducer, and particularly to a diaphragm made of a material that has high rigidity and is extremely easy to mold. In recent years, diaphragms for electroacoustic transducers using carbon fiber as a component of the diaphragm have been considered and put into practical use primarily for the purpose of increasing rigidity. Examples of this type of diaphragm are: (1) A diaphragm made by mixing carbon fiber and valve fiber and then shaping it using phenol resin, etc. (2) A sheet made by mixing carbon fiber with a thermoplastic resin such as polypropylene resin. A diaphragm that is molded and vacuum-formed, or a diaphragm that is injection-molded by mixing the above materials (3) Carbon fiber woven or non-woven fabric is impregnated with a thermosetting resin to make a prepreg, which is then press-molded. Vibration plates and the like have been put into practical use. However, the conventional diaphragm described above has various drawbacks. For example, in (1), the high elasticity characteristic of carbon fiber is not fully utilized, and even if the amount of carbon fiber mixed is 50 wt%, the Young's modulus is at most 5 ×
10 10 dyn/cm. This is because a peak value occurs in Young's modulus with respect to the mixing ratio of carbon fibers and pulp fibers, and there is a limit to the mixing ratio of carbon fibers. In addition, in (2), the amount of carbon fiber mixed is limited by the fluidity of the mixture during sheet forming and the dimensions of the discharge nozzle. For example, in a sheet with a thickness of 0.3 to 0.5 mm, the amount of carbon fiber mixed is at most 20 wt%. Further, the above mixing amount is also limited by the vacuum forming process. On the other hand, in injection molding, the above mixing amount is at most
It is 15wt%. Therefore, the rigidity of the diaphragm cannot be increased sufficiently. Furthermore, in (3), a diaphragm with higher rigidity can be obtained compared to the above two examples, but in order to form a flat cloth into a cone or dome shape once organized as a woven cloth, the carbon fiber itself must be formed. Since expansion and contraction cannot be expected, it is necessary to take advantage of the weave misalignment to form the product, so the manufacturing cost is extremely high as it is possible to form the product through a number of processes such as preforming. It has been difficult to mold diaphragms with complex shapes such as integrated molding of gagement ribs. Therefore, in this invention, a composite material whose main materials are montmorillonite, a thermosetting resin monomer, and carbon fiber with a hardening agent or hardening accelerator adsorbed between the layers, and an inorganic scale-like substance such as graphite fine powder, mica fine powder, etc. By heating and molding the mixture, a diaphragm with excellent physical properties can be provided and the molding can be facilitated.Examples will be described in detail below. For the purpose of this invention, montmorillonite (Al 2 O 3 .4Si 2 O.nH 2 O, also known as bentonite), which is a type of hydrous aluminum silicate in which a curing agent or a curing accelerator is adsorbed between layers, is important. The montmorillonite is immersed (60° C., several hours) in a solution containing a hardening agent or hardening accelerator in a suitable solvent. As a result, the curing agent or curing accelerator is adsorbed between the silicate layers of montmorillonite. After solution washing, this is dried to obtain a composite with a curing agent or curing accelerator. Next, add 10 parts of the composite (adsorbing diaminodiphenylmethane as a curing agent) to an epoxy resin monomer (trade name: Araldite).
6071) 35 parts hardening agent (diaminodiphenylsulfone) 4.4 parts mold release agent (zinc stearate) 1 part carbon fiber (polyacnylonitrile carbon fiber average length 0.35 mm) 50 parts The above mixture was heated ( The mixture was mixed uniformly by stirring at 85° C.), then cooled and pulverized to obtain a powdered composite material. 10 parts of graphite fine powder (all 325 mesh) was uniformly mixed into the composite material and molded using a mold of a predetermined shape at a temperature of 160℃, a press pressure of 85Kg/cm 2 , and a molding time of 10 minutes.
A cone-shaped diaphragm (sample 1) with an opening diameter of 85 mm, a top diameter of 30 mm, and a total height of 19 mm was obtained by press molding in minutes. The above diaphragm (sample 1) and 50wt of kraft pulp
%, carbon fiber 35wt%, phenolic resin
The physical properties (density ρ,
Table 1 shows the results of measuring the Young's modulus (E).

