JPH05475B2 - - Google Patents

Info

Publication number
JPH05475B2
JPH05475B2 JP61130527A JP13052786A JPH05475B2 JP H05475 B2 JPH05475 B2 JP H05475B2 JP 61130527 A JP61130527 A JP 61130527A JP 13052786 A JP13052786 A JP 13052786A JP H05475 B2 JPH05475 B2 JP H05475B2
Authority
JP
Japan
Prior art keywords
sodium
plating
zinc
film
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61130527A
Other languages
Japanese (ja)
Other versions
JPS62287093A (en
Inventor
Toshuki Yoshikata
Rie Hizuka
Yasutaka Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP13052786A priority Critical patent/JPS62287093A/en
Publication of JPS62287093A publication Critical patent/JPS62287093A/en
Publication of JPH05475B2 publication Critical patent/JPH05475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電気亜鉛−ニツケル合金めつき浴に
関する。 従来の技術及びその問題点 亜鉛めつきは、鉄素地に対する腐食防止作用が
大きく、ボルト、ナツトなどの小形部品から鋼
板、線材等の大形の材料に至るまで広く応用され
ている。しかしながら近年融雪塩の使用等によ
り、環境中において腐食促進作用を有する物質が
増加し、このため各種の製品に対する腐食性能の
向上が要求され、より腐食力の優れためつき皮膜
の開発が望まれている。 亜鉛−ニツケル合金めつき皮膜は、亜鉛めつき
皮膜よりも優れた腐食性能を有する皮膜として知
られており、各種の組成のめつき浴が研究され、
例えば特公昭60−12434号、特公昭60−58313号等
に示すめつき浴が知られている。しかしながら、
一般に電気めつき法による合金めつきでは、電流
密度の違いによつて折出する皮膜の合金組成が異
なることが知られており、通常のめつき条件で
は、被めつき物上に大きく電流密度が異なる部分
が生じることから、均一な合金組成のめつき皮膜
を得ることは困難である。特に、亜鉛−ニツケル
合金めつきでは、低電流密度部分はニツケルに富
んだ皮膜になり易く、その部分だけが黒色外観を
呈するという欠点がある。このような欠点を改善
するために、被めつき品に高電流を流すと、被め
つき品の角部等の高電流密度となる分では、極め
て高い電流が流れる結果となり、コゲと称する粗
雑なめつき皮膜が形成されて、被めつき品の外観
が損われることとなる。更に、めつき処理品上に
合金組成の大きく異なる部分が生じると、部分的
な腐食の促進が生じ、被めつき品に対する防食性
能が不充分となるという問題点もある。 このような理由により、従来の電気亜鉛−ニツ
ケル合金めつき浴では、防食力が優れ、かつ良好
な外観のめつき処理品を得るためには、適用でき
る電流密度範囲が著しく制限され、被めつき品と
しては、形状、大きさ等の点で、大きな電流密度
分布が生じないものに限定されている。また電流
値の制御を厳格にしなければならないために、作
業上煩雑であるという欠点もある。このため、亜
鉛−ニツケル合金めつきは、防食力の優れためつ
き皮膜であるにもかかわらず、充分な工業化がな
されていないのが現状である。 問題点を解決するための手段 本発明者は、上記した如き現状に鑑みて、電気
亜鉛−ニツケル合金めつきの応用範囲を広げるた
めに、広い範囲の電流密度部分において均一性に
優れた良好な外観のめつき皮膜を形成し得るめつ
き浴を見出すべく、鋭意研究を重ねてきた。その
結果、塩化亜鉛、塩化ニツケル、及び塩化アンモ
ニウムを主剤とする亜鉛−ニツケル合金めつき浴
において、特定のアニオン界面活性剤を添加剤と
して用いることによつて、広範囲の電流密度部分
において良好な外観を呈するめつき皮膜が得られ
ることを見出し、ここに本発明を完成するに至つ
た。 即ち、本発明は、 (i) 塩化亜鉛(Zn2+として)12.5〜90g/、 (ii) 塩化ニツケル(Ni2+として)5〜60g/、 (iii) 塩化アンモニウム(NH4 +として)5〜120
g/、及び (iv) オレイン酸ナトリウム、オクチルフエノキシ
エトキシエチルスルホン酸ナトリウム、モノラ
ウリルグリセリル硫酸ナトリウム、ジオクチル
スルホコハク酸ナトリウム、ロート油、1,5
−ジイソプロピル−7−ナフタリンスルホン酸
ナトリウム及びポリオキシエチレン−β−ナフ
トール硫酸ナトリウムから選ばれた少なくとも
一種のアニオン界面活性剤0.2〜20g/ を含有し、かつZn2+/Ni2+(重量比)=0.2〜2.5で
あり、アンモニア水でPH4.7〜7.0としたことを特
徴とする電気亜鉛−ニツケル合金めつき浴に係
る。 本発明の電気亜鉛−ニツケル合金めつき浴で
は、塩化亜鉛、塩化ニツケル及び塩化アンモニウ
ムを主剤とするめつき浴を基本浴として用いる。
該めつき浴では、金属濃度は、Zn2+として12.5〜
90g/、Ni2+として5〜60g/とし、
Zn2+/Ni2+(重量比)を0.2〜2.5とすることが適
当であり、金属濃度がこの範囲外では良好な外観
のめつき皮膜を得難くなる。また、NH4 +濃度
は、良好なめつき皮膜を得るためには、5〜120
g/程度とすることが適当である。 本発明めつき浴では、オレイン酸ナトリウム、
オクチルフエノキシエトキシエチルスルホン酸ナ
トリウム、モノラウリルグリセリル硫酸ナトリウ
ム、ジオクチルスルホコハク酸ナトリウム、ロー
ト油、1,5−ジイソプロピル−7−ナフタリン
スルホン酸ナトリウム及びポリオキシエチレン−
β−ナフトール硫酸ナトリウムから選ばれた少な
くとも一種のアニオン界面活性剤を使用する。こ
れらのアニオン界面活性剤を用いることにより、
広い電流密度範囲にわたつて黒色皮膜を形成しな
い緻密で均一な結晶の高耐食性皮膜が得られる。
アニオン界面活性剤の添加量は、0.2〜20g/
とすることが適当である。添加量が0.2g/未
満では、充分な添加効果が得られず、一方20g/
を上回る添加量では、添加効果がより向上する
ことがないだけでなく、泡立が多くなつてめつき
液の汲み出し量が増加し排水処理の負担が大きく
なるので好ましくない。 本発明めつき浴には、更に必要に応じて、めつ
き皮膜の光沢、レベリング等を向上させるため
に、芳香族アルデヒド、芳香族ケトン等を添加で
きる。これらの具体例としては、ベンザルアセト
ン、アニスアルデヒド、バニリン、シンナムアル
デヒド、ベラトラムアルデヒド等を示すことがで
き、0.01〜2g/程度の添加によつて鏡面光沢
を有するめつき皮膜が得られる。更に、めつき皮
膜の柔軟性の向上や0.3A/dm2程度以下の微電
流部の黒色皮膜形成の防止の目的でフタル酸、安
息香酸、キナルジン酸、ナフタリン−1,2−ジ
カルボン酸、酢酸、プロピオン酸、シユウ酸、及
びこれらの塩であるカルボン酸化合物、酒石酸、
サリチル酸、m−オキシケイ皮酸、1−オキシ−
2−ナフトエ酸、2−オキシ−1−ナフトエ酸、
マレイン酸、及びこれらの塩であるオキシカルボ
ン酸化合物、グルタミン酸、トリプトフアン、グ
リシン、フエニルアラニン、ヒスチジン、及びこ
れらの塩であるアミノ酸化合物等を0.005〜10
g/程度添加することもできる。 本発明めつき浴では、アンモニア水を用いてPH
を4.7〜7.0に調整し、浴温30〜45℃程度、平均陰
極電流密度0.5〜8A/dm2程度で、空気撹拌、機
械撹拌等による撹拌下でめつき処理を行なうこと
により、良好な外観を有し、かつ耐食性能の優れ
た亜鉛−ニツケル合金めつき皮膜が得られる。 発明の効果 本発明めつき浴を用いることにより、広範囲の
電流密度部分で良好な外観を有し、かつ防食性能
の優れた亜鉛−ニツケル合金めつき皮膜を形成さ
せることができる。このため電流密度が大きく異
なる部分が生じ易い複雑な形状の被めつき品にお
いても、全体に亘つて均一な外観を有し、かつ耐
食性能に優れためつき皮膜を形成させることが可
