JP2003219493A - Diaphragm for speaker - Google Patents

Diaphragm for speaker

Info

Publication number
JP2003219493A
JP2003219493A JP2002016362A JP2002016362A JP2003219493A JP 2003219493 A JP2003219493 A JP 2003219493A JP 2002016362 A JP2002016362 A JP 2002016362A JP 2002016362 A JP2002016362 A JP 2002016362A JP 2003219493 A JP2003219493 A JP 2003219493A
Authority
JP
Japan
Prior art keywords
diaphragm
fiber
woven fabric
fibers
speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002016362A
Other languages
Japanese (ja)
Other versions
JP4447818B2 (en
Inventor
Toshihide Inoue
利秀 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onkyo Corp
Original Assignee
Onkyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onkyo Corp filed Critical Onkyo Corp
Priority to JP2002016362A priority Critical patent/JP4447818B2/en
Publication of JP2003219493A publication Critical patent/JP2003219493A/en
Application granted granted Critical
Publication of JP4447818B2 publication Critical patent/JP4447818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diaphragm for a speaker, excellent in both elasticity and internal loss and can reproduce an original sound faithfully. <P>SOLUTION: The diaphragm for a speaker is made by molding and curing a basic material impregnated with thermosetting resin. The basic material is a laminate including at least one woven fabric layer of inorganic fibers and at least one nonwoven fabric layer of natural fibers, and the thermosetting resin is unsaturated polyester resin. Volumetric fiber content of the diaphragm is in a range of 50%-90%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スピーカー用振動
板に関する。
TECHNICAL FIELD The present invention relates to a diaphragm for a speaker.

【0002】[0002]

【従来の技術】代表的なスピーカー用振動板としては、
パルプなどの短繊維を抄造したパルプコーン、強化繊維
に熱硬化性樹脂を含浸して成形したFRPコーン、熱可
塑性樹脂を射出成形した振動板等が挙げられる。近年、
環境問題への関心の高まりとともに、軽量、耐候性とい
った特性が求められており、車載用スピーカーにおいて
はこのような要求が特に強くなっている。
2. Description of the Related Art As a typical speaker diaphragm,
Examples thereof include a pulp cone made by making short fibers such as pulp, an FRP cone made by impregnating a reinforcing fiber with a thermosetting resin, and a diaphragm made by injection-molding a thermoplastic resin. recent years,
With increasing interest in environmental issues, characteristics such as light weight and weather resistance are required, and such requirements are particularly strong in vehicle speakers.

【0003】車載用スピーカーの振動板としては、強度
および耐候性の観点からFRPコーンが優れている。F
RPコーンとしては、いわゆるエポキシプリプレグを用
いたものが最も一般的である。ここで、エポキシプリプ
レグとは、炭素繊維またはガラス繊維の織物基材にマト
リクス樹脂としてエポキシ樹脂を含浸し半硬化させたも
のである。しかし、このような無機繊維を基材とした振
動板は、優れた弾性率を有するが、内部損失が極端に小
さく、かつ、最高共振周波数Fhで急峻なピークが発生
するので、再生音の音質が原音とかけ離れたものとなる
という問題がある。
From the viewpoint of strength and weather resistance, FRP cones are excellent as diaphragms for vehicle-mounted speakers. F
As the RP cone, the one using a so-called epoxy prepreg is most common. Here, the epoxy prepreg is obtained by impregnating a carbon fiber or glass fiber woven base material with an epoxy resin as a matrix resin and semi-curing the epoxy resin. However, a diaphragm based on such an inorganic fiber has an excellent elastic modulus, but the internal loss is extremely small, and a sharp peak occurs at the maximum resonance frequency Fh, so the sound quality of the reproduced sound is high. There is a problem that is far from the original sound.

【0004】基材として天然繊維を使用すれば内部損失
を増大させることは可能であるが、エポキシ樹脂の硬化
条件(代表的には130℃で10分以上)では繊維が熱
分解してしまう。その結果、変形したり、機械的特性が
極端に低下するので、エポキシ樹脂を使用することがで
きず、実用的ではない。
Although it is possible to increase the internal loss by using natural fibers as the base material, the fibers are thermally decomposed under the curing conditions of the epoxy resin (typically at 130 ° C. for 10 minutes or more). As a result, the epoxy resin cannot be used because it is deformed or the mechanical properties are extremely deteriorated, which is not practical.

【0005】また、無機短繊維の不織布を基材として使
用する場合もある。この場合、無機繊維不織布はそのま
までは絡み合いが弱く布状にはなり得ないので、通常、
繊維表面に熱可塑性樹脂がバインダーとして多量にコー
ティングされる。その結果、マトリクス樹脂を含浸して
成形しても、無機繊維表面とマトリクス樹脂との間に多
量の熱可塑性樹脂(バインダー樹脂)層が介在するの
で、十分な弾性率が得られないという問題がある。
In some cases, a non-woven fabric of inorganic short fibers is used as a base material. In this case, since the inorganic fiber non-woven fabric is not entangled as it is and cannot be formed into a cloth, it is usually
A large amount of thermoplastic resin is coated on the fiber surface as a binder. As a result, even if the resin is impregnated with the matrix resin, a large amount of the thermoplastic resin (binder resin) layer is interposed between the surface of the inorganic fiber and the matrix resin, so that a sufficient elastic modulus cannot be obtained. is there.

