JPH0548135A - Semiconductor photodetector and its manufacture - Google Patents

Semiconductor photodetector and its manufacture

Info

Publication number
JPH0548135A
JPH0548135A JP3209241A JP20924191A JPH0548135A JP H0548135 A JPH0548135 A JP H0548135A JP 3209241 A JP3209241 A JP 3209241A JP 20924191 A JP20924191 A JP 20924191A JP H0548135 A JPH0548135 A JP H0548135A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
substrate
conductivity type
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209241A
Other languages
Japanese (ja)
Inventor
Tadashi Kimura
忠 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3209241A priority Critical patent/JPH0548135A/en
Publication of JPH0548135A publication Critical patent/JPH0548135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To simplify the manufacturing process and improve the efficiency of a semiconductor photodetector. CONSTITUTION:A semiconductor layer 3 of the first conductivity type is provided on part of a semiconductor substrate 1 by epitaxial growth by using a suitable mask 2 and a semiconductor superlattice light absorbing layer 5 having a super lattice which is perpendicular to the surface of the substrate 1 is formed by using the side of the layer 3 as the growth seed of the layer 5. Therefore, the surface vertical direction having the largest area can be utilized as the incident direction of light. In addition, incident light can be effectively converted into optical signals and, at the same time, a large number of devices can be formed in the same substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体材料を用いた半
導体光検出装置とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor photodetector using a semiconductor material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図6は、例えばApplied Physics Letter
50 (16),p.1092 に示された従来のGaAs/AlGa
As超格子を用いた赤外線検出装置を示す断面図であ
る。この図において、1は半導体基板、5は半導体超格
子光吸収層、6はこの半導体超格子光吸収層5上に形成
された電極形成層、7は電極、9は前記半導体基板1上
に形成された電極形成層、10は前記半導体基板1を斜
め45度に研磨した光入射面である。
2. Description of the Related Art FIG. 6 shows, for example, Applied Physics Letter.
50 (16), p.1092 Conventional GaAs / AlGa
It is sectional drawing which shows the infrared detection device which used As superlattice. In this figure, 1 is a semiconductor substrate, 5 is a semiconductor superlattice light absorption layer, 6 is an electrode formation layer formed on this semiconductor superlattice light absorption layer 5, 7 is an electrode, and 9 is formed on the semiconductor substrate 1. The formed electrode forming layers 10 are light incident surfaces obtained by polishing the semiconductor substrate 1 at an angle of 45 degrees.

【0003】次に、製造方法について説明する。半導体
基板1、例えば半絶縁性GaAs基板上に、有機金属気
相成長法または分子線エピタキシー法等の半導体結晶成
長法により、高キャリア濃度の第2導電型の半導体層
(電極形成層)9、例えばn型GaAs層を約1μm成
長させる。この後、同様の成長手段により、半導体超格
子光吸収層5、例えば40ÅGaAs/300ÅAl
0.31Ga0.69As50周期を形成させる。さらに、半導
体超格子光吸収層5の上に半導体層9と同様の第2導電
型の半導体層(電極形成層)6を設け、この後、半導体
基板1の端部を素子形成面に対し45度の角度で研磨を
行い、光入射面10を形成する。最後に、第2導電型の
半導体層6,9の表面に電極7、例えばAu/Ge/N
i等の金属を蒸着し、本素子は完成する。
Next, a manufacturing method will be described. On the semiconductor substrate 1, for example, a semi-insulating GaAs substrate, a second carrier type semiconductor layer (electrode forming layer) 9 having a high carrier concentration is formed by a semiconductor crystal growth method such as a metal organic chemical vapor deposition method or a molecular beam epitaxy method, For example, an n-type GaAs layer is grown to about 1 μm. Thereafter, the semiconductor superlattice light absorption layer 5, for example, 40ÅGaAs / 300ÅAl, is grown by the same growth means.
50 cycles of 0.31 Ga 0.69 As are formed. Further, a second conductivity type semiconductor layer (electrode formation layer) 6 similar to the semiconductor layer 9 is provided on the semiconductor superlattice light absorption layer 5, and thereafter, the end portion of the semiconductor substrate 1 is placed on the element formation surface by 45 °. The light incident surface 10 is formed by polishing at an angle of degrees. Finally, an electrode 7, for example Au / Ge / N, is formed on the surface of the second conductivity type semiconductor layers 6 and 9.
A metal such as i is vapor-deposited to complete the device.