【表】 但し密度:g/cm3、ヤング率:×1010dyn/cm2
表から明かなようにこの発明の振動板はE/ρが
極めて高いことが分る。 次にこの発明において無機鱗片状物質を混合す
ることによる作用効果について述べると、このよ
うな複合材料よりなる振動板を良好に成形するに
はカーボン繊維の混合率が大きな要因となる。 たとえば流動性の良い樹脂と平均繊維長の大き
いカーボン繊維を混練し、これを成形した場合樹
脂の流動に対してカーボン繊維の流動が少なく、
特に振動板の周辺部分(たとにばエツジとの貼着
部分やボイスコイルとの貼着部分)において樹脂
とカーボン繊維が分離してしまう現象が発生し、
振動板の部分的特性のバラツキやピンホール、ソ
リ等の変形の原因となる。 これを解決するには、樹脂を加熱して架橋増粘
させるか、カーボン繊維の繊維長を小さくするこ
とが必要であるが、前者の場合成形圧力を昇げる
必要があり新たな成形設備が必要となり、後者の
場合繊維長が小さくなるに従つて成形した振動板
のヤング率が低下し物性的に好しくない。 一方この発明ではグラフアト微粉末が樹脂の流
動とともに流動しカーボン繊維を押し流す作用を
するために樹脂と充填物の成形時の分離が抑制さ
れる結果上記欠点を解決できるものと推察でき
る。 そこで上記効果を確める為にグラフアイト微粉
末を混合しない例として前記複合材料のみを同形
状の金型により温度160℃、プレス圧85Kg/cm2
成形時間10分でプレス成形して同形状の振動板
(試料4)を得た。 この発明の振動板(試料1)および上記振動板
(試料4)をそれぞれ100枚づつ成形し、ピンホー
ルおよび変形の有無を調べたところ第2表を得
た。
[Table] However, density: g/cm 3 , Young's modulus: ×10 10 dyn/cm 2
As is clear from the table, the diaphragm of the present invention has an extremely high E/ρ. Next, in the present invention, the effect of mixing an inorganic scale-like substance will be described. The mixing ratio of carbon fiber is a major factor in properly molding a diaphragm made of such a composite material. For example, when a resin with good fluidity and carbon fiber with a large average fiber length are kneaded and molded, the flow of the carbon fiber is less than that of the resin.
Particularly in the peripheral areas of the diaphragm (the areas where it is attached to the edges and the voice coil), a phenomenon occurs where the resin and carbon fiber separate.
This causes local variations in the characteristics of the diaphragm and deformations such as pinholes and warping. To solve this problem, it is necessary to heat the resin to crosslink and thicken it, or to reduce the fiber length of the carbon fiber, but in the former case, it is necessary to increase the molding pressure, which requires new molding equipment. In the latter case, as the fiber length becomes smaller, the Young's modulus of the molded diaphragm decreases, which is not favorable in terms of physical properties. On the other hand, in the present invention, since the graphato fine powder flows with the flow of the resin and has the effect of pushing away the carbon fibers, separation of the resin and the filler during molding is suppressed, and as a result, it can be inferred that the above-mentioned drawbacks can be solved. Therefore, in order to confirm the above effect, as an example without mixing graphite fine powder, only the above composite material was placed in a mold of the same shape at a temperature of 160°C and a press pressure of 85 kg/cm 2 .
A diaphragm (sample 4) of the same shape was obtained by press molding in a molding time of 10 minutes. 100 pieces each of the diaphragm of the present invention (sample 1) and the diaphragm described above (sample 4) were molded, and the presence or absence of pinholes and deformation was examined, and Table 2 was obtained.

【表】 第2表から明らかなようにこの発明の振動板
(試料1)は成形時におけるピンホールや変形が
極めて少なく大量生産において優れた効果が得ら
れた。 ちなみに上記両振動板においてピンホールが発
生しないプレス条件を調べたところ、この発明実
施の振動板(試料1)では予熱工程を必要とせず
プレス圧は60Kg/cm2程度で充分であるのに対し振
動板(試料4)では予熱時間を60秒必要とし、プ
レス圧も100Kg/cm2程度必要とした。 これから考慮してもこの発明振動板が大量生産
に適したもであるかが分る。 次に上記振動板(試料4)の物性を測定し、こ
の発明の振動板(試料1)と比較したところ第3
表の結果を得た。
[Table] As is clear from Table 2, the diaphragm of the present invention (Sample 1) had extremely few pinholes or deformations during molding, and was excellent in mass production. By the way, when we investigated the pressing conditions in which pinholes would not occur in both of the diaphragms mentioned above, we found that the diaphragm according to the present invention (sample 1) does not require a preheating process and a press pressure of about 60 kg/cm 2 is sufficient. The diaphragm (sample 4) required a preheating time of 60 seconds and a pressing pressure of about 100 kg/cm 2 . From this consideration, it can be seen whether the diaphragm of this invention is suitable for mass production. Next, the physical properties of the diaphragm (Sample 4) were measured and compared with the diaphragm of the present invention (Sample 1).
Obtained the results in the table.