【0006】さらに、上記以外に種々の基材が提案され
ているが、それぞれ、以下に説明するような問題があ
る。無機繊維の織布と天然繊維の織布とを組み合わせた
基材の場合には(特開昭53-95617号公報)、各織布層間
に繊維同士の結合がなく樹脂で満たされているだけであ
るので、曲げ剛性が不十分である。その結果、大振幅に
より振動板に曲げ振動が加わった場合、層間剥離が生じ
やすいという問題がある。無機繊維の織布と合成繊維の
不織布とを組み合わせた基材の場合(特開昭53-95617号
公報)、および、無機繊維の織布とパルプとを組み合わ
せた基材の場合(例えば、特開昭58-131895号公報、特
開昭64-24697号公報、特開昭64-82800号公報、特開2000
-92590号公報)には、織布と不織布またはパルプが絡み
合うので層間剥離は生じにくい。しかし、パルプ不織布
は成形時の加熱で劣化し、合成繊維不織布は成形時の加
熱により軟化してしまう。その結果、繊維が変質した状
態で硬化・成形されるので、パルプまたは合成繊維の特
性が十分に生かされず、結局、得られる弾性率および内
部損失は無機繊維織布のみからなる基材の弾性率および
内部損失とほとんど同等である。
Further, various base materials other than those mentioned above have been proposed, but each has the following problems. In the case of a base material in which a woven fabric of inorganic fibers and a woven fabric of natural fibers are combined (Japanese Patent Laid-Open No. 53-95617), there is no bond between fibers between the woven fabric layers, and only the resin is filled. Therefore, the bending rigidity is insufficient. As a result, there is a problem that delamination is likely to occur when bending vibration is applied to the diaphragm due to a large amplitude. In the case of a base material in which a woven fabric of inorganic fibers and a non-woven fabric of synthetic fibers are combined (JP-A-53-95617), and in the case of a base material in which a woven fabric of inorganic fibers and pulp are combined (for example, JP-A-58-131895, JP-A-64-24697, JP-A-64-82800, JP-A-2000
-92590), woven fabric and non-woven fabric or pulp are intertwined with each other, and thus delamination is unlikely to occur. However, the pulp nonwoven fabric is deteriorated by heating during molding, and the synthetic fiber nonwoven fabric is softened by heating during molding. As a result, the fibers are cured and molded in a deteriorated state, so the characteristics of pulp or synthetic fibers are not fully utilized, and in the end, the elastic modulus and internal loss obtained are the elastic modulus of the base material consisting only of inorganic fiber woven cloth. And almost equal to the internal loss.

【0007】振動板の成形方法としては、単層のエポキ
シプリプレグまたは複数のエポキシプリプレグを重ね合
わせた積層体を熱プレスにより成形する方法が代表的で
ある。プリプレグは、織布または不織布を構成する繊維
が高粘度の半硬化エポキシ樹脂で覆われているので、多
量のエポキシ樹脂が繊維表面を覆ったまま振動板が成形
される。その結果、得られる振動板の繊維体積比率Vf
が小さくなってしまう。すなわち、得られる振動板の特
性がエポキシ樹脂の特性に支配されてしまう。より具体
的には、いくら弾性率の大きな繊維基材を使用しても得
られる振動板の弾性率はそれほど大きくならず、また、
エポキシ樹脂は硬くて脆いので得られる振動板の内部損
失が極端に低下してしまうという問題がある。
A typical method of forming the diaphragm is to form a single-layer epoxy prepreg or a laminate of a plurality of epoxy prepregs by hot pressing. In the prepreg, the fibers constituting the woven or non-woven fabric are covered with the semi-cured epoxy resin having a high viscosity, so that the diaphragm is formed while a large amount of the epoxy resin covers the fiber surface. As a result, the fiber volume ratio Vf of the obtained diaphragm is
Becomes smaller. That is, the characteristics of the obtained diaphragm are governed by the characteristics of the epoxy resin. More specifically, the elastic modulus of the obtained diaphragm does not become so large no matter how large the fiber base material is,
Since the epoxy resin is hard and brittle, there is a problem that the internal loss of the obtained diaphragm is extremely reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記従来の課
題を解決するためになされたものであり、その目的とす
るところは、弾性率および内部損失の両方に優れ、原音
に忠実な再生音が得られるスピーカー用振動板を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and an object of the present invention is to provide a reproduced sound which is excellent in both elastic modulus and internal loss and which is faithful to the original sound. It is to provide a diaphragm for a loudspeaker.

【0009】[0009]

【課題を解決するための手段】本発明のスピーカー用振
動板は、熱硬化性樹脂が含浸された基材を成形および硬
化してなり、該基材が、少なくとも1つの無機繊維織布
層と少なくとも1つの天然繊維不織布層とを含む積層体
であり、該熱硬化性樹脂が不飽和ポリエステル樹脂であ
り、繊維体積含有率が50%〜90%の範囲である。
The speaker diaphragm of the present invention is formed by molding and curing a base material impregnated with a thermosetting resin, and the base material comprises at least one inorganic fiber woven fabric layer. A laminate including at least one natural fiber nonwoven fabric layer, the thermosetting resin is an unsaturated polyester resin, and the fiber volume content is in the range of 50% to 90%.

