JPH0547275A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JPH0547275A
JPH0547275A JP19969491A JP19969491A JPH0547275A JP H0547275 A JPH0547275 A JP H0547275A JP 19969491 A JP19969491 A JP 19969491A JP 19969491 A JP19969491 A JP 19969491A JP H0547275 A JPH0547275 A JP H0547275A
Authority
JP
Japan
Prior art keywords
region
contact
composition
composition region
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19969491A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥冨
Atsushi Yamamoto
敦史 山本
Keisei Seki
経世 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19969491A priority Critical patent/JPH0547275A/en
Publication of JPH0547275A publication Critical patent/JPH0547275A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the low-surge performance, and the large-current shielding performance by providing a contact comprising a first and a second composition ranges of different compositions, and a middle range disposed between them. CONSTITUTION:For a vacuum valve having contacts 13a, 13b composed of a high conductivity material and an arc-resistant material, the contacts 13a, 13b are each composed of a plural composition ranges of different compositions. That is, each is composed of a first composition range (I) 21, a second composition range (II) 23, and a middle range (M) 22 disposed at a middle position between the range (I) and the range (II). The range (I) 21 comprises Ag-Mo-based alloy, the range (II) 23 comprises Cu-Cr-based alloy having a large current shielding ability, and the range (M) 22 comprises alloy having an intermediate property of the range (I) 21 and the range (II) 23. A quantity of conductive components of the range (M) 22 is set to be within a range of (II)>(M)>(I) with relation to the quantity of conductive components in each range. A low- surge performance and a large-current shielding performance can thus be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大電流遮断性能と低サ
ージ性能に優れた真空バルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve excellent in large current interruption performance and low surge performance.

【0002】[0002]

【従来の技術】真空開閉器は、他の開閉器に比較し、小
型、軽量、メンテナンスフリー、環境調和等種々の優れ
た特徴を有するため、近年次第にその適用範囲が拡大さ
れてきた。真空遮断器は、真空中でのアーク拡散性を利
用して高真空中で電流遮断を行なうものであり、特に真
空バルブについて図2を参照して説明する。
2. Description of the Related Art A vacuum switch has various excellent features such as small size, light weight, maintenance-free, and environmental friendliness as compared with other switches, so that its application range has been gradually expanded in recent years. The vacuum circuit breaker uses the arc diffusivity in a vacuum to interrupt a current in a high vacuum, and a vacuum valve will be described with reference to FIG.

【0003】真空バルブは、真空気密に保たれた遮断室
1を有し、この遮断室1は絶縁材料によりほぼ円筒状に
形成された絶縁容器2と、この両端に封止金具3a,3
bを介して設けた金属製の蓋体4a,4bとで構成され
ている。遮断室1内には、導電棒5,6の対向する端部
に取付けられた一対の固定電極7、可動電極8が配設さ
れる。可動電極8の導電棒6にはベローズ9が取付けら
れ、遮断室1内の真空気密を保持しつつ可動電極8が軸
方向に移動する。ベローズ9の上部には金属製のアーク
シールド10が設けられ、ベローズ9がアーク蒸気で覆わ
れることを防止している。同様に金属製のアークシール
ド11は、遮断室1内において固定電極7および可動電極
8を覆うように設けられ、絶縁容器2がアーク蒸気で覆
われることを防止している。通電中は固定接点13bに可
動接点13aが接触しており、電流の遮断は導電棒6を下
方向へ移動させこの両接点13a,13bの接触を断つこと
により行なう。
The vacuum valve has a shut-off chamber 1 which is kept airtight in a vacuum, and the shut-off chamber 1 is formed of an insulating material in a substantially cylindrical shape, and sealing metal fittings 3a, 3 are provided at both ends thereof.
It is composed of metallic lids 4a and 4b provided via b. A pair of fixed electrodes 7 and movable electrodes 8 attached to opposite ends of the conductive rods 5 and 6 are disposed in the shutoff chamber 1. A bellows 9 is attached to the conductive rod 6 of the movable electrode 8 so that the movable electrode 8 moves in the axial direction while maintaining vacuum tightness in the blocking chamber 1. An arc shield 10 made of metal is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Similarly, a metal arc shield 11 is provided so as to cover the fixed electrode 7 and the movable electrode 8 in the shutoff chamber 1, and prevents the insulating container 2 from being covered with arc vapor. The movable contact 13a is in contact with the fixed contact 13b during energization, and the current is interrupted by moving the conductive rod 6 downward and breaking the contact between the contacts 13a and 13b.