【表】 但し、曲げ弾性率:Kg/cm2、内部損失:tan δ
である。 上表から明らかなようにこの発明実施例の振動
板(試料1)はヤング率、内部損失および曲げ弾
性率がそれぞれ上昇し物性からも優れた特徴を有
することが判明した。 この発明の振動板のヤング率が著しく上昇する
要因としては、カーボン繊維およびグラフアイト
微粉末の空間を埋めるようにモンモリロナイト−
エポキシ複合体が分散し、かつモンモリロナイト
の層間に入り込んだエポキシポリマーとモンモリ
ロナイトが強固に結合されたブレンド形ポリマー
が形成され、当該ブレンド形ポリマーがカーボン
繊維およびグラフアイト微粉末をからみ込むよう
に3次元網状構造に組織化される為であると思わ
れる。 又、この発明の振動板はプレス金型内において
エポキシ樹脂が一旦溶融し低粘度となつて流動す
るが、一定温度(150℃)まではモンモリロナイ
トの層間に吸着された硬化剤又は硬化促進剤が浸
出しないので低粘度の流動状態を保持する結果、
複雑な形状の金型であつても隅々まで充填される
とともにグラフアイト微粉末が樹脂の流動ととも
に流動しカーボン繊維を押し流す作用をするため
に樹脂と充填物の成形時の分離が抑制される結果
振動板の各部分が均一となつてピンホールの発生
や変形の少ない、かつ形状寸法精度の高い振動板
を得ることができた。 又、モンモリナイトに吸着させる硬化促進剤と
しては、たとえばエチルメチルイミダゾールが無
水フタル酸(硬化剤)との組み合わせで使用でき
る。 以上に説明したように、この発明は硬化剤又は
硬化促進剤を層間に吸着せしめたモンモリロナイ
トと熱硬化性樹脂モノマーとカーボン繊維を主要
材料とする複合材料と無機鱗片状物質、例えばグ
ラフアイト微粉末、マイカ微粉末等の混合物を加
熱成形してなることを特徴とする電気音響変換器
用振動板であつて、振動板の高剛性化もしくは軽
量化することができるので良好な周波数特性を有
するスピーカーを提供することができる。 更に、成形時におけるピンホールの発生や変形
を防止でき寸法精度の高い振動板を簡便にかつ大
量に製造することができ、低コストの特性の良い
振動板を提供することができる等従来では達成で
きなかつた優れた効果を有するものである。 尚、この発明をコーン型振動板に適用した場合
について述べたが勿論ドーム型振動板、更にはセ
ンタードームラジエーターにも適用することがで
きるものである。
[Table] However, bending elastic modulus: Kg/cm 2 , internal loss: tan δ
It is. As is clear from the above table, the diaphragm of this invention example (Sample 1) had increased Young's modulus, internal loss, and flexural modulus, and was found to have excellent physical properties. The reason why the Young's modulus of the diaphragm of this invention increases significantly is that montmorillonite fills the spaces between carbon fibers and graphite fine powder.
A blended polymer is formed in which the epoxy composite is dispersed and the epoxy polymer and montmorillonite are firmly bonded between the layers of montmorillonite, and the blended polymer entangles carbon fibers and graphite fine powder in a three-dimensional manner. This seems to be because it is organized into a network structure. In addition, in the diaphragm of the present invention, the epoxy resin once melts in the press mold and becomes low in viscosity and flows, but up to a certain temperature (150°C), the curing agent or curing accelerator adsorbed between the layers of montmorillonite is As a result of no leaching, it maintains a low viscosity fluid state.
Even if the mold has a complex shape, it is filled to every corner, and the fine graphite powder flows with the flow of the resin and has the effect of pushing away the carbon fibers, suppressing separation of the resin and filler during molding. As a result, each part of the diaphragm is uniform, and a diaphragm with high dimensional and shape accuracy can be obtained with few pinholes or deformations. Further, as a curing accelerator to be adsorbed to montmolinite, for example, ethylmethylimidazole can be used in combination with phthalic anhydride (hardening agent). As explained above, the present invention is based on a composite material mainly composed of montmorillonite, a thermosetting resin monomer, and carbon fiber in which a curing agent or curing accelerator is adsorbed between layers, and an inorganic scale-like substance such as graphite fine powder. , a diaphragm for an electroacoustic transducer characterized by being formed by heating and molding a mixture of fine mica powder, etc., which allows the diaphragm to be made highly rigid or lightweight, so that it can be used as a speaker with good frequency characteristics. can be provided. Furthermore, it is possible to prevent the occurrence of pinholes and deformation during molding, and it is possible to easily manufacture large quantities of diaphragms with high dimensional accuracy, making it possible to provide diaphragms with good characteristics at a low cost, which was not previously possible. It has excellent effects that have never been possible before. Although the present invention has been described as being applied to a cone-shaped diaphragm, it can of course be applied to a dome-shaped diaphragm and even a center dome radiator.