【0010】好ましい実施形態においては、上記繊維体
積含有率は55%〜85%の範囲である。
In a preferred embodiment, the fiber volume content is in the range of 55% to 85%.

【0011】好ましい実施形態においては、上記基材
は、最上層に無機繊維織布層を有し、該無機繊維織布層
の下に複数の天然繊維不織布層を有する。
In a preferred embodiment, the base material has an inorganic fiber woven fabric layer as the uppermost layer, and a plurality of natural fiber nonwoven fabric layers under the inorganic fiber woven fabric layer.

【0012】好ましい実施形態においては、上記無機繊
維はガラス繊維であり、上記天然繊維は絹繊維である。
In a preferred embodiment, the inorganic fibers are glass fibers and the natural fibers are silk fibers.

【0013】好ましい実施形態においては、上記振動板
の弾性率は7.0×1010dyne/cm2以上であり、内部損
失は0.024以上である。
In a preferred embodiment, the diaphragm has an elastic modulus of 7.0 × 10 10 dyne / cm 2 or more and an internal loss of 0.024 or more.

【0014】[0014]

【発明の実施の形態】本発明のスピーカー用振動板は、
熱硬化性樹脂が含浸された基材を成形および硬化してな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The diaphragm for a speaker of the present invention comprises:
It is formed by molding and curing a base material impregnated with a thermosetting resin.

【0015】この基材は、少なくとも1つの無機繊維織
布層と少なくとも1つの天然繊維不織布層とを含む積層
体である。目的とする弾性率、内部損失および繊維体積
含有率に応じて任意の適切な積層構造が採用され得る。
代表的には、基材は、最上層(すなわち、再生音が放射
される側)に無機繊維織布層を有し、該無機繊維織布層
の下に複数の天然繊維不織布層を有する。天然繊維不織
布層は、さらに好ましくは3層〜6層であり、とりわけ
好ましくは6層である。このような積層構造を有するこ
とにより、非常に優れた弾性率および内部損失を有する
振動板が得られるからである。
The substrate is a laminate containing at least one inorganic fiber woven fabric layer and at least one natural fiber nonwoven fabric layer. Any suitable laminated structure can be adopted depending on the desired elastic modulus, internal loss and fiber volume content.
Typically, the base material has an inorganic fiber woven fabric layer in the uppermost layer (that is, the side where the reproduced sound is emitted), and has a plurality of natural fiber nonwoven fabric layers under the inorganic fiber woven fabric layer. The natural fiber nonwoven fabric layer is more preferably 3 to 6 layers, and particularly preferably 6 layers. This is because, by having such a laminated structure, a diaphragm having a very excellent elastic modulus and internal loss can be obtained.

【0016】好ましくは、基材を構成する無機繊維織布
および天然繊維不織布はいずれも、いわゆる目付けが小
さいものが用いられる。熱硬化性樹脂の含浸効率が向上
し、繊維体積含有率Vfが非常に高い振動板が得られる
からである。代表的には、無機繊維織布は90〜750
g/mの面密度を有し、天然繊維不織布は30〜60
g/mの面密度を有する。
Preferably, the inorganic fiber woven fabric and the natural fiber non-woven fabric constituting the base material have a so-called small basis weight. This is because the impregnation efficiency of the thermosetting resin is improved and a diaphragm having a very high fiber volume content Vf can be obtained. Typically, the inorganic fiber woven fabric is 90 to 750.
Has a surface density of g / m 2 and the natural fiber nonwoven fabric is 30-60.
It has an areal density of g / m 2 .

【0017】本発明に用いられる熱硬化性樹脂は、不飽
和ポリエステル樹脂である。他の熱硬化性樹脂に比べて
粘度が低いので、基材への含浸効率が他の熱硬化性樹脂
に比べて格段に優れ、その結果、繊維体積含有率Vfが
非常に高い振動板が得られるからである。さらに、成形
温度が低いので、成形時における基材の天然繊維の劣化
を防止できるからである。本発明に用いられる熱硬化性
樹脂は、液状組成物の形態で数多く市販されている。
The thermosetting resin used in the present invention is an unsaturated polyester resin. Since the viscosity is lower than that of other thermosetting resins, the efficiency of impregnation into the base material is much better than that of other thermosetting resins, and as a result, a diaphragm having a very high fiber volume content Vf is obtained. Because it will be done. Furthermore, since the molding temperature is low, it is possible to prevent deterioration of the natural fiber of the base material during molding. Many thermosetting resins used in the present invention are commercially available in the form of liquid compositions.

【0018】本発明の振動板の繊維体積含有率Vfは5
0%〜90%の範囲である。繊維体積含有率Vfは、AS
TM D 3171に下式で規定されている。
The fiber volume content Vf of the diaphragm of the present invention is 5
It is in the range of 0% to 90%. Fiber volume content Vf is AS
It is specified in the following formula in TM D 3171.

