JPH0548680B2 - - Google Patents

Info

Publication number
JPH0548680B2
JPH0548680B2 JP59064935A JP6493584A JPH0548680B2 JP H0548680 B2 JPH0548680 B2 JP H0548680B2 JP 59064935 A JP59064935 A JP 59064935A JP 6493584 A JP6493584 A JP 6493584A JP H0548680 B2 JPH0548680 B2 JP H0548680B2
Authority
JP
Japan
Prior art keywords
diaphragm
resin
montmorillonite
layers
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59064935A
Other languages
Japanese (ja)
Other versions
JPS60206300A (en
Inventor
Shinya Mizone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onkyo Corp
Original Assignee
Onkyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onkyo Corp filed Critical Onkyo Corp
Priority to JP6493584A priority Critical patent/JPS60206300A/en
Publication of JPS60206300A publication Critical patent/JPS60206300A/en
Publication of JPH0548680B2 publication Critical patent/JPH0548680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は電気音響変換器用振動板の改良に関
し、特に剛性が高く、成形が非常に容易なる材料
より構成された振動板に関する。 近年、電気音響変換器用振動板において主とし
て剛性を増す目的からカーボン繊維と合成樹脂と
よりなる振動板が種々考えられ、且実用に供され
ている。 このような高弾性繊維を用いた振動板は剛性を
上げるという点においては、一応の効果が得られ
ているが、繊維が一定方向に配向する傾向があり
繊維の配向方向と非配向方向では物性に差異が生
じ振動板の均質性に問題を有している。 また、繊維は大かれ少なかれ、繊維同士の絡み
合いが生じる為繊維が樹脂の有る所に極在しやす
く均一に繊維を分散介在せしめることが難かし
い。 そこで近年無機鱗片状物質を剛性樹脂に混合し
た振動板が考えられている。 しかるに、鱗片状物質は繊維に比較してアスペ
クト比が小さいため剛性を高めるには多量に混合
する必要がある。 一方鱗片状物質を多量に混合すると成形時の樹
脂の流動性が悪くなり所望形状に成形できない
為、一般的には粒径の小さい(5μm〜10μm)も
のを多量(最大で60〜70wt%)に混合すること
が行なわれる。 しかるに粒径を小さくすると、アスペクト比が
小さくなる為充分に剛性の高い振動板が得られな
いという欠点があつた。 又、特に熱硬化性樹脂を用いた場合、加熱と同
時に硬化が開始するので樹脂が流動性を示す時間
が短く金型内に充分に樹脂を充填することが困難
であつた。 したがつて、粒径の大な鱗片状物質を多量に混
合でき、しかも成形時の樹脂の流動性の良い振動
板材料が要求されている。 そこでこの発明では硬化剤又は硬化促進剤を層
間に吸着せしめたモンモリロナイトと熱硬化性樹
脂モノマーと無機鱗片状物質、例えばグラフアイ
ト微粉末、マイカ微粉末等の混合物を加熱成形す
ることにより物性の優れた振動板を提供すると共
に成形を容易にしたものであり、以下実施例につ
いて詳細に説明する。 この発明の目的には硬化剤又は硬化促進剤を層
間に吸着せしめた含水アルミケイ酸塩の一種であ
るモンモリロナイト(Al2O3・4Si2O・nH2O、別
名ベントナイト)が重要である。 当該モンモリロナイトを硬化剤又は硬化促進剤
を適当な溶剤に溶かした溶液中に浸漬(60℃、数
時間)する。 これによつてモンモリロナイトのシリケート層
間に硬化剤又は硬化促進剤が吸着される。 これを溶液洗浄した後、乾燥せしめて硬化剤又
は硬化促進剤との複合体を得る。 次に 複合体(硬化剤としてジアミノジフエニールメタ
ン吸着) 10部 エポキシ樹脂モノマー(商品名アラルダイト
6071) 35部 硬化剤(ジアミノジフエニールスルホン) 4.4部 離型剤(ステアリン酸亜鉛) 1部 グラフアイト粉末(平均粒径60μm) 50部 の配合物を加温下(85℃)で攪拌して均一に配合
し、しかる後に冷却せしめて粉砕し粉末状の複合
材料を得た。 当該複合材料を所定形状の金型により温度160
℃、プレス圧50Kg/cm2成形時間10分でプレス成形
して開口径85mm、頂部径30mm、全高19mm、高さ
0.2mmのコーン型振動板を得た。 そして当該振動板の物性を測定したところ、
The present invention relates to an improvement in a diaphragm for an electroacoustic transducer, and particularly to a diaphragm made of a material that has high rigidity and is extremely easy to mold. In recent years, various types of diaphragms made of carbon fiber and synthetic resin have been considered and put into practical use mainly for the purpose of increasing the rigidity of diaphragms for electroacoustic transducers. Although diaphragms using such high-modulus fibers have some effect in terms of increasing rigidity, the fibers tend to be oriented in a certain direction, and the physical properties differ between the oriented direction and the non-oriented direction of the fibers. This causes a difference in the quality of the diaphragm, resulting in a problem with the homogeneity of the diaphragm. Further, since the