【0004】次に、導電棒5,6と電極7,8、電極
7,8と接点13a,13bとの相互の固定構造について、
図2における可動電極8周辺の詳細を示した図3を参照
して説明する。可動電極8は導電棒6に符号12で示され
たろう付または図示しないかしめ等により固定され、可
動接点13aは可動電極8に符号14で示されたろう付また
は図示しないかしめ等により固定される。固定側の固定
電極7と接点13bとの固定方法も同様である。
Next, the mutual fixing structure of the conductive rods 5 and 6 and the electrodes 7 and 8 and the electrodes 7 and 8 and the contacts 13a and 13b will be described.
This will be described with reference to FIG. 3 showing the details around the movable electrode 8 in FIG. The movable electrode 8 is fixed to the conductive rod 6 by brazing indicated by reference numeral 12 or caulking not shown, and the movable contact 13a is fixed at the movable electrode 8 by brazing indicated by reference numeral 14 or caulking not shown. The same applies to the method of fixing the fixed electrode 7 on the fixed side and the contact 13b.

【0005】[0005]

【発明が解決しようとする課題】真空開閉器用接点に要
求される要件として、(1)溶着性が少ないこと(2)
耐電圧が高いこと(3)耐消耗性に優れること(4)接
触抵抗が低く安定していること等がある。この他に最近
の真空開閉装置に対する期待が一層高まり、(5)低サ
ージ性能を有すること(6)大電流遮断性能を有するこ
とが要求されるが、この二つの要求は相反するものであ
る。
DISCLOSURE OF THE INVENTION Problems to be solved by the invention are as follows: (1) Low weldability (2)
They have high withstand voltage (3) excellent wear resistance (4) low contact resistance and stability. In addition to this, recent expectations for vacuum switchgear have further increased, and (5) low surge performance and (6) large current interruption performance are required, but these two requirements are contradictory.

【0006】まず、低サージ性能を有するための要件に
ついて説明する。電動機負荷等の誘導回路で電流を遮断
する時などにおいて、過度のサージ電圧を発生させ、負
荷機器の絶縁を破壊させる恐れがある。この異常サージ
電圧の発生原因は、真空中における遮断時に低電流側に
発生する電流さい断現象(交流電流波形の自然ゼロ点を
待たずに強制的に電流遮断が行なわれること)によるも
のである。異常サージ電圧値は回路のサージインピーダ
ンスと電流さい断値の積で表わされ、異常サージ電圧を
低くするためには、つまり低サージ性能を有するために
は、電流さい断値を小さくしなければならない。即ち、
遮断時において、アークによって可動接点13aと固定接
点13bの各表面からイオン、金属粒子が多く蒸発して両
接点間に浮遊し、アークが容易に接続されなければなら
ない。従って、接点13a,13bに用いられる材料は、大
電流を遮断する時だけでなく、開閉電流が小さくて接点
の温度上昇が小さい場合であっても蒸発性の高い高蒸気
圧性を有することが要求される。このような低サージ性
能を満たすものとして、高蒸気圧性材料であるAgを含
有したAg−WC合金が知られている。この合金から成
る接点は (1)WCの介在が接点表面からのイオンの放射を容易
にさせること (2)電界放射電子の衝突による電極間の加熱に基づく
接点表面から金属粒子の蒸発を促進させること (3)接点材料中の炭化物がアークにより分解し、荷電
体を生成すること 等により、優れた低サージ性能を有している。この他
に、この性能を有する材料として、高蒸気圧性材料でC
uを含有したCu−Cr合金、Cu−Bi合金等が知ら
れている。
First, the requirements for having a low surge performance will be described. When the current is cut off by an induction circuit such as a motor load, an excessive surge voltage may be generated, which may damage the insulation of the load device. The cause of this abnormal surge voltage is due to the current interruption phenomenon that occurs on the low current side during interruption in vacuum (the current is forcibly interrupted without waiting for the natural zero point of the AC current waveform). .. The abnormal surge voltage value is expressed by the product of the circuit surge impedance and the current cutoff value.To reduce the abnormal surge voltage, that is, to have low surge performance, the current cutoff value must be reduced. I won't. That is,
At the time of interruption, a large amount of ions and metal particles evaporate from the surfaces of the movable contact 13a and the fixed contact 13b due to the arc and float between the contacts, so that the arc must be easily connected. Therefore, the material used for the contacts 13a and 13b is required to have high vapor pressure, which is highly vaporizable, not only when a large current is cut off, but also when the switching current is small and the temperature rise of the contact is small. To be done. As a material satisfying such a low surge performance, an Ag-WC alloy containing Ag, which is a high vapor pressure material, is known. The contacts made of this alloy (1) The inclusion of WC facilitates the emission of ions from the contact surface. (2) The evaporation of metal particles from the contact surface due to the heating between the electrodes due to the collision of field emission electrons is promoted. (3) Carbide in the contact material is decomposed by the arc to generate a charged body, which has excellent low surge performance. In addition to this, as a material having this performance, a high vapor pressure material such as C
Cu-Cr alloys, Cu-Bi alloys and the like containing u are known.