【0019】[0019]

【数1】 [Equation 1]

【0020】ここで、Rρは樹脂の密度であり、Fρは
繊維の密度であり、Wfは繊維重量含有率(すなわち、
複合体重量に占める繊維重量の割合)である。無機繊維
織布および天然繊維不織布を含む基材と不飽和ポリエス
テル樹脂とを組み合わせることにより、従来では達成で
きなかった高い繊維体積含有率Vfを達成したことが、
本発明の特徴の1つである。
Where Rρ is the resin density, Fρ is the fiber density, and Wf is the fiber weight content (ie,
It is the ratio of the fiber weight to the composite weight). By combining a base material including an inorganic fiber woven fabric and a natural fiber nonwoven fabric with an unsaturated polyester resin, it has been possible to achieve a high fiber volume content Vf that could not be achieved in the past.
This is one of the features of the present invention.

【0021】繊維体積含有率Vfは、好ましくは55%
以上、さらに好ましくは60%以上、とりわけ好ましく
は65%以上、最も好ましくは70%以上である。基材
繊維の特性を忠実に反映した振動板が得られるからであ
る。繊維体積含有率Vfの上限は、成形可能な範囲で高
ければ高いほど好ましい。具体的には、繊維体積含有率
Vfは、好ましくは85%以下、さらに好ましくは80
%以下である。成形不良の可能性が格段に減少するから
である。
The fiber volume content Vf is preferably 55%.
The above is more preferably 60% or more, particularly preferably 65% or more, and most preferably 70% or more. This is because a diaphragm that faithfully reflects the characteristics of the base fiber can be obtained. The upper limit of the fiber volume content Vf is preferably as high as possible within a moldable range. Specifically, the fiber volume content Vf is preferably 85% or less, more preferably 80.
% Or less. This is because the possibility of defective molding is significantly reduced.

【0022】好ましくは、上記無機繊維はガラス繊維で
ある。優れた弾性率を有する振動板が得られるからであ
る。好ましくは、上記天然繊維は絹繊維である。優れた
内部損失を有する振動板が得られるからである。
Preferably, the inorganic fibers are glass fibers. This is because a diaphragm having an excellent elastic modulus can be obtained. Preferably, the natural fiber is silk fiber. This is because a diaphragm having excellent internal loss can be obtained.

【0023】好ましくは、本発明の振動板の弾性率は
7.0×1010dyne/cm2以上であり、かつ、内部損失は
0.024以上である。さらに好ましくは、弾性率が
8.7×1010dyne/cm2以上であり、かつ、内部損失が
0.033以上、あるいは、弾性率が8.3×1010dy
ne/cm2以上であり、かつ、内部損失が0.037以上で
ある。このような優れた弾性率と内部損失とを同時に達
成できることが、本発明の特徴の1つである。
Preferably, the elastic modulus of the diaphragm of the present invention is 7.0 × 10 10 dyne / cm 2 or more, and the internal loss is 0.024 or more. More preferably, the elastic modulus is 8.7 × 10 10 dyne / cm 2 or more and the internal loss is 0.033 or more, or the elastic modulus is 8.3 × 10 10 dy.
It is ne / cm 2 or more and the internal loss is 0.037 or more. It is one of the features of the present invention that such an excellent elastic modulus and internal loss can be achieved at the same time.

【0024】以下、本発明の作用について説明する。The operation of the present invention will be described below.

【0025】一般に、振動板の繊維体積含有率と弾性率
との間には Ec=Ef・Vf+Er(1−Vf) という関係が成り立つ。ここで、Ecは振動板成形品の
弾性率であり、Efは繊維の弾性率であり、Erは含浸
樹脂の弾性率であり、Vfは繊維体積含有率である。繊
維の弾性率は有機・無機を問わず含浸樹脂の弾性率より
もはるかに大きいので、振動板の弾性率Ecを大きくす
るためには、繊維体積含有率Vfを大きくすることが望
ましい。しかし、Vfがある程度大きくなると、繊維同
士を結合しているマトリクス樹脂(含浸樹脂)の量が少
なくなるため、逆に弾性率は低下する。基材が積層構造
を有する場合には、繊維層間の機械的な結合力に依存し
て、弾性率が低下し始めるVfが変化する。いずれにし
ても、従来の振動板では、繊維体積含有率Vfが50%
前後の領域で急激に低下する。弾性率が非常に高いガラ
ス繊維のみを基材とすれば、弾性率はVfが60%程度
まで維持できるが、内部損失はVfに関係なく劣悪であ
る。
Generally, the relationship of Ec = EfVf + Er (1-Vf) is established between the fiber volume content and the elastic modulus of the diaphragm. Here, Ec is the elastic modulus of the diaphragm molded product, Ef is the elastic modulus of the fiber, Er is the elastic modulus of the impregnating resin, and Vf is the fiber volume content. Since the elastic modulus of the fiber is much larger than that of the impregnated resin regardless of whether it is organic or inorganic, it is desirable to increase the fiber volume content Vf in order to increase the elastic modulus Ec of the diaphragm. However, when Vf becomes large to some extent, the amount of the matrix resin (impregnating resin) that bonds the fibers to each other decreases, so that the elastic modulus decreases. When the base material has a laminated structure, Vf at which the elastic modulus starts to decrease changes depending on the mechanical bonding force between the fiber layers. In any case, in the conventional diaphragm, the fiber volume content Vf is 50%.
It drops sharply in the front and back areas. If only glass fibers having a very high elastic modulus are used as the base material, the elastic modulus can maintain Vf up to about 60%, but the internal loss is poor regardless of Vf.