能となる。従つて、各種の形状や大きさの被めつ
き品に亜鉛−ニツケルめつきを施すことが可能と
なり、めつき処理作業における電流値の制御も容
易となり、電気亜鉛−ニツケルめつきの実用性が
著るしく向上する。 実施例 以下、実施例を示して、本発明を詳細に説明す
る。 実施例 1 下記組成のめつき浴を使用し、ハルセル試験器
を用いて、ハルセルめつき試験を行なつた。 塩化亜鉛 100g/ 塩化ニツケル・6水塩 130g/ 塩化アンモニウム 200g/ オレイン酸ナトリウム 0.3g/ 25%アンモニア水でPH5.7に調整ハルセル試験
のめつき条件は以下に示す通りである。 試験液量 267ml 撹 拌 空気撹拌 陰 極 磨き鋼板 陽 極 亜鉛板 めつき温度 35℃ 電流及びめつき時間 0.5A10分又は2A5分 ハルセル試験の結果、0.5Aでめつきを行なつ
た試験片では、0.3A/dm2程度以上の電流密度
となる部分は半光沢状の均一な外観を呈し、
0.3A/dm2程度を下回る電流密度部分では、黒
色皮膜が形成され、この黒色皮膜部分は、試験片
のめつき面の約25%であつた。また2Aでめつき
を行なつた試験片は、全面が半光沢状の均一な外
観となり、強い光沢を要求しない場合には、十分
に使用できるものであつた。 また、上記めつき浴を用いて、鋼板上に平均電
流密度4A/dm2で5μm厚にめつきを行ない、JIS
−Z−2371に基づいて塩水噴霧試験を行なつた結
果、試料に赤錆が発生するるまでの時間は、288
時間であつた。 実施例 2 実施例のめつき浴において、オレイン酸ナトリ
ウムに代えて、下記第1表に示す添加剤を使用す
る以外は、実施例1と同様にして、ハルセル試験
及び塩水噴霧試験を行なつた。その結果を下記第
2表に示す。尚、試料Iについては、従来用いら
れている青化亜鉛めつき浴を用いて、5μm厚の
亜鉛めつき皮膜を形成させた試料についての塩水
噴霧試験結果を表わす。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to an electrolytic zinc-nickel alloy plating bath. BACKGROUND TECHNOLOGY AND PROBLEMS Zinc plating has a strong corrosion-preventing effect on iron substrates, and is widely applied to everything from small parts such as bolts and nuts to large materials such as steel plates and wire rods. However, in recent years, due to the use of snow-melting salts, etc., the number of substances that have a corrosion-promoting effect has increased in the environment, and as a result, improvements in the corrosion performance of various products are required, and the development of a matting film with even better corrosion resistance is desired. There is. Zinc-nickel alloy plating films are known to have better corrosion performance than zinc plating films, and plating baths with various compositions have been researched.
For example, plating baths shown in Japanese Patent Publication No. 12434/1982 and Japanese Patent Publication No. 58313/1982 are known. however,
In general, in alloy plating by electroplating, it is known that the alloy composition of the deposited film differs depending on the current density. It is difficult to obtain a plated film with a uniform alloy composition because there are parts with different values. In particular, zinc-nickel alloy plating has the disadvantage that low current density areas tend to form a film rich in nickel, and only those areas exhibit a black appearance. In order to improve these defects, if a high current is applied to the plated product, an extremely high current will flow in areas with high current density such as the corners of the plated product, resulting in a rough surface called burnt. A licking film is formed and the appearance of the coated product is impaired. Furthermore, if parts with significantly different alloy compositions occur on the plated product, local corrosion will be accelerated, leading to the problem that the corrosion protection performance for the plated product will be insufficient. For these reasons, in conventional electrolytic zinc-nickel alloy plating baths, in order to obtain plated products with excellent corrosion protection and good appearance, the applicable current density range is severely limited, and The accessories are limited to those that do not cause a large current density distribution in terms of shape, size, etc. Furthermore, since the current value must be strictly controlled, there is also the drawback that the work is complicated. For this reason, zinc-nickel alloy plating has not been fully industrialized at present, although it is a tough coating with excellent anticorrosion properties. Means for Solving the Problems In view of the above-mentioned current situation, the inventor of the present invention aimed to improve the appearance of the electrolytic zinc-nickel alloy with excellent uniformity in a wide range of current density in