JPH0548242Y2 - - Google Patents

Info

Publication number
JPH0548242Y2
JPH0548242Y2 JP16039086U JP16039086U JPH0548242Y2 JP H0548242 Y2 JPH0548242 Y2 JP H0548242Y2 JP 16039086 U JP16039086 U JP 16039086U JP 16039086 U JP16039086 U JP 16039086U JP H0548242 Y2 JPH0548242 Y2 JP H0548242Y2
Authority
JP
Japan
Prior art keywords
magnetic
thermal expansion
magnetic core
substrate
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16039086U
Other languages
Japanese (ja)
Other versions
JPS6365108U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16039086U priority Critical patent/JPH0548242Y2/ja
Publication of JPS6365108U publication Critical patent/JPS6365108U/ja
Application granted granted Critical
Publication of JPH0548242Y2 publication Critical patent/JPH0548242Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は磁気ヘツドに関するものであり、より
特定的にはセンダスト材からなる磁気ヘツドに関
する。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to a magnetic head, and more specifically to a magnetic head made of sendust material.

(ロ) 従来の技術 本考案が対象とする磁気ヘツドは第1図に示す
ように、センダスト材よりなる板状の磁性コア1
a,1bと、該磁性コア1a,1bよりなるヘツ
ドチツプHの外面に接合された非磁性基板2a,
2bと、一方の磁性コア1aに溝3により形成さ
れた後方凸部4に巻装されたコイル5とから構成
されている。尚、斯種ヘツドの1例が特開昭60−
2224号に示されている。第2図は、このような磁
気ヘツドの製造方法を示しており、同図aではセ
ンダストより成る磁性コアウエハ1を櫛歯状に加
工し、次いでbにおいて非磁性基板2上に前記磁
性コアウエハ1を全面が互いに一致するように接
合する。その状態で、C′に示すように前方部と後
方部との間に溝3を形成し、それによって後方凸
部4を形成する。この凸部4には巻線機で予め形
成したコイル5を装着し、非磁性基板2上の端子
6に半田付けする。前方部にはギャップスペーサ
7が設けられる。
(b) Prior art The magnetic head to which the present invention is directed, as shown in Fig. 1, has a plate-shaped magnetic core 1 made of sendust material.
a, 1b, and a non-magnetic substrate 2a, which is bonded to the outer surface of the head chip H consisting of the magnetic cores 1a, 1b.
2b, and a coil 5 wound around a rear convex portion 4 formed by a groove 3 in one magnetic core 1a. Incidentally, one example of this type of head was published in Japanese Unexamined Patent Application Publication No. 1989-
No. 2224. FIG. 2 shows a method of manufacturing such a magnetic head. In FIG. Join so that the entire surfaces match each other. In this state, as shown in C', a groove 3 is formed between the front part and the rear part, thereby forming a rear convex part 4. A coil 5 previously formed using a winding machine is attached to this convex portion 4 and soldered to a terminal 6 on the non-magnetic substrate 2. A gap spacer 7 is provided at the front part.

次に、bに示す段階の他の磁性コアウエハ1を
dの如く重ね合せると共にガラスで接合し、合体
物8を得る。この合体物8の前方にはeの如くト
ラツク幅Wを残し後方に向けて切込み9を入れ
る。この切込み9は磁性コアウエハ1の後方部を
繋いでいる部分を切断し、磁性コアウエハ1を分
離する。
Next, the other magnetic core wafers 1 at the stage shown in b are stacked on top of each other as shown in d and bonded with glass to obtain a combined product 8. A notch 9 is made toward the rear, leaving a track width W at the front of the combined object 8 as shown in e. This cut 9 cuts a portion connecting the rear portions of the magnetic core wafer 1, and separates the magnetic core wafer 1.

最後に、eに示す点線10に沿つてスライス
し、第1図の如く磁気ヘツドが完成する。
Finally, the magnetic head is sliced along the dotted line 10 shown at e to complete the magnetic head as shown in FIG.