【0026】本発明によれば、無機繊維織布と天然繊維
不織布と不飽和ポリエステル樹脂とを組み合わせて用い
ることにより、従来では不可能であった高い繊維体積含
有率で成形可能な基材が得られ、その結果、弾性率およ
び内部損失の両方に優れ、原音に忠実な再生音が得られ
るスピーカー用振動板を得ることができる。より詳細に
は、本発明によれば、弾性率の大きな無機繊維(好まし
くは、ガラス繊維)織布の織目と天然繊維(好ましく
は、絹繊維)不織布を構成する繊維とが適切に絡み合う
ことにより、従来では弾性率が低下し始めるVf=約6
0%でも弾性率は低下しない。その結果、構成繊維の特
性を十分に反映した基材が得られるので、無機繊維の優
れた弾性率と天然繊維の優れた内部損失(しなやかさ)
とを同時に有する振動板が得られる。加えて、本発明に
用いられる不飽和ポリエステル樹脂は粘度が非常に低い
ので、各繊維表面に付着する樹脂量が非常に少なくな
る。その結果、上記無機繊維織布と天然繊維との絡み合
いがより適切に行われるので、高いVfでの弾性率の維
持に大きく貢献する。さらに、不飽和ポリエステル樹脂
は成形温度が低いので、成形時に天然繊維の劣化を引き
起こすことがない。その結果、原音に忠実な非常に優れ
た音質を有する振動板が得られる。
According to the present invention, by using the inorganic fiber woven fabric, the natural fiber nonwoven fabric, and the unsaturated polyester resin in combination, a base material which can be molded with a high fiber volume content, which has been impossible in the past, is obtained. As a result, it is possible to obtain a diaphragm for a speaker that is excellent in both elastic modulus and internal loss and that provides a reproduced sound that is faithful to the original sound. More specifically, according to the present invention, the weave of the inorganic fiber (preferably glass fiber) woven fabric having a large elastic modulus and the fibers constituting the natural fiber (preferably silk fiber) non-woven fabric are appropriately intertwined with each other. Therefore, Vf = about 6 in the conventional case where the elastic modulus starts to decrease.
Even at 0%, the elastic modulus does not decrease. As a result, a base material that sufficiently reflects the properties of the constituent fibers can be obtained, so the excellent elastic modulus of the inorganic fibers and the excellent internal loss (suppleness) of the natural fibers.
A diaphragm having at the same time is obtained. In addition, since the unsaturated polyester resin used in the present invention has a very low viscosity, the amount of resin attached to the surface of each fiber is very small. As a result, the entanglement between the inorganic fiber woven fabric and the natural fibers is performed more appropriately, which greatly contributes to the maintenance of the elastic modulus at high Vf. Further, since the unsaturated polyester resin has a low molding temperature, it does not cause deterioration of natural fibers during molding. As a result, it is possible to obtain a diaphragm having a very good sound quality that is true to the original sound.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例には限定されない。な
お、特に明記しない限り、実施例中の部およびパーセン
トは重量基準である。繊維体積含有率は体積基準であ
る。 (実施例1)以下の組成を有する不飽和ポリエステル溶
液を調製した: 不飽和ホ゜リエステル樹脂(日本触媒(株)製:N350L) 100部 低収縮化剤(日本油脂(株)製:モテ゛ィハ゜ー S501) 5部 硬化剤(日本油脂(株):パーオクタO) 1.3部 一方、絹の短繊維(繊維長58mm)を乾式法により空
気流によってランダムに配向させて集積層を作成した
後、さらに水流絡合法により繊維同士を機械的に絡ませ
て面密度30g/mの不織布を作成した。この不織布
を20cm×20cmに切断し、切断した不織布を6層
積層し、ガラス繊維織布(織密度19本×19本、面密
度97g/m、20cm×20cm)1枚を最上層と
して重ねて基材とした。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, all parts and percentages in the examples are by weight. Fiber volume content is by volume. (Example 1) An unsaturated polyester solution having the following composition was prepared: Unsaturated polyester resin (N350L manufactured by Nippon Shokubai Co., Ltd.) 100 parts Shrinkage reducing agent (Modifier S501 manufactured by Nippon Oil & Fats Co., Ltd.) 5 Part Hardener (Nippon Oil and Fats Co., Ltd .: Perocta O) 1.3 parts On the other hand, silk short fibers (fiber length 58 mm) were randomly oriented by an air flow by a dry method to form an integrated layer, and then by a hydroentangling method. The fibers were mechanically entangled to form a nonwoven fabric having an areal density of 30 g / m 2 . This non-woven fabric was cut into 20 cm x 20 cm, 6 layers of the cut non-woven fabric were laminated, and one glass fiber woven fabric (weaving density 19 × 19, surface density 97 g / m 2 , 20 cm × 20 cm) was stacked as the uppermost layer. As a base material.

【0028】中央部に直径約18cmの円形の孔を有す
る約25cm×25cmのステンレス板をクランプとし
て用意した。このクランプ2枚の間に上記基材を挟んだ
後、上記不飽和ポリエステル溶液(約8g)を基材の中
央付近に滴下した。次いで、振動板形状のマッチドダイ
金型で110℃で1分間熱プレスすることにより、口径
16cm、厚さ0.32mmの本発明の振動板を得た。
A stainless plate of about 25 cm × 25 cm having a circular hole with a diameter of about 18 cm at the center was prepared as a clamp. After sandwiching the substrate between the two clamps, the unsaturated polyester solution (about 8 g) was dropped near the center of the substrate. Next, a diaphragm of the present invention having a diameter of 16 cm and a thickness of 0.32 mm was obtained by hot pressing at 110 ° C. for 1 minute with a diaphragm-shaped matched die mold.