order to expand the range of applications of electrolytic zinc-nickel alloy plating. We have been conducting extensive research to find a plating bath that can form a plating film. As a result, by using a specific anionic surfactant as an additive in a zinc-nickel alloy plating bath containing zinc chloride, nickel chloride, and ammonium chloride as main ingredients, good appearance can be achieved over a wide range of current density. It has been discovered that a plated film exhibiting the following properties can be obtained, and the present invention has now been completed. That is, the present invention provides: (i) zinc chloride (as Zn 2+ ) 12.5 to 90 g/, (ii) nickel chloride (as Ni 2+ ) 5 to 60 g/, (iii) ammonium chloride (as NH 4 + ) 5 ~120
g/, and (iv) Sodium oleate, sodium octylphenoxyethoxyethyl sulfonate, sodium monolaurylglyceryl sulfate, sodium dioctyl sulfosuccinate, funnel oil, 1,5
- Contains 0.2 to 20 g of at least one anionic surfactant selected from sodium diisopropyl-7-naphthalene sulfonate and sodium polyoxyethylene-β-naphthol sulfate, and Zn 2+ /Ni 2+ (weight ratio) = 0.2 to 2.5, and the electrolytic zinc-nickel alloy plating bath is characterized in that the pH is adjusted to 4.7 to 7.0 with ammonia water. In the electrolytic zinc-nickel alloy plating bath of the present invention, a plating bath containing zinc chloride, nickel chloride, and ammonium chloride as main ingredients is used as a basic bath.
In the plating bath, the metal concentration is 12.5 to 12.5 as Zn 2+
90g/, 5 to 60g/ as Ni 2+ ,
It is appropriate that the Zn 2+ /Ni 2+ (weight ratio) is between 0.2 and 2.5; if the metal concentration is outside this range, it will be difficult to obtain a plated film with a good appearance. In addition, the NH 4 + concentration must be 5 to 120 to obtain a good plating film.
It is appropriate to set it to about g/g. In the plating bath of the present invention, sodium oleate,
Sodium octylphenoxyethoxyethylsulfonate, sodium monolaurylglyceryl sulfate, sodium dioctylsulfosuccinate, funnel oil, sodium 1,5-diisopropyl-7-naphthalenesulfonate, and polyoxyethylene-
At least one anionic surfactant selected from sodium β-naphthol sulfate is used. By using these anionic surfactants,
A highly corrosion-resistant film with dense, uniform crystals that does not form a black film can be obtained over a wide current density range.
The amount of anionic surfactant added is 0.2 to 20g/
It is appropriate to If the amount added is less than 0.2g/, a sufficient addition effect cannot be obtained;
If the amount added is more than 100%, the addition effect will not be further improved, and the amount of plating solution pumped out will increase due to increased bubbling, which will increase the burden on wastewater treatment, which is not preferable. If necessary, aromatic aldehydes, aromatic ketones, etc. can be added to the plating bath of the present invention in order to improve the gloss, leveling, etc. of the plating film. Specific examples of these include benzalacetone, anisaldehyde, vanillin, cinnamaldehyde, veratraldehyde, etc., and by adding about 0.01 to 2 g/g, a plated film with specular luster can be obtained. In addition, phthalic acid, benzoic acid, quinaldic acid, naphthalene-1,2-dicarboxylic acid, and acetic acid are added for the purpose of improving the flexibility of the plating film and preventing the formation of a black film on microcurrent areas of about 0.3 A/dm 2 or less. , propionic acid, oxalic acid, and carboxylic acid compounds that are salts thereof, tartaric acid,
salicylic acid, m-oxycinnamic acid, 1-oxy-
2-naphthoic acid, 2-oxy-1-naphthoic acid,
Maleic acid, oxycarboxylic acid compounds that are their salts, glutamic acid, tryptophan, glycine, phenylalanine, histidine, and amino acid compounds that are their salts, etc., at 0.005 to 10