【0007】これに対し、もう一方の相反する要件であ
る大電流遮断性能を有するためには接点13a,13bが低
蒸気圧性の材料から成ることが要求される。大電流を遮
断する場合には接点13a,13bの表面温度は極め高温と
なるが、このような場合であってもアークによる接点表
面からの蒸発量が少なく、両接点間にイオン、金属粒子
がほとんど浮遊しない状態でなければ遮断性が損われる
こととなる。従って、一般にどちらか一方の性能向上を
追及すると、もう一方の性能が低下する。
On the other hand, the contacts 13a and 13b are required to be made of a material having a low vapor pressure in order to have a large current interruption performance which is the other contradictory requirement. When shutting off a large current, the surface temperature of the contacts 13a, 13b becomes extremely high, but even in such a case, the amount of evaporation from the contact surface due to the arc is small, and ions and metal particles are generated between both contacts. The barrier property will be impaired unless it floats almost. Therefore, in general, when the performance of either one is pursued, the performance of the other decreases.

【0008】この二つの相反する要件を満たすための手
段として、接点を高蒸気圧性材料と低蒸気圧性材料の二
種類の材料から構成するものがある。電流を遮断するた
めに通電中接触していた両接点が離れる際において、初
めに高蒸気圧性材料から成る部分から多くのイオン、金
属粒子が蒸発して接点間に浮遊し、アークがこれに導か
れて両接点における高蒸気圧性材料同志に接続される。
低サージ性能が満たされるために必要な時間経過後、両
接点における高蒸気圧性材料同志に接続させていたアー
クを、両接点における低蒸気圧性材料同志に接続される
ように移行される。これは、図5に示されたコイル電極
44、図6に示されたスパイラル電極45等を用いて磁界H
を制御することにより、両接点間に浮遊するイオン、金
属粒子の分布を変えて強制的にアークを移行させるとい
う方法等により行なうことができる。
As means for satisfying these two contradictory requirements, there is one in which the contact is made of two kinds of materials, a high vapor pressure material and a low vapor pressure material. When both contacts, which were in contact with each other during energization to separate the current, separate from each other, many ions and metal particles evaporate from the part made of the material with high vapor pressure and float between the contacts, and the arc guides them. It is connected to the high vapor pressure material comrades at both contacts.
After a lapse of time necessary to satisfy the low surge performance, the arc, which was connected to the high vapor pressure material at both contacts, is transferred to be connected to the low vapor pressure material at both contacts. This is the coil electrode shown in FIG.
44, a magnetic field H is generated using the spiral electrode 45 shown in FIG.
Can be performed by a method of changing the distribution of ions and metal particles floating between both contacts and forcibly moving the arc.

【0009】しかし、低電流遮断器にも低サージ性能を
有する高蒸気圧性材料の物性と、大電流遮断機能を有す
る低蒸気圧性材料の物性とでは蒸気圧性という点におい
て大きく異なる。このため、磁界例えば縦磁界Hにより
両接点間に存在するイオン、金属粒子の分布を変えて
も、アークが高蒸気圧性材