磁性コア1の材料として用いるセンダスト材
(Fe−Al−Si系合金)は飽和磁束密度、透磁率が
高く耐摩耗性に優れている。一方、非磁性基板2
の材料としては最もセンダスト材に熱膨張係数が
近く緻密性に優れた結晶化ガラス材が利用されて
いる。また、これらの接合においては上記製造法
での各種溝加工、研磨等で生じた磁気的ダメージ
層をキヤツプ接合直前に熱処理によつて除去させ
るため耐熱性の高い接合法が要求されており、結
晶化ガラスに最もなじみのよいフリツトガラスに
よる接合が提案されている。
Sendust material (Fe-Al-Si alloy) used as the material of the magnetic core 1 has high saturation magnetic flux density, high magnetic permeability, and excellent wear resistance. On the other hand, non-magnetic substrate 2
The most commonly used material is crystallized glass, which has a thermal expansion coefficient close to that of sendust material and is highly dense. In addition, in these bonding processes, a highly heat-resistant bonding method is required, as the magnetic damage layer caused by various groove processing, polishing, etc. in the above manufacturing method is removed by heat treatment immediately before cap bonding. Bonding using fritted glass, which is most compatible with chemically bonded glass, has been proposed.

(ハ) 考案が解決しようとする問題点 一般に、センダスト材(Fe,Si,Al系合金)
の熱膨張率は室温から600℃の場合175×10-7/℃
〜185×10-7/℃と大きく、その温度依存性は高
温になる程、大きくなる(スーパーリニア)特性
を有している。一方、非磁性基板である結晶化ガ
ラスでは150×10-7/℃〜170×10-7/℃と比較的
センダスト材に近い材料が開発されているが、そ
の熱膨張率の温度依存性は一定(リニア)であ
る。そのため耐熱性の高い接合を得るため、高融
点のフリツトガラスを利用して接合を行なうと高
温になる程、熱膨張率の差が大きくなり、第4図
の如く磁性コアウエハ1と非磁性基板2との接合
体が著しく変形し、巻線溝の形成、ギヤツプ面形
成が困難になる等の不都合を生じていた。これを
避けるため、例えば磁性コアウエハ1を細かく分
断して非磁性基板2に接合する方法も試みられて
いるが、製造工程が複雑になり、しかも接合界面
での熱歪そのものは本質的に無くならず、それに
よる加工時の接合層界面でのクラツクの発生、並
びにセンダスト材の磁気特性の低下が問題になっ
ていた。更に使用するフリツトガラス材において
も接合部の歪を避けるため基板とセンダスト材と
の中間の熱膨張係数(150×10-7/℃〜160×
10-7/℃)のものを使用しなければならないが、
その接合層ではセンダスト界面で圧縮応力が、基
板界面で引張り応力が発生して、それを緩和させ
るため接合層の厚みを20〜30μm以上を必要とし
た。一般に、フリツトガラスは結晶化ガラスに比
べて硬度が小さく耐摩耗性に劣り、ヘツド動作時
のヘツドコアと基板との間に陥没を発生し、記録
媒体との接触状態を不安定にする等の不都合を生
じていた。
(c) Problems to be solved by the invention Generally, sendust material (Fe, Si, Al alloy)
The coefficient of thermal expansion is 175×10 -7 /℃ from room temperature to 600℃
It has a large temperature dependence of ~185×10 -7 /°C, and its temperature dependence increases (superlinear) as the temperature increases. On the other hand, for crystallized glass, which is a non-magnetic substrate, materials have been developed that are relatively similar to sendust materials, with values ranging from 150×10 -7 /℃ to 170×10 -7 /℃, but the temperature dependence of the coefficient of thermal expansion is It is constant (linear). Therefore, in order to obtain a bond with high heat resistance, if a frit glass with a high melting point is used for bonding, the difference in thermal expansion coefficient will increase as the temperature increases, and as shown in Figure 4, the difference in coefficient of thermal expansion between the magnetic core wafer 1 and the non-magnetic substrate 2 The joined body was significantly deformed, causing problems such as difficulty in forming winding grooves and gap surfaces. In order to avoid this, attempts have been made to, for example, cut the magnetic core wafer 1 into small pieces and bond them to the non-magnetic substrate 2, but this complicates the manufacturing process and does not essentially eliminate thermal strain at the bonding interface. This has caused problems such as occurrence of cracks at the bonding layer interface during processing and deterioration of the magnetic properties of the sendust material. Furthermore, the fritted glass material used has a thermal expansion coefficient (150×10 -7 /°C ~ 160×
10 -7 /℃).
In the bonding layer, compressive stress occurs at the sendust interface and tensile stress occurs at the substrate interface, and in order to alleviate these stresses, the thickness of the bonding layer needs to be 20 to 30 μm or more. In general, frit glass has less hardness and wear resistance than crystallized glass, and it causes problems such as caving between the head core and the substrate during head operation, making the contact with the recording medium unstable. was occurring.