【0029】この振動板について繊維体積含有率Vfと
ヤング率(弾性率)との関係をシミュレーションした結
果を、後述の比較例1〜5の結果と併せて図1に示す。
繊維体積含有率Vfと内部損失との関係をシミュレーシ
ョンした結果を、後述の比較例1〜5の結果と併せて図
2に示す。 (比較例1)ガラス繊維織布(織密度19本×19本、
面密度97g/m)にエポキシ樹脂を含浸して半硬化
状態とし、エポキシプリプレグ(面密度161g/
、プリプレグ中の含浸樹脂含有率=40%)を作成
した。このプリプレグを20cm×20cmに切断し
た。一方、絹織布(面密度60g/m)を20cm×
20cmに切断し、3層に積層した。この積層体の上に
プリプレグをさらに積層し、振動板形状のマッチドダイ
金型で150℃で12分間熱プレスすることにより、口
径16cm、厚さ0.43mmの振動板を得た。
The results of simulating the relationship between the fiber volume content Vf and the Young's modulus (elastic modulus) of this diaphragm are shown in FIG. 1 together with the results of Comparative Examples 1 to 5 described later.
The result of simulating the relationship between the fiber volume content Vf and the internal loss is shown in FIG. 2 together with the results of Comparative Examples 1 to 5 described later. (Comparative Example 1) Glass fiber woven cloth (woven density 19 × 19,
A surface density of 97 g / m 2 ) is impregnated with an epoxy resin to give a semi-cured state, and an epoxy prepreg (area density of 161 g / m 2 )
m 2 , the impregnating resin content in the prepreg = 40%) was prepared. This prepreg was cut into 20 cm × 20 cm. On the other hand, silk woven fabric (area density 60 g / m 2 ) is 20 cm ×
It was cut into 20 cm and laminated in three layers. A prepreg was further laminated on this laminated body, and heat-pressed for 12 minutes at 150 ° C. in a diaphragm-shaped matched die mold to obtain a diaphragm having a diameter of 16 cm and a thickness of 0.43 mm.

【0030】この振動板について、実施例1と同様にし
てシミュレーションを行った。結果を図1および図2に
示す。 (比較例2)比較例1と同様にして、20cm×20c
mのエポキシプリプレグを作成した。一方、ポリエチレ
ンテレフタレート繊維不織布(面密度30g/m)を
20cm×20cmに切断し、6層に積層した。この積
層体の上にプリプレグをさらに積層し、振動板形状のマ
ッチドダイ金型で150℃で12分間熱プレスすること
により、口径16cm、厚さ0.30mmの振動板を得
た。
A simulation was performed on this diaphragm in the same manner as in Example 1. The results are shown in FIGS. 1 and 2. (Comparative Example 2) In the same manner as Comparative Example 1, 20 cm × 20 c
m epoxy prepreg was prepared. On the other hand, a polyethylene terephthalate fiber non-woven fabric (area density 30 g / m 2 ) was cut into 20 cm × 20 cm and laminated in 6 layers. A prepreg was further laminated on this laminated body, and heat-pressed for 12 minutes at 150 ° C. in a diaphragm-shaped matched die mold to obtain a diaphragm having a diameter of 16 cm and a thickness of 0.30 mm.

【0031】この振動板について、実施例1と同様にし
てシミュレーションを行った。結果を図1および図2に
示す。 (比較例3)比較例1と同様にして、20cm×20c
mのエポキシプリプレグを作成した。一方、口径16c
mのコーン型振動板形状に抄造したパルプコーンを作成
した。パルプコーンの上にプリプレグを積層し、振動板
形状のマッチドダイ金型で150℃で12分間熱プレス
することにより、口径16cm、厚さ0.35mmの振
動板を得た。
A simulation was performed on this diaphragm in the same manner as in Example 1. The results are shown in FIGS. 1 and 2. (Comparative Example 3) In the same manner as Comparative Example 1, 20 cm × 20 c
m epoxy prepreg was prepared. On the other hand, caliber 16c
A pulp cone was produced in the shape of a cone-type diaphragm of m. A prepreg was laminated on the pulp cone and hot pressed at 150 ° C. for 12 minutes in a diaphragm-shaped matched die mold to obtain a diaphragm having a diameter of 16 cm and a thickness of 0.35 mm.