fibers tend to become entangled with each other to a greater or lesser degree, the fibers tend to be localized in areas where the resin is present, making it difficult to uniformly disperse the fibers. Therefore, in recent years, a diaphragm in which an inorganic scale-like substance is mixed with a rigid resin has been considered. However, since the aspect ratio of scale-like substances is smaller than that of fibers, it is necessary to mix a large amount in order to increase the rigidity. On the other hand, if a large amount of scaly material is mixed, the fluidity of the resin during molding will deteriorate and it will not be possible to mold it into the desired shape, so generally a large amount of small particle size (5 μm to 10 μm) is used (maximum 60 to 70 wt%). Mixing is performed. However, when the particle size is made smaller, the aspect ratio becomes smaller, so a sufficiently rigid diaphragm cannot be obtained. Further, especially when a thermosetting resin is used, curing starts simultaneously with heating, so the time for the resin to exhibit fluidity is short, making it difficult to sufficiently fill the mold with the resin. Therefore, there is a need for a diaphragm material that can mix a large amount of scaly material with a large particle size and that also has good resin fluidity during molding. Therefore, in this invention, a mixture of montmorillonite with a hardening agent or hardening accelerator adsorbed between layers, a thermosetting resin monomer, and an inorganic scale-like substance such as graphite fine powder, mica fine powder, etc. is heat-molded to achieve excellent physical properties. The present invention provides a diaphragm that is easy to mold, and examples thereof will be described in detail below. For the purpose of this invention, montmorillonite (Al 2 O 3 .4Si 2 O.nH 2 O, also known as bentonite), which is a type of hydrous aluminum silicate in which a curing agent or a curing accelerator is adsorbed between layers, is important. The montmorillonite is immersed (60° C., several hours) in a solution containing a hardening agent or hardening accelerator in a suitable solvent. As a result, the curing agent or curing accelerator is adsorbed between the silicate layers of montmorillonite. After solution washing, this is dried to obtain a composite with a curing agent or curing accelerator. Next, add 10 parts of the composite (adsorbing diaminodiphenylmethane as a curing agent) to an epoxy resin monomer (trade name: Araldite).
6071) 35 parts hardening agent (diaminodiphenylsulfone) 4.4 parts mold release agent (zinc stearate) 1 part graphite powder (average particle size 60 μm) 50 parts of the mixture was stirred under heating (85°C). The mixture was blended uniformly, then cooled and pulverized to obtain a powdered composite material. The composite material is heated to 160℃ using a mold with a predetermined shape.
℃, press pressure 50Kg/ cm2 , molding time 10 minutes, opening diameter 85mm, top diameter 30mm, total height 19mm, height
A 0.2 mm cone-shaped diaphragm was obtained. When we measured the physical properties of the diaphragm, we found that