(ニ) 問題点を解決するための手段 本考案では磁性コアを形成するセンダスト材の
組成をFe−Al−Si−Ni系合金とすると共に、そ
のSiの組成比が5〜7重量%のものを使用する。
一方、非磁性基板としては熱膨張率が室温から
600℃の範囲で150×10-7/℃〜160×10-7/℃の
結晶化ガラス基板材を用いる。
(d) Means for solving the problem In the present invention, the composition of the sendust material forming the magnetic core is Fe-Al-Si-Ni alloy, and the composition ratio of Si is 5 to 7% by weight. use.
On the other hand, as a non-magnetic substrate, the coefficient of thermal expansion is
A crystallized glass substrate material having a temperature of 150×10 -7 /°C to 160×10 -7 /°C is used in the range of 600°C.

そして、前記磁性コアと非磁性基板とはフリツ
トガラスで接合する。
Then, the magnetic core and the nonmagnetic substrate are bonded together using frit glass.

(ホ) 作用 磁性コア材と基板である結晶化ガラスとの熱膨
張率が室温から高温度(700℃)まで近接してお
り、また使用するフリツトガラスは両側の材料に
比べやや低い熱膨張率であるため接合後常に圧縮
状態で、しかも両側面からほぼ等しい応力を受け
て全体としては釣り合つた状態で接合されてい
る。そのため接合体の変形が生じず、内部応力が
対称にしかもガラスの強度の強い圧縮状態で応力
が分布しているため加工時のクラツク等の発生が
極めて少なくなつている。さらに接合層内部に発
生する応力は接合層が薄い程軽減するため10μm
以下の接合層でも十分な接合強度が得られる。接
合層が10μm以下ではヘツド動作時接合層の陥没
は極めて小さく媒体との接触状態は安定である。
(E) Effect The thermal expansion coefficients of the magnetic core material and the crystallized glass substrate are close to each other from room temperature to high temperatures (700℃), and the fritted glass used has a slightly lower coefficient of thermal expansion than the materials on both sides. Therefore, after joining, they are always in a compressed state, and moreover, they receive approximately equal stress from both sides, and are joined in a balanced state as a whole. Therefore, there is no deformation of the joined body, and the internal stress is distributed symmetrically and in a compressed state where the strength of the glass is strong, so the occurrence of cracks during processing is extremely reduced. Furthermore, the stress generated inside the bonding layer is reduced as the bonding layer becomes thinner, so the thickness is 10 μm.
Sufficient bonding strength can be obtained even with the following bonding layers. When the bonding layer has a thickness of 10 μm or less, the depression of the bonding layer during head operation is extremely small, and the state of contact with the medium is stable.

(ヘ) 実施例 第3図において、(イ)は従来の標準センダストの
熱膨張の温度特性を、又(ロ)は本考案による組成の
センダストの熱膨張温度特性を示す。
(f) Example In FIG. 3, (a) shows the thermal expansion temperature characteristics of conventional standard sendust, and (b) shows the thermal expansion temperature characteristics of sendust having a composition according to the present invention.