【0032】この振動板について、実施例1と同様にし
てシミュレーションを行った。結果を図1および図2に
示す。 (比較例4)ガラス繊維織布層を設けなかったこと以外
は実施例1と同様にして口径16cm、厚さ0.35m
mの振動板を得た。この振動板について、実施例1と同
様にしてシミュレーションを行った。結果を図1および
図2に示す。 (比較例5)基材としてポリエチレンテレフタレート繊
維不織布(面密度30g/cm)を用いたこと以外は
実施例1と同様にして口径16cm、厚さ0.30mm
の振動板を得た。この振動板について、実施例1と同様
にしてシミュレーションを行った。結果を図1および図
2に示す。
A simulation was performed on this diaphragm in the same manner as in Example 1. The results are shown in FIGS. 1 and 2. (Comparative Example 4) A caliber of 16 cm and a thickness of 0.35 m were obtained in the same manner as in Example 1 except that the glass fiber woven layer was not provided.
A vibrating plate of m was obtained. A simulation was performed on this diaphragm in the same manner as in Example 1. The results are shown in FIGS. 1 and 2. (Comparative Example 5) A caliber of 16 cm and a thickness of 0.30 mm were obtained in the same manner as in Example 1 except that a polyethylene terephthalate fiber non-woven fabric (area density of 30 g / cm 2 ) was used as the substrate.
I got a diaphragm. A simulation was performed on this diaphragm in the same manner as in Example 1. The results are shown in FIGS. 1 and 2.

【0033】図1から明らかなように、本発明の振動板
は、繊維体積含有率Vfが大きい領域において、ヤング
率および内部損失のいずれについても優れている。一
方、比較例1〜5の振動板は、繊維体積含有率Vfが大
きい領域(50〜60%を越える領域)で、ヤング率お
よび内部損失が急激に低下する。
As is apparent from FIG. 1, the diaphragm of the present invention is excellent in both Young's modulus and internal loss in a region where the fiber volume content Vf is large. On the other hand, in the vibrating plates of Comparative Examples 1 to 5, the Young's modulus and the internal loss drastically decrease in a region where the fiber volume content Vf is large (region exceeding 50 to 60%).

【0034】[0034]

【発明の効果】以上のように、本発明によれば、弾性率
および内部損失の両方に優れ、原音に忠実な再生音が得
られるスピーカー用振動板を提供することができる。
As described above, according to the present invention, it is possible to provide a diaphragm for a speaker which is excellent in both elastic modulus and internal loss and which provides a reproduced sound that is faithful to the original sound.

【図面の簡単な説明】[Brief description of drawings]

【図1】繊維体積含有率Vfとヤング率との関係につい
て、本発明の振動板と比較例の振動板とを比較したグラ
フである。
FIG. 1 is a graph comparing the diaphragm of the present invention with the diaphragm of a comparative example regarding the relationship between the fiber volume content Vf and the Young's modulus.

【図2】繊維体積含有率Vfと内部損失との関係につい
て、本発明の振動板と比較例の振動板とを比較したグラ
フである。
FIG. 2 is a graph comparing the diaphragm of the present invention with the diaphragm of a comparative example regarding the relationship between the fiber volume content Vf and the internal loss.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂が含浸された基材を成形お
よび硬化してなるスピーカー用振動板であって、 該基材が、少なくとも1つの無機繊維織布層と少なくと
も1つの天然繊維不織布層とを含む積層体であり、該熱
硬化性樹脂が不飽和ポリエステル樹脂であり、 繊維体積含有率が50%〜90%の範囲であるスピーカ
ー用振動板。
1. A diaphragm for a speaker formed by molding and curing a base material impregnated with a thermosetting resin, the base material comprising at least one inorganic fiber woven fabric layer and at least one natural fiber nonwoven fabric. A speaker diaphragm, wherein the thermosetting resin is an unsaturated polyester resin, and the fiber volume content is in the range of 50% to 90%.
【請求項2】 前記繊維体積含有率が55%〜85%の
範囲である、請求項1に記載のスピーカー用振動板。
2. The diaphragm for a speaker according to claim 1, wherein the fiber volume content is in the range of 55% to 85%.
【請求項3】 前記基材が、最上層に無機繊維織布層を
有し、該無機繊維織布層の下に複数の天然繊維不織布層
を有する、請求項1または2に記載のスピーカー用振動
板。
3. The speaker according to claim 1, wherein the base material has an inorganic fiber woven fabric layer as an uppermost layer and a plurality of natural fiber nonwoven fabric layers under the inorganic fiber woven fabric layer. Diaphragm.
【請求項4】 前記無機繊維がガラス繊維であり、前記
天然繊維が絹繊維である、請求項1から3のいずれかに
記載のスピーカー用振動板。
4. The speaker diaphragm according to claim 1, wherein the inorganic fibers are glass fibers and the natural fibers are silk fibers.
【請求項5】 弾性率が7.0×1010dyne/cm2以上で
あり、内部損失が0.024以上である、請求項1から
4のいずれかに記載のスピーカー用振動板。
5. The speaker diaphragm according to claim 1, which has an elastic modulus of 7.0 × 10 10 dyne / cm 2 or more and an internal loss of 0.024 or more.
JP2002016362A 2002-01-25 2002-01-25 Speaker diaphragm Expired - Fee Related JP4447818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016362A JP4447818B2 (en) 2002-01-25 2002-01-25 Speaker diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002016362A JP4447818B2 (en) 2002-01-25 2002-01-25 Speaker diaphragm

Publications (2)

Publication Number Publication Date
JP2003219493A true JP2003219493A (en) 2003-07-31
JP4447818B2 JP4447818B2 (en) 2010-04-07

Family

ID=27652452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016362A Expired - Fee Related JP4447818B2 (en) 2002-01-25 2002-01-25 Speaker diaphragm

Country Status (1)