It is also possible to add approximately g/g. In the plating bath of the present invention, ammonia water is used to
4.7 to 7.0, and perform plating treatment at a bath temperature of about 30 to 45℃, average cathode current density of about 0.5 to 8A/ dm2 , and agitation using air agitation, mechanical agitation, etc., to achieve a good appearance. It is possible to obtain a zinc-nickel alloy plating film having the following characteristics and excellent corrosion resistance. Effects of the Invention By using the plating bath of the present invention, it is possible to form a zinc-nickel alloy plating film that has a good appearance in a wide range of current density areas and has excellent anticorrosion performance. Therefore, it is possible to form a plating film that has a uniform appearance over the entire part and has excellent corrosion resistance even on a plated product with a complicated shape where parts with large current densities are likely to differ. Therefore, it has become possible to apply zinc-nickel plating to coated products of various shapes and sizes, and it has become easier to control the current value during plating processing, greatly increasing the practicality of electrolytic zinc-nickel plating. Improve your skills. Examples Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 A Hull Cell plating test was conducted using a Hull Cell tester using a plating bath having the following composition. Zinc chloride 100g/Nickel chloride hexahydrate 130g/Ammonium chloride 200g/Sodium oleate 0.3g/Adjusted to pH5.7 with 25% ammonia water The plating conditions for the Hull cell test are as shown below. Test liquid volume 267ml Stirring Air stirred cathode Polished steel plate anode Zinc plate plating temperature 35℃ Current and plating time 0.5A 10 minutes or 2A 5 minutes As a result of the Hull cell test, the test pieces plated at 0.5A showed The area where the current density is about 0.3A/dm2 or higher has a semi-glossy uniform appearance,
A black film was formed in the area where the current density was less than about 0.3 A/dm 2 , and this black film covered about 25% of the plated surface of the test piece. Moreover, the test piece plated with 2A had a uniform semi-glossy appearance on the entire surface, and could be used satisfactorily in cases where strong gloss was not required. In addition, using the above plating bath, plating was performed on a steel plate to a thickness of 5 μm at an average current density of 4 A/dm 2 , and JIS
- As a result of a salt spray test based on Z-2371, the time required for red rust to appear on the sample was 288
It was time. Example 2 A Hull cell test and a salt spray test were conducted in the same manner as in Example 1, except that the additives shown in Table 1 below were used in place of sodium oleate in the plating bath of Example. . The results are shown in Table 2 below. Regarding Sample I, the salt water spray test results are shown for a sample in which a 5 μm thick galvanized film was formed using a conventionally used cyanide zinc plating bath.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第2表から明らかな様に、本発明めつき浴で
は、低電流密度部分に生成する黒色皮膜の面積が
著しく減少し、広範囲の電流密度部分に亘つて良
好な光沢のめつき皮膜が形成される。また、得ら
れるめつき皮膜の防食力は、従来の亜鉛めつき皮
膜や亜鉛−ニツケルめつき皮膜に比して非常に優
れたものである。
[Table] As is clear from Table 2, in the plating bath of the present invention, the area of the black film formed in the low current density area is significantly reduced, and a good glossy plating film is formed over a wide range of current density areas. is formed. Furthermore, the anti-corrosion properties of the resulting plating film are extremely superior to those of conventional galvanized films and zinc-nickel plating films.