【表】 (密度:g/cm3、ヤング率:×1011dyn/cm2、比
弾性率:×1011dyn・cm/g) の値を得た。 なお比較例は平均粒径6μmの鱗片状物質をエ
ポキシ樹脂に50%混合して成形した振動板。 上記値から明らかなようにこの発明の振動板は
E/ρが極めて高くtanδも上昇することが分る。 この発明の振動板のヤング率が著しく上昇する
要因としては、グラフアイト粉末の空間を埋める
ようにモンモリロナイト−エポキシ複合体が分散
し、かつモンモリロナイトの層間に入り込んだエ
ポキシポリマーとモンモリロナイトが強固に結合
されたブレンド形ポリマーが形成され、当該ブレ
ンド形ポリマーがグラフアイト微粉末をからみ込
むように3次元網状構造に組織化される為である
と思われる。 又、この発明においては鱗片状物質を混合して
いるため配向性が繊維を混合したものより極めて
小さくなるので、物性により均質な振動板を提供
することができた。 更に、この発明の振動板はプレス金型内におい
てエポキシ樹脂が一旦溶融し低粘度となつて流動
するが、一定温度(150℃)まではモンモリロナ
イトの層間に吸着された硬化剤又は硬化促進剤が
浸出しないので低粘度の流動状態を保持する結
果、複雑な形状の金型であつても隅々まで充填さ
れるとともにグラフアイト粉末が樹脂の流動とと
もに流動し樹脂を押し流す作用をするために樹脂
と充填物の成形時の分離が抑制される結果振動板
の各部分が均一となつて変形の少ない、かつ形状
寸法精度の高い板振動板を得ることができた。 なお、鱗片状物質の粒径は上記実施例のプレス
条件において、樹脂の流動が阻害されない最大径
である1000μm以下で、上記実施例の混合割合に
おいて充分なヤング率が得られるための最小径で
ある20μm以上で望ましい。 又、チンチリロナイトに吸着させる硬化促進剤
としては、たとえばエチルメチルイミダゾールが
無水フタル酸(硬化剤)との組み合わせで使用で
きる。 以上に説明したように、この発明は硬化剤又は
硬化促進剤を層間に吸着せしめたモンモリロナイ
トと熱硬化性樹脂モノマーと無機鱗片状物質を主
要材料とする複合材料を加熱成形してなることを
特徴とする電気音響変換器用振動板であつて、振
動板の高剛性化もしくは軽量化することができる
ので良好な周波数特性を有するスピーカーを提供
することができる。 更に、成形時における変形を防止でき寸法精度
の高い振動板を簡便にかつ大量に製造することが
でき、低コストの特性の良い振動板を提供するこ
とができる等従来では達成できなかつた優れた効
果を有するものである。 尚、この発明をコーン型振動板に適用した場合
について述べたが勿論ドーム型振動板、更にはセ
ンタードームラジエーターにも適用することがで
きるものである。
[Table] The following values were obtained: (density: g/cm 3 , Young's modulus: ×10 11 dyn/cm 2 , specific modulus: ×10 11 dyn·cm/g). The comparative example is a diaphragm made by mixing 50% of a scale-like material with an average particle size of 6 μm in epoxy resin. As is clear from the above values, the diaphragm of the present invention has an extremely high E/ρ and an increase in tan δ. The reason why the Young's modulus of the diaphragm of this invention increases significantly is that the montmorillonite-epoxy composite is dispersed to fill the spaces in the graphite powder, and the epoxy polymer and montmorillonite that have entered between the layers of montmorillonite are strongly bonded. This seems to be because a blended polymer is formed, and the blended polymer is organized into a three-dimensional network structure so as to entangle the graphite fine powder. In addition, in this invention, since a scale-like substance is mixed, the orientation is much smaller than that of a mixture of fibers, so that a diaphragm with more homogeneous physical properties can be provided. Furthermore, in the diaphragm of the present invention, the epoxy resin once melts in the press mold and becomes low in viscosity and flows, but up to a certain temperature (150°C), the curing agent or curing accelerator adsorbed between the layers of montmorillonite does not dissolve. As a result of maintaining a low viscosity fluid state because it does not leached out, even if the mold has a complex shape, it can be filled to every corner, and the graphite powder flows with the flow of the resin and has the effect of pushing the resin away. As a result of suppressing the separation of the filler during molding, each part of the diaphragm becomes uniform, making it possible to obtain a plate diaphragm with little deformation and high dimensional accuracy. In addition, the particle size of the scale-like substance is 1000 μm or less, which is the maximum diameter that does not inhibit the flow of the resin under the pressing conditions of the above example, and the minimum diameter that allows a sufficient Young's modulus to be obtained at the mixing ratio of the above example. A value of 20 μm or more is desirable. Further, as a curing accelerator to be adsorbed to chinchililonite, for example, ethylmethylimidazole can be used in combination with phthalic anhydride (curing agent). As explained above, the present invention is characterized by thermoforming a composite material whose main materials are montmorillonite with a curing agent or curing accelerator adsorbed between layers, a thermosetting resin monomer, and an inorganic scale-like substance. The present invention is a diaphragm for an electroacoustic transducer, and since the diaphragm can be made highly rigid or lightweight, it is possible to provide a speaker having good frequency characteristics. Furthermore, it is possible to prevent deformation during molding, to easily manufacture diaphragms with high dimensional accuracy in large quantities, and to provide diaphragms with good characteristics at low cost. It is effective. Although the present invention has been described as being applied to a cone-shaped diaphragm, it can of course also be applied to a dome-shaped diaphragm, and furthermore to a center dome radiator.