一般にセンダスト合金の名前で知られている
Fe−Si−Al系合金はSiが9.5重量%、Alが5.7重量
%、残部がFeというところで優れた磁気特性を
示す。一方、熱膨張率は組成によつて変動し、本
考案者の研究によれば特にSiの組成比による影響
が大きいことが判明した。第5図はその実験結果
の一部を示しており、横軸にSiの重量%、縦軸に
熱膨張率の変化を示している。従来のセンダスト
材はSiの組成比が略9.6重量%であつた。このた
め、従来の磁気ヘツドでは磁性コアの熱膨張が室
温から〜600℃の間で175×10-7/℃〜185×
10-7/℃となつていた。第6図にはSiの組成比ご
との室温から600℃までの熱膨張の変化を示す。
図から明らかなようにSiの組成が5〜6%の領域
ではその熱膨張率が150×10-7/℃〜155×10-7
℃で、しかもその温度依存性の小さい(リニア)
材料が見出される。
Commonly known as Sendust alloy
The Fe-Si-Al alloy exhibits excellent magnetic properties since it contains 9.5% by weight of Si, 5.7% by weight of Al, and the balance is Fe. On the other hand, the coefficient of thermal expansion varies depending on the composition, and research by the present inventor revealed that it is particularly influenced by the composition ratio of Si. FIG. 5 shows some of the experimental results, with the horizontal axis showing the weight percent of Si and the vertical axis showing the change in thermal expansion coefficient. The conventional Sendust material had a Si composition ratio of approximately 9.6% by weight. For this reason, in conventional magnetic heads, the thermal expansion of the magnetic core is 175 x 10 -7 /°C to 185 x between room temperature and 600°C.
The temperature was 10 -7 /℃. Figure 6 shows the change in thermal expansion from room temperature to 600°C for each Si composition ratio.
As is clear from the figure, in the region where the Si composition is 5 to 6%, the thermal expansion coefficient is 150 × 10 -7 / °C to 155 × 10 -7 /
℃, and its temperature dependence is small (linear)
material is found.

尚、標準センダストの組成からずれることによ
つて磁気特性の低下が生じるが、Niを入れるこ
とにより、その特性の低下は小さくなり、例えば
ビデオヘツドのような数MHz以上の高周波領域で
は、その特性低下は問題にならない。実施例で
は、Siが6%、Alが4%、Niが2〜4%、残り
がFeの合金を真空中で溶解しウエハ状に整形、
所定の溝加工、スライス及び研磨加工を行なつて
櫛歯状の磁性コアウエハを形成する。
Incidentally, deviation from the composition of standard Sendust causes deterioration of magnetic properties, but by adding Ni, the deterioration of these properties becomes smaller. The decline is not a problem. In the example, an alloy containing 6% Si, 4% Al, 2 to 4% Ni, and the rest Fe was melted in a vacuum and shaped into a wafer.
A comb-shaped magnetic core wafer is formed by performing predetermined groove processing, slicing, and polishing.

次に、第3図におけるハの熱膨張特性を有する
結晶化ガラスよりなる非磁性基板2′上に第3図
のニの特性をもつSiO2−Na2O−B2O3系のペー
スト状をしたフリツトガラス層11を第7図aの
如く設け、斯るフリツトガラス層11上に前記磁
性コアウエハ1′を第7図bの如く置き600℃以上
の温度で接合する。その後は、第2図c以降に示
す工程で第1図に示す形の磁気ヘツドを得る。
Next, a SiO 2 -Na 2 O-B 2 O 3 paste having the characteristics of D in FIG. A fritted glass layer 11 having the above structure is provided as shown in FIG. 7a, and the magnetic core wafer 1' is placed on the fritted glass layer 11 as shown in FIG. 7b and bonded at a temperature of 600 DEG C. or higher. Thereafter, a magnetic head having the shape shown in FIG. 1 is obtained through the steps shown in FIG. 2c and subsequent steps.