【0004】この素子の基板研磨面である光入射面10
より、例えば波長約8μmの赤外線を入射させると、入
射光は半導体基板1を透過し、半導体超格子光吸収層5
に達する。ここで、入射光はGaAs井戸サブバンド中
の電子を伝導帯に励起させ、この電子はホットエレクト
ロンとなって走行し、光信号として検出される。
A light incident surface 10 which is a polished surface of the substrate of this device.
Therefore, for example, when an infrared ray having a wavelength of about 8 μm is incident, the incident light passes through the semiconductor substrate 1 and the semiconductor superlattice light absorption layer 5
Reach Here, the incident light excites electrons in the GaAs well subband to the conduction band, and these electrons travel as hot electrons and are detected as an optical signal.

【0005】[0005]

【発明が解決しようとする課題】従来の半導体光検出装
置は以上のように構成されているので、作成工程におい
て半導体基板1自体の研磨をしなければならず、さら
に、光を斜めから入射させる必要があった。このため、
超格子面に垂直な光成分のみ吸収されるので、量子効率
が最大でも0.5にしかならない。また、単体素子しか
半導体基板1上に形成できないため、集積化が困難であ
るなどの問題点があった。
Since the conventional semiconductor photodetector is constructed as described above, the semiconductor substrate 1 itself must be polished in the manufacturing process, and the light is incident obliquely. There was a need. For this reason,
Since only the light component perpendicular to the superlattice plane is absorbed, the quantum efficiency is only 0.5 at maximum. Moreover, since only a single element can be formed on the semiconductor substrate 1, there is a problem that integration is difficult.

【0006】本発明は、上記のような問題点を解消する
ためになされたもので、基板研磨が不要で、光を斜めか
ら入射させる必要がなく、かつ量子効率が向上し、さら
に同一基板上に多数の素子を同時に形成できる半導体光
検出装置とその製造方法を得ることを目的としている。
The present invention has been made in order to solve the above-mentioned problems. It is not necessary to polish the substrate, it is not necessary to allow light to be incident obliquely, the quantum efficiency is improved, and the same substrate is used. Another object of the present invention is to obtain a semiconductor photodetector capable of simultaneously forming a large number of elements and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明に係る半導体光検
出装置は、半導体基板上に形成された第1導電型の半導
体層と第2導電型の半導体層の間に、光吸収層面が半導
体基板表面と垂直に形成された半導体超格子光吸収層を
設けたものである。
According to another aspect of the present invention, there is provided a semiconductor photodetecting device in which a light absorption layer surface is a semiconductor between a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type formed on a semiconductor substrate. The semiconductor superlattice light absorption layer formed perpendicular to the substrate surface is provided.

【0008】また、本発明に係る半導体光検出装置の製
造方法は、半導体層の側壁をシードとしてサイドウォー
ルをエピタキシャル成長させ、半導体超格子光吸収層を
前記半導体基板に垂直に形成するものである。
In the method for manufacturing a semiconductor photodetector according to the present invention, the sidewall of the semiconductor layer is used as a seed to epitaxially grow the sidewall, and the semiconductor superlattice light absorption layer is formed perpendicularly to the semiconductor substrate.

【0009】[0009]

【作用】本発明における半導体超格子光吸収層は、その
超格子面は基板表面と垂直となり、基板表面または裏面
より入射する光成分は全て半導体超格子光吸収層と相互
作用することになる。
In the semiconductor superlattice light absorption layer of the present invention, the superlattice surface is perpendicular to the substrate surface, and all light components incident from the front surface or the back surface of the substrate interact with the semiconductor superlattice light absorption layer.

【0010】[0010]

【実施例】以下、本発明の一実施例を図について説明す
る。図1は本発明の半導体光検出装置の一実施例を示す
断面図である。図1において、1は半導体基板で、例え
ばGaAsからなる。2はこの半導体基板1上に形成さ
れた絶縁膜で、例えばSiN膜である。3は前記半導体
基板1上にエピタキシャル成長されたストライプ状の第
1導電型の半導体層で、例えばp型GaAs層である。
4は素子保護用の絶縁膜で、例えばSiN膜である。5
は入射光を吸収する半導体超格子光吸収層で、例えば4
0ÅGaAs/300ÅAl0.31Ga0.69As50周期
に形成される。6は第2導電型の半導体層で、例えばn
型GaAs層である。7は第2導電型の電極で、例えば
Au/Ge/Ni等の合金属で形成される。8は前記半
導体基板1の裏面全面に蒸着等により形成された第1導
電型の電極で、例えばAu/Znで形成される。素子表
面の絶縁膜4を通して入射した光の電磁界ベクトルは超
格子面に対して全て垂直である。したがって、入射光は
全て半導体超格子光吸収層5と相互作用しうる。よっ
て、電磁界ベクトルの半分しか相互作用できない従来例
に比べ本質的に効率向上が望める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the semiconductor photodetector of the present invention. In FIG. 1, reference numeral 1 denotes a semiconductor substrate, which is made of GaAs, for example. Reference numeral 2 denotes an insulating film formed on the semiconductor substrate 1, which is, for example, a SiN film. A stripe-shaped first conductivity type semiconductor layer 3 epitaxially grown on the semiconductor substrate 1 is, for example, a p-type GaAs layer.
An insulating film 4 for protecting the element is, for example, a SiN film. 5
Is a semiconductor superlattice light absorption layer that absorbs incident light.
It is formed with 0ÅGaAs / 300ÅAl 0.31 Ga 0.69 As 50 cycles. 6 is a semiconductor layer of the second conductivity type, for example, n
Type GaAs layer. Reference numeral 7 denotes a second conductivity type electrode, which is formed of a compound metal such as Au / Ge / Ni. Reference numeral 8 is a first conductivity type electrode formed on the entire back surface of the semiconductor substrate 1 by vapor deposition or the like, and is formed of, for example, Au / Zn. The electromagnetic field vector of light incident through the insulating film 4 on the element surface is all perpendicular to the superlattice plane. Therefore, all the incident light can interact with the semiconductor superlattice light absorption layer 5. Therefore, it is possible to essentially improve the efficiency as compared with the conventional example in which only half of the electromagnetic field vector can interact.

【0011】次に、光検出の原理について説明する。本
発明における装置の基本構造は、いわゆるPIN型フォ
トダイオードと呼ばれるものである。受光部、すなわち
半導体超格子光吸収層5、例えば40ÅGaAs/30
0ÅAl0.31Ga0.69As50周期においては、GaA
s井戸とAlGaAsバリアが形成されている。各々の
井戸は唯一のサブバンドと拡張した連続的励起状態を持
つ。ここに光、例えば波長約8μmの赤外線が入射する
とサブバンドにある電子は励起され、この連続的励起状
態、つまり伝導帯に跳び移りここをホットエレクトロン
となって走行し、光信号となって検出される。
Next, the principle of light detection will be described. The basic structure of the device in the present invention is a so-called PIN photodiode. Light receiving portion, that is, semiconductor superlattice light absorption layer 5, for example, 40ÅGaAs / 30
0ÅAl 0.31 Ga 0.69 As GaA in 50 cycles
An s well and an AlGaAs barrier are formed. Each well has a unique subband and extended continuous excited states. When light, for example, infrared rays with a wavelength of about 8 μm is incident on this, the electrons in the sub-band are excited, jump to this continuous excited state, that is, the conduction band, and travel as hot electrons to detect optical signals. To be done.

【0012】本発明で本質的なのは、光吸収に係る半導
体超格子光吸収層5を従来例に見られるような超格子面
と基板表面が平行になるように形成するのではなく、垂
直になるように形成することである。このためには、エ
ピタキシャル成長のシードに一旦基板上に成長したエピ
タキシャル層の側壁を用いて、ここより基板に垂直な超
格子面を成長するものである。
What is essential in the present invention is that the semiconductor superlattice light absorption layer 5 relating to light absorption is not formed such that the superlattice surface and the substrate surface are parallel to each other as in the conventional example, but is vertical. Is to be formed. For this purpose, the side wall of the epitaxial layer once grown on the substrate is used as a seed for epitaxial growth, and a superlattice plane perpendicular to the substrate is grown from here.

【0013】図2は本発明の半導体光検出装置の他の実
施例を示す断面図で、この実施例では、電極7を同一電
極材料にて形成し、上面に他の電極8を形成したもので
ある。
FIG. 2 is a sectional view showing another embodiment of the semiconductor photodetector of the present invention. In this embodiment, the electrode 7 is made of the same electrode material and another electrode 8 is formed on the upper surface. Is.

【0014】以下、図3,図4に示す製造フローに従っ
て図1の半導体光検出装置の製造方法を説明する。ま
ず、図3(a)に示すように、半導体基板1に、例えば
プラズマCVD法により絶縁膜2を堆積させる。次い
で、例えば熱CVD法によりアモルファスシリコン層1
1を堆積させる。次に、図3(b)に示すように、適当
なパターニングマスクにてアモルファスシリコン層11
を、例えばCHF3 /SF6 プラズマによりドライエッ
チングを行い穴を形成する。次いで、例えば、バッファ
フッ酸により穴部分の絶縁膜2を除去し、基板表面を露
呈させ第1導電型の半導体層形成用の溝12を形成す
る。次に、図3(c)に示すように、溝12中に適当な
半導体エピタキシー法、例えば有機金属気相成長(MO
CVD)法を用いて第1導電型の半導体層3をエピタキ
シャル成長させる。続いて、図3(d)に示すように、
エピタキシャル成長させた第1導電型の半導体層3、ア
モルファスシリコン層11の全面を覆うように素子保護
用の絶縁膜4を、例えば熱CVD法にて堆積させる。こ
の後、図3(e)に示すように、適当なパターニングマ
スクによりアモルファスシリコン層11の上の一部の素
子保護用の絶縁膜4を、例えばフッ酸等でエッチング除
去し、アモルファスシリコン層11の除去用の穴13を
形成する。
Hereinafter, a method of manufacturing the semiconductor photodetector of FIG. 1 will be described according to the manufacturing flow shown in FIGS. First, as shown in FIG. 3A, the insulating film 2 is deposited on the semiconductor substrate 1 by, for example, the plasma CVD method. Then, the amorphous silicon layer 1 is formed by, for example, a thermal CVD method.
1 is deposited. Next, as shown in FIG. 3B, the amorphous silicon layer 11 is formed using an appropriate patterning mask.
Holes are formed by dry etching using, for example, CHF 3 / SF 6 plasma. Next, for example, the insulating film 2 in the hole portion is removed by buffer hydrofluoric acid to expose the surface of the substrate and form the groove 12 for forming the semiconductor layer of the first conductivity type. Next, as shown in FIG. 3C, a suitable semiconductor epitaxy method, for example, metal organic chemical vapor deposition (MO) is used in the groove 12.
The first conductivity type semiconductor layer 3 is epitaxially grown by using the CVD method. Then, as shown in FIG.
An insulating film 4 for protecting the element is deposited by, for example, a thermal CVD method so as to cover the entire surfaces of the epitaxially grown semiconductor layer 3 of the first conductivity type and the amorphous silicon layer 11. After that, as shown in FIG. 3E, a part of the insulating film 4 for protecting the element on the amorphous silicon layer 11 is removed by etching with, for example, hydrofluoric acid by using an appropriate patterning mask, and the amorphous silicon layer 11 is removed. A hole 13 for removing the is formed.

【0015】次いで、図4(a)に示すように、穴13
を通して、例えばCHF3 /SF6プラズマエッチング
によりアモルファスシリコン層11を分解除去し、半導
体超格子光吸収層形成用の穴14を形成する。ここで、
先にエピタキシャル成長した第1導電型の半導体層3の
側壁(サイドウォール16)が露呈される。この後、図
4(b)に示すように、サイドウォール16をシードと
して、例えばMOCVD法,ハイドライド気相成長法
(VPE)等により、半導体超格子光吸収層5、例えば
40ÅGaAs/300ÅAl0.31Ga0.69As50周
期を形成する。なお、穴14は完全に埋め込まず一部、
すなわち第2導電型の半導体層形成用の溝15を残して
おく。次に、図4(c)に示すように、先と同様の半導
体結晶成長法を用い、第2導電型の半導体層6、例えば
成長時にSiをドーピングしたn型GaAs層をエピタ
キシャル成長させる。最後に、図4(d)に示すよう
に、第2導電型の半導体層6の上部に、第2導電型の電
極7を蒸着し、また、半導体基板1の裏面全面には第1
導電型の電極8を蒸着形成し、本発明に係る半導体光検
出装置は完成する。
Then, as shown in FIG.
Through, the amorphous silicon layer 11 is decomposed and removed by, for example, CHF 3 / SF 6 plasma etching to form a hole 14 for forming a semiconductor superlattice light absorption layer. here,
The side wall (sidewall 16) of the first conductivity type semiconductor layer 3 that has been epitaxially grown previously is exposed. After that, as shown in FIG. 4B, the semiconductor superlattice light absorption layer 5, for example, 40 Å GaAs / 300 Å Al 0.31 Ga 0.69 , is formed by using, for example, the MOCVD method, the hydride vapor phase epitaxy method (VPE) or the like with the sidewall 16 as a seed. As50 cycles are formed. In addition, the hole 14 is not completely embedded but is partially
That is, the trench 15 for forming the second conductivity type semiconductor layer is left. Next, as shown in FIG. 4C, a semiconductor crystal growth method similar to that described above is used to epitaxially grow the second conductivity type semiconductor layer 6, for example, an n-type GaAs layer doped with Si during growth. Finally, as shown in FIG. 4D, a second conductivity type electrode 7 is vapor-deposited on the second conductivity type semiconductor layer 6, and the first back surface of the semiconductor substrate 1 is covered with a first material.
The conductive type electrode 8 is formed by vapor deposition to complete the semiconductor photodetector according to the present invention.

【0016】なお、上記実施例では、第1導電型の半導
体基板1を用い、電流は半導体基板1の表裏方向に流れ
る構造となっているが、半絶縁性の基板を用い、第1導
電型,第2導電型の電極8,7を基板表面の同一面に形
成して検出する光を基板裏面より入射させても良い。こ
の例を図5(a),(b)により説明する。図5(a)
に示すように、第2導電型の半導体層6で穴14を埋め
込んだ後、素子保護用の絶縁膜4の第1導電型の半導体
層3上部の一部をフッ酸等によりエッチング除去し、第
1導電型の電極形成用の穴17を形成する。次に、図5
(b)に示すように、第2導電型の電極7を第2導電型
の半導体層6上に形成し、また、第1導電型の電極8を
第1導電型の半導体層3上に形成することによって、本
発明の他の実施例による半導体光検出装置が完成する。
In the above embodiment, the semiconductor substrate 1 of the first conductivity type is used, and the current flows in the front and back direction of the semiconductor substrate 1. However, a semi-insulating substrate is used and the first conductivity type is used. Alternatively, the second conductivity type electrodes 8 and 7 may be formed on the same surface of the substrate and the light to be detected may be incident from the rear surface of the substrate. This example will be described with reference to FIGS. Figure 5 (a)
As shown in, after filling the hole 14 with the second conductive type semiconductor layer 6, a part of the upper portion of the first conductive type semiconductor layer 3 of the insulating film 4 for protecting the element is removed by etching with hydrofluoric acid or the like, A hole 17 for forming a first conductivity type electrode is formed. Next, FIG.
As shown in (b), the second conductivity type electrode 7 is formed on the second conductivity type semiconductor layer 6, and the first conductivity type electrode 8 is formed on the first conductivity type semiconductor layer 3. By doing so, a semiconductor photodetector according to another embodiment of the present invention is completed.

【0017】なお、上記実施例では、第1導電型の電極
金属を基板裏面全面に形成し、検出光は表面より入射さ
せることを前提としたが、裏面の一部にのみ電極を形成
し、表裏両面より検出光を入射させても良い。
In the above embodiment, the first conductivity type electrode metal is formed on the entire back surface of the substrate and the detection light is incident from the front surface. However, the electrode is formed only on a part of the back surface. The detection light may be incident from both the front and back sides.

【0018】[0018]

【発明の効果】以上説明したように、本発明の請求項
1、2に記載の発明は、半導体基板上に部分的に第1導
電型の半導体層を形成し、この第1導電型の半導体層の
側壁を半導体超格子光吸収層の成長シードとして半導体
超格子光吸収層を形成したので、以下に記載するような
効果を奏する。
As described above, according to the first and second aspects of the present invention, the semiconductor layer of the first conductivity type is partially formed on the semiconductor substrate, and the semiconductor layer of the first conductivity type is formed. Since the semiconductor superlattice light absorption layer is formed by using the side wall of the layer as a growth seed of the semiconductor superlattice light absorption layer, the following effects are achieved.

【0019】半導体基板の研磨が必要でないため、製造
工程は簡略化され効率良く装置が作製できる。また、基
板に対して垂直に光を入射させることができるため、入
射光成分は全て超格子面に対し垂直となって吸収される
ので、量子効率の向上が望める。また、同一半導体基板
上に多数の素子を形成できるため、開口部面積、すなわ
ち受光面積が増加し高感度な装置となる。さらに、同一
基板上での集積化が可能であるため、2次元的撮像素子
として使用できる。
Since it is not necessary to polish the semiconductor substrate, the manufacturing process is simplified and the device can be manufactured efficiently. Further, since light can be made to enter the substrate perpendicularly, all incident light components are absorbed perpendicularly to the superlattice surface, and therefore improvement in quantum efficiency can be expected. Moreover, since a large number of elements can be formed on the same semiconductor substrate, the area of the opening, that is, the light receiving area is increased, and the device has high sensitivity. Furthermore, since they can be integrated on the same substrate, they can be used as a two-dimensional image pickup device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体光検出装置を示
す断面図である。
FIG. 1 is a sectional view showing a semiconductor photodetector according to an embodiment of the present invention.

【図2】本発明の他の実施例を示す半導体光検出装置の
断面図である。
FIG. 2 is a cross-sectional view of a semiconductor photodetector device showing another embodiment of the present invention.

【図3】本発明の半導体光検出装置の製造工程を示す断
面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of a semiconductor photodetector device of the present invention.

【図4】図3に引き続く製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process that follows FIG.

【図5】本発明の他の製造方法の工程を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing a step of another manufacturing method of the present invention.

【図6】従来の半導体光検出装置を示す断面図である。FIG. 6 is a sectional view showing a conventional semiconductor photodetector.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 絶縁膜 3 第1導電型の半導体層 4 素子保護用の絶縁膜 5 半導体超格子光吸収層 6 第2導電型の半導体層 7 第2導電型の電極 8 第1導電型の電極 11 アモルファスシリコン層 12 第1導電型の半導体層形成用の溝 13 アモルファスシリコン層除去用の穴 14 半導体超格子光吸収層形成用の穴 15 第2導電型の半導体層形成用の溝 16 サイドウォール 17 第1導電型の電極形成用の穴 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Insulating film 3 First conductive type semiconductor layer 4 Insulating film for element protection 5 Semiconductor superlattice light absorption layer 6 Second conductive type semiconductor layer 7 Second conductive type electrode 8 First conductive type electrode 11 Amorphous Silicon Layer 12 First Conduction Type Semiconductor Layer Forming Groove 13 Amorphous Silicon Layer Removing Hole 14 Semiconductor Superlattice Light Absorbing Layer Forming Hole 15 Second Conduction Type Semiconductor Layer Forming Groove 16 Sidewall 17 Hole for forming first conductivity type electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された第1導電型の
半導体層と第2導電型の半導体層の間に、光吸収層面が
前記半導体基板表面と垂直に形成された半導体超格子光
吸収層を設けたことを特徴とする半導体光検出装置。
1. A semiconductor superlattice optical absorption device, wherein a light absorption layer surface is formed perpendicular to the semiconductor substrate surface between a first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on a semiconductor substrate. A semiconductor photo-detecting device having a layer.
【請求項2】 半導体基板上に所定パターンで第1導電
型の半導体層を形成し、この第1導電型の半導体層の側
壁をそのシードとして半導体超格子光吸収層を前記半導
体基板面に垂直に形成する工程を含むことを特徴とする
半導体光検出装置の製造方法。
2. A semiconductor layer of a first conductivity type is formed on a semiconductor substrate in a predetermined pattern, and a semiconductor superlattice light absorption layer is perpendicular to the surface of the semiconductor substrate using a sidewall of the semiconductor layer of the first conductivity type as a seed. A method for manufacturing a semiconductor photodetector, comprising the step of forming.
JP3209241A 1991-08-21 1991-08-21 Semiconductor photodetector and its manufacture Pending JPH0548135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209241A JPH0548135A (en) 1991-08-21 1991-08-21 Semiconductor photodetector and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209241A JPH0548135A (en) 1991-08-21 1991-08-21 Semiconductor photodetector and its manufacture

Publications (1)

Publication Number Publication Date
JPH0548135A true JPH0548135A (en) 1993-02-26

Family

ID=16569701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209241A Pending JPH0548135A (en) 1991-08-21 1991-08-21 Semiconductor photodetector and its manufacture

Country Status (1)

Country Link
JP (1) JPH0548135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227450A (en) * 2007-03-09 2008-09-25 Dongbu Hitek Co Ltd Image sensor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227450A (en) * 2007-03-09 2008-09-25 Dongbu Hitek Co Ltd Image sensor and method of manufacturing the same
JP4733096B2 (en) * 2007-03-09 2011-07-27 ドンブ ハイテック カンパニー リミテッド Image sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US11335725B2 (en) High efficiency wide spectrum sensor
US10312390B2 (en) Light receiving device and method of producing light receiving device
US5602414A (en) Infrared detector having active regions and isolating regions formed of CdHgTe
CA2142915C (en) Photoconductive impedance-matched infrared detector with heterojunction blocking contacts
US5942771A (en) Semiconductor photodetector
CN109659398B (en) Preparation method of AlGaN-based back-entering MSM ultraviolet focal plane array imaging system
JP7073948B2 (en) Manufacturing method of infrared detector, infrared detector and infrared detector
JP3233614B2 (en) Photosensitive element using quantum island and method of manufacturing the same
JPH0548135A (en) Semiconductor photodetector and its manufacture
JP2730472B2 (en) Semiconductor light receiving element
JP3716401B2 (en) Quantum well optical sensor
EP3680941B1 (en) Avalanche photodiode and method for manufacturing same
JP2508579B2 (en) Method of manufacturing array type infrared detector
JP4331386B2 (en) Manufacturing method of quantum well type infrared sensor
JP4331428B2 (en) Intersubband Transition Quantum Well Photodetector
JP2004179404A (en) Semiconductor light receiving device and its manufacturing method
KR20180019269A (en) A semiconductor device
JP2024060816A (en) Light receiving element and infrared imaging device
JP2000106426A (en) Quantum well optical sensor and manufacture thereof
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH0758309A (en) Photo-electronic integrated circuit
JPH07183569A (en) Sam type avalanche photodiode and its manufacture
JPH04137565A (en) Optical semiconductor element
JP2004152942A (en) Semiconductor photoreceptor element
JPH06112516A (en) Semiconductor light receiving element