Claims (1)

【特許請求の範囲】 1 硬化剤又は硬化促進剤を層間に吸着せしめた
モンモリロナイトと熱硬化性樹脂モノマーと無機
鱗片状物質とを主要材料とする複合物を加熱成形
してなることを特徴とする電気音響変換器用振動
板。 2 熱硬化性樹脂モノマーがエポキシ樹脂である
ことを特徴とする特許請求の範囲の第1項記載の
電気音響変換器用振動板。
[Scope of Claims] 1. It is characterized by being formed by thermoforming a composite whose main materials are montmorillonite with a curing agent or curing accelerator adsorbed between layers, a thermosetting resin monomer, and an inorganic scale-like substance. Diaphragm for electroacoustic transducers. 2. The diaphragm for an electroacoustic transducer according to claim 1, wherein the thermosetting resin monomer is an epoxy resin.
JP6493584A 1984-03-29 1984-03-29 Diaphragm for electro-acoustic transducer Granted JPS60206300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6493584A JPS60206300A (en) 1984-03-29 1984-03-29 Diaphragm for electro-acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6493584A JPS60206300A (en) 1984-03-29 1984-03-29 Diaphragm for electro-acoustic transducer

Publications (2)

Publication Number Publication Date
JPS60206300A JPS60206300A (en) 1985-10-17
JPH0548680B2 true JPH0548680B2 (en) 1993-07-22

Family

ID=13272381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6493584A Granted JPS60206300A (en) 1984-03-29 1984-03-29 Diaphragm for electro-acoustic transducer

Country Status (1)

Country Link
JP (1) JPS60206300A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107795A (en) * 1981-12-22 1983-06-27 Hitachi Chem Co Ltd Electroacoustic diaphragm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107795A (en) * 1981-12-22 1983-06-27 Hitachi Chem Co Ltd Electroacoustic diaphragm

Also Published As

Publication number Publication date
JPS60206300A (en) 1985-10-17

Similar Documents

Publication Publication Date Title
DE3689783T2 (en) Low viscosity epoxy resin, this resin-containing composition and fiber-containing composite based on this hardened composition.
JPS63223028A (en) High temperature molding epoxy resin composition
JP3653906B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
US4925886A (en) High temperature epoxy tooling composition of bifunctional epoxy, trifunctional epoxy, anhydride, imidazole and interstitially matched filler
US4753969A (en) Diaphragm for electroacoustic transducer
US3429981A (en) Supporting and insulating means for junctured elements of small electrical components
JPH0548680B2 (en)
JPH0573118B2 (en)
JPS60152198A (en) Diaphragm for electroaccoustic transducer
JPS60226300A (en) Diaphragm member for electroacoustic transducer
JPH0548679B2 (en)
JPH0321116Y2 (en)
JPH0548678B2 (en)
JPH09268222A (en) Epoxy resin composition
JPS61118000A (en) Diaphragm for electroacoustic transducer and its manufacture
JPH06215618A (en) Manufacture of conductive resin composition containing tic whiskers
JPS61285241A (en) Phenolic resin molding material
JP3912302B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
JPS6222850A (en) Epoxy resin composition and production thereof
JPH0636637B2 (en) Frame for speakers
JPS63297458A (en) Silicone polymer based vibration damping material
JPS6039286B2 (en) prepreg
JPH0321119Y2 (en)
JPH056581B2 (en)
JPH09296202A (en) Special aluminum powder