Claims (1)

【特許請求の範囲】 1 (i) 塩化亜鉛(Zn2+として)12.5〜90g/
、 (ii) 塩化ニツケル(Ni2+として)5〜60g/、 (iii) 塩化アンモニウム(NH4 +として)5〜120
g/、及び (iv) オレイン酸ナトリウム、オクチルフエノキシ
エトキシエチルスルホン酸ナトリウム、モノラ
ウリルグリセリル硫酸ナトリウム、ジオクチル
スルホコハク酸ナトリウム、ロート油、1,5
−ジイソプロピル−7−ナフタリンスルホン酸
ナトリウム及びポリオキシエチレン−β−ナフ
トール硫酸ナトリウムから選ばれた少なくとも
一種のアニオン界面活性剤0.2〜20g/ を含有し、かつZn2+/Ni2+(重量比)=0.2〜2.5で
あり、アンモニア水でPH4.7〜7.0としたことを特
徴とする電気亜鉛−ニツケル合金めつき浴。
[Claims] 1 (i) Zinc chloride (as Zn 2+ ) 12.5 to 90 g/
, (ii) Nickel chloride (as Ni 2+ ) 5-60 g/, (iii) Ammonium chloride (as NH 4 + ) 5-120
g/, and (iv) Sodium oleate, sodium octylphenoxyethoxyethyl sulfonate, sodium monolaurylglyceryl sulfate, sodium dioctyl sulfosuccinate, funnel oil, 1,5
- Contains 0.2 to 20 g of at least one anionic surfactant selected from sodium diisopropyl-7-naphthalene sulfonate and sodium polyoxyethylene-β-naphthol sulfate, and Zn 2+ /Ni 2+ (weight ratio) = 0.2 to 2.5, and an electrolytic zinc-nickel alloy plating bath characterized in that the pH is adjusted to 4.7 to 7.0 with ammonia water.
JP13052786A 1986-06-05 1986-06-05 Electric zinc-nickel alloy plating bath Granted JPS62287093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13052786A JPS62287093A (en) 1986-06-05 1986-06-05 Electric zinc-nickel alloy plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13052786A JPS62287093A (en) 1986-06-05 1986-06-05 Electric zinc-nickel alloy plating bath

Publications (2)

Publication Number Publication Date
JPS62287093A JPS62287093A (en) 1987-12-12
JPH05475B2 true JPH05475B2 (en) 1993-01-06

Family

ID=15036428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13052786A Granted JPS62287093A (en) 1986-06-05 1986-06-05 Electric zinc-nickel alloy plating bath

Country Status (1)

Country Link
JP (1) JPS62287093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021131339A1 (en) * 2019-12-23 2021-07-01

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972138A (en) * 1972-09-26 1974-07-12
JPS5827355A (en) * 1981-07-17 1983-02-18 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ Automatic bonding tape and method of producing same
JPS6012434A (en) * 1983-06-30 1985-01-22 Fuji Eng Kk Sheet feeder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972138A (en) * 1972-09-26 1974-07-12
JPS5827355A (en) * 1981-07-17 1983-02-18 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ Automatic bonding tape and method of producing same
JPS6012434A (en) * 1983-06-30 1985-01-22 Fuji Eng Kk Sheet feeder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021131339A1 (en) * 2019-12-23 2021-07-01

Also Published As

Publication number Publication date
JPS62287093A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
CA2159268C (en) Alkaline zinc and zinc alloy electroplating baths and processes
JPH0338351B2 (en)
JPH0312157B2 (en)
JPS6136078B2 (en)
US6706167B1 (en) Zinc and zinc alloy electroplating additives and electroplating methods
CN102171386B (en) Zinc alloy electroplating baths and processes
JPS6058313B2 (en) Zinc alloy plating bath containing condensation polymer brightener
JP4307810B2 (en) Method of depositing zinc-nickel alloy from zinc-nickel electrolyte
US3669854A (en) Zinc electroplating electrolyte and process
US2954331A (en) Bright copper plating bath
JP3348963B2 (en) Zinc-cobalt alloy alkaline plating bath and plating method using the plating bath
JPH01298192A (en) Zinc-nickel alloy plating solution
US4014761A (en) Bright acid zinc plating
US5194140A (en) Electroplating composition and process
JPS6141999B2 (en)
JP3486087B2 (en) Plating bath and plating process for alkaline zinc or zinc alloy
JPS6141998B2 (en)
JPH05475B2 (en)
JP3344817B2 (en) Zinc-manganese alloy alkaline plating bath and plating method using the plating bath
US4138294A (en) Acid zinc electroplating process and composition
JPH11193487A (en) Alkaline plating solution for zinc or zinc alloy and plating process
CA1076516A (en) Zinc anode benefaction
JP3526947B2 (en) Alkaline zinc plating
JPS647159B2 (en)
KR100979047B1 (en) Electro-Galvanizing Additive for Excellent Adhesion, Flatness and Surface Appearance, Manufacturing Method Thereof and Plating Method Using it