(ト) 考案の効果 本考案によれば磁性コアの熱膨張率を室温から
約600℃の範囲内で略一定の150×10-7/℃〜155
×10-7/℃にすることができ、これと略同様な熱
膨張特性を有する結晶化ガラス基板とを、これら
双方より熱膨張率の小さいフリツトガラスで接合
することにより製造工程では変形がなく、クラツ
ク等の発生のない優れた磁気ヘツドを得ることが
できる。フリツトガラスの接合層は10μm以下と
薄く形成できるので、磁気ヘツド動作時に接合部
の陥没が発生せず、安定な特性を保持できる。
(g) Effects of the invention According to the invention, the coefficient of thermal expansion of the magnetic core is approximately constant from 150×10 -7 /°C to 155 in the range from room temperature to approximately 600°C.
×10 -7 /℃, and by bonding a crystallized glass substrate with almost the same thermal expansion characteristics with fritted glass, which has a smaller coefficient of thermal expansion than both, there is no deformation during the manufacturing process. An excellent magnetic head without cracks or the like can be obtained. Since the frit glass bonding layer can be formed as thin as 10 μm or less, the bonded portion does not collapse when the magnetic head operates, and stable characteristics can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案が対象とする磁気ヘツドの外観
斜視図であり、第2図はその製造工程図である。
第3図は磁気ヘツドに使用する各材料の熱膨張特
性を示す図である。第4図は従来例の問題点を示
す図である。第5図、第6図は説明図である。第
7図は本考案磁気ヘツドの製造途上を示す図であ
る。 1,1′,1a,1b……磁性コア、2,2′,2
a,2b……非磁性基板、H……ヘツドチツプ。
FIG. 1 is an external perspective view of a magnetic head to which the present invention is directed, and FIG. 2 is a diagram of its manufacturing process.
FIG. 3 is a diagram showing the thermal expansion characteristics of each material used in the magnetic head. FIG. 4 is a diagram showing problems in the conventional example. FIG. 5 and FIG. 6 are explanatory diagrams. FIG. 7 is a diagram showing the manufacturing process of the magnetic head of the present invention. 1, 1', 1a, 1b...magnetic core, 2, 2', 2
a, 2b...Nonmagnetic substrate, H...Head chip.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一対の板状の磁性コアを接合し該接合部に磁気
ギヤツプ部を形成したヘツドチツプと、該ヘツド
チツプの両側面で前記磁性コアに接合した非磁性
基板とからなる磁気ヘツドにおいて、前記磁性コ
アの材料がFe−Al−Si−Ni系合金であり、その
Siの組成比が5〜7重量%であり、一方前記非磁
性基板は結晶化ガラス材であつてその熱膨張率が
室温から600℃の範囲で150×10-7/℃〜160×
10-7/℃であり、前記磁性コアと非磁性基板とは
フリツトガラスで接合されていることを特徴とす
る磁気ヘツド。
A magnetic head comprising a head chip in which a pair of plate-shaped magnetic cores are joined and a magnetic gap is formed at the joined part, and a non-magnetic substrate joined to the magnetic core on both sides of the head chip, the material of the magnetic core being is a Fe-Al-Si-Ni alloy, and its
The composition ratio of Si is 5 to 7% by weight, and the nonmagnetic substrate is a crystallized glass material whose coefficient of thermal expansion is 150×10 -7 /℃ to 160× in the range from room temperature to 600℃.
10 -7 /°C, and the magnetic core and the nonmagnetic substrate are bonded together with frit glass.
JP16039086U 1986-10-20 1986-10-20 Expired - Lifetime JPH0548242Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16039086U JPH0548242Y2 (en) 1986-10-20 1986-10-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16039086U JPH0548242Y2 (en) 1986-10-20 1986-10-20

Publications (2)

Publication Number Publication Date
JPS6365108U JPS6365108U (en) 1988-04-28
JPH0548242Y2 true JPH0548242Y2 (en) 1993-12-22

Family

ID=31085725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16039086U Expired - Lifetime JPH0548242Y2 (en) 1986-10-20 1986-10-20

Country Status (1)

Country Link
JP (1) JPH0548242Y2 (en)

Also Published As

Publication number Publication date
JPS6365108U (en) 1988-04-28

Similar Documents

Publication Publication Date Title
JPH036564B2 (en)
JPS62145510A (en) Magnetic head
JPH0548242Y2 (en)
JP2554041B2 (en) Method of manufacturing magnetic head core
JP3151855B2 (en) Magnetic head
JPH01185810A (en) Magnetic head and its manufacture
JPS6241366Y2 (en)
JP2964706B2 (en) Method of manufacturing magnetic head and magnetic head manufactured using the method
JPH0334124B2 (en)
JPS6231009A (en) Manufacture of magnetic head
JPS5883319A (en) Magnetic head
JPH0349129B2 (en)
JPH05143923A (en) Production of magnetic head
JPH03257038A (en) Glass and magnetic head
JPH06274815A (en) Magnetic head
JPH05143924A (en) Production of magnetic head
JPH0527579B2 (en)
JPH03222109A (en) Production of magnetic head
JPH07244814A (en) Manufacture of compound substrate lamination type magnetic head
JPS6171405A (en) Manufacture of alloy magnetic head
JPH07121817A (en) Production of magnetic head
JPS62145515A (en) Magnetic head
JPS62144305A (en) Composite magnetic material
JPH01184609A (en) Production of magnetic head
JPH0620214A (en) Manufacture of magnetic head