Claims (1)

【特許請求の範囲】 1 硬化剤又は硬化促進剤を層間に吸着せしめた
モンモリロナイトと熱硬化性樹脂モノマーとカー
ボン繊維を主要材料とする複合材料と無機鱗片状
物質の混合物を加熱成形してなることを特徴とす
る電気音響変換器用振動板。 2 熱硬化性樹脂モノマーがエポキシ樹脂である
ことを特徴とする特許請求の範囲の第1項記載の
電気音響変換器用振動板。
[Scope of Claims] 1. A mixture of a composite material whose main materials are montmorillonite with a curing agent or curing accelerator adsorbed between the layers, a thermosetting resin monomer, and carbon fiber, and an inorganic scale-like substance, and formed by heating. A diaphragm for electroacoustic transducers featuring: 2. The diaphragm for an electroacoustic transducer according to claim 1, wherein the thermosetting resin monomer is an epoxy resin.
JP900084A 1984-01-21 1984-01-21 Diaphragm for electroacoustic transducer Granted JPS60153298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP900084A JPS60153298A (en) 1984-01-21 1984-01-21 Diaphragm for electroacoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP900084A JPS60153298A (en) 1984-01-21 1984-01-21 Diaphragm for electroacoustic transducer

Publications (2)

Publication Number Publication Date
JPS60153298A JPS60153298A (en) 1985-08-12
JPH0548678B2 true JPH0548678B2 (en) 1993-07-22

Family

ID=11708403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP900084A Granted JPS60153298A (en) 1984-01-21 1984-01-21 Diaphragm for electroacoustic transducer

Country Status (1)

Country Link
JP (1) JPS60153298A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275316A (en) * 1975-12-19 1977-06-24 Mitsubishi Electric Corp Diaphragm for speakers
JPS58107795A (en) * 1981-12-22 1983-06-27 Hitachi Chem Co Ltd Electroacoustic diaphragm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275316A (en) * 1975-12-19 1977-06-24 Mitsubishi Electric Corp Diaphragm for speakers
JPS58107795A (en) * 1981-12-22 1983-06-27 Hitachi Chem Co Ltd Electroacoustic diaphragm

Also Published As

Publication number Publication date
JPS60153298A (en) 1985-08-12

Similar Documents

Publication Publication Date Title
JP3199559B2 (en) Speaker damper and method of manufacturing the same
US4547408A (en) Metal-clad laminate adapted for printed circuits
JPS63223028A (en) High temperature molding epoxy resin composition
US4753969A (en) Diaphragm for electroacoustic transducer
JPH0548678B2 (en)
JP2003219493A (en) Diaphragm for speaker
JPH0548679B2 (en)
JPS60152198A (en) Diaphragm for electroaccoustic transducer
CN106751530B (en) A kind of composite material sandwich structure co-curable lightweight high rigidity core material and its preparation method and application
JPH0573118B2 (en)
JPH0321116Y2 (en)
JP2000077081A (en) Fuel cell, separator for fuel cell, and its manufacture
JPS60226300A (en) Diaphragm member for electroacoustic transducer
JPS61118000A (en) Diaphragm for electroacoustic transducer and its manufacture
US5435967A (en) Method of preparing an air-permeable molded body
JP3317052B2 (en) Speaker diaphragm and manufacturing method thereof
JPH0321115Y2 (en)
JPH0548680B2 (en)
JP2890720B2 (en) Speaker diaphragm
JPH1175290A (en) Speaker diaphragm and its manufacture
JPS60121895A (en) Manufacturing method of diaphragm for all carbon-based sounder
JPH0321119Y2 (en)
CN112852153B (en) Preparation method of high-temperature-resistant internal demolding prepreg
CN107603406A (en) A kind of lightweight constrained layer material and its application method for constrained damping structure
JPS6030340B2 (en) Prepreg manufacturing method