Country Link
JP (1) JP4447818B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194828A (en) * 2006-01-18 2007-08-02 Pioneer Electronic Corp Vibration body for speaker system, and the speaker system
JP2007312269A (en) * 2006-05-22 2007-11-29 Kyocera Chemical Corp Diaphragm for planar speaker and planar speaker using the same
JP2007318611A (en) * 2006-05-29 2007-12-06 Onkyo Corp Member for speaker, and speaker
WO2009093444A1 (en) 2008-01-22 2009-07-30 Panasonic Corporation Speaker diaphragm, speaker using said diaphragm, and speaker diaphragm manufacturing method
JP2009177290A (en) * 2008-01-22 2009-08-06 Panasonic Corp Diaphragm for speaker, and speaker using the same
JP2009239589A (en) * 2008-03-27 2009-10-15 Panasonic Corp Loudspeaker diaphragm, loudspeaker using the same, and loudspeaker-diaphragm manufacturing method
JP2015065649A (en) * 2013-08-29 2015-04-09 日本電気硝子株式会社 Diaphragm and speaker
JP2015192415A (en) * 2014-03-28 2015-11-02 パイオニア株式会社 Diaphragm, manufacturing method of diaphragm, and speaker device
WO2018116979A1 (en) * 2016-12-20 2018-06-28 Spiber株式会社 Fiber-reinforced resin material and laminate
WO2020184697A1 (en) * 2019-03-13 2020-09-17 国立研究開発法人農業・食品産業技術総合研究機構 Fiber-reinforced composite and method for manufacturing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194828A (en) * 2006-01-18 2007-08-02 Pioneer Electronic Corp Vibration body for speaker system, and the speaker system
JP2007312269A (en) * 2006-05-22 2007-11-29 Kyocera Chemical Corp Diaphragm for planar speaker and planar speaker using the same
JP4729656B2 (en) * 2006-05-29 2011-07-20 オンキヨー株式会社 Speaker components and speakers
JP2007318611A (en) * 2006-05-29 2007-12-06 Onkyo Corp Member for speaker, and speaker
WO2009093444A1 (en) 2008-01-22 2009-07-30 Panasonic Corporation Speaker diaphragm, speaker using said diaphragm, and speaker diaphragm manufacturing method
JP2009177290A (en) * 2008-01-22 2009-08-06 Panasonic Corp Diaphragm for speaker, and speaker using the same
US8824725B2 (en) 2008-01-22 2014-09-02 Panasonic Corporation Speaker diaphragm, speaker using said diaphragm, and speaker diaphragm manufacturing method
JP2009239589A (en) * 2008-03-27 2009-10-15 Panasonic Corp Loudspeaker diaphragm, loudspeaker using the same, and loudspeaker-diaphragm manufacturing method
JP2015065649A (en) * 2013-08-29 2015-04-09 日本電気硝子株式会社 Diaphragm and speaker
JP2015192415A (en) * 2014-03-28 2015-11-02 パイオニア株式会社 Diaphragm, manufacturing method of diaphragm, and speaker device
WO2018116979A1 (en) * 2016-12-20 2018-06-28 Spiber株式会社 Fiber-reinforced resin material and laminate
JPWO2018116979A1 (en) * 2016-12-20 2019-10-24 Spiber株式会社 Fiber reinforced resin material and laminate
WO2020184697A1 (en) * 2019-03-13 2020-09-17 国立研究開発法人農業・食品産業技術総合研究機構 Fiber-reinforced composite and method for manufacturing same

Also Published As

Publication number Publication date
JP4447818B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
CN107257534B (en) Carbon fiber ball top and manufacturing method thereof
CN111417063B (en) Carbon fiber dome, preparation method thereof and loudspeaker
CN1592494A (en) Speaker diaphragm and speaker using the diaphram
JP4447818B2 (en) Speaker diaphragm
CN208029081U (en) A kind of carbon fiber top dome and loud speaker
WO2004098236A1 (en) Speaker diaphragm
CN110677789A (en) Composite vibration plate and loudspeaker using same
JP3199865U (en) Diaphragm, loudspeaker, moving body device, and method of manufacturing diaphragm
CN107277733A (en) Carbon fiber top dome and its manufacture method
JP3137241B2 (en) Speaker diaphragm
US20010049246A1 (en) Method for forming carbon fiber layer
US9716950B2 (en) Diaphragm, loudspeaker using same, and electronic device and mobile device using loudspeaker
JP2007312269A (en) Diaphragm for planar speaker and planar speaker using the same
CN102057689B (en) Diaphragm, electroacoustic transducer, method for manufacturing diaphragm, and molded body
JP3336566B2 (en) Speaker diaphragm and manufacturing method thereof
JP3211566B2 (en) Speaker diaphragm and manufacturing method thereof
CN115134720A (en) Ball top and vibrating diaphragm assembly of sound generating device, sound generating device and electronic equipment
CN114827842A (en) Ball top, vibrating diaphragm subassembly, sound generating mechanism and electronic equipment
CN109076290A (en) For generating the diaphragm plate structure of sound wave
CN213108475U (en) High-toughness carbon fiber ball top
JP3963269B2 (en) Speaker diaphragm
WO2021128192A1 (en) Carbon fiber dome, preparation method therefor, and loudspeaker
JP4515829B2 (en) Speaker diaphragm
CN113709635B (en) Vibrating plate and sound producing device
CN212086475U (en) Composite layer of sound generating device and sound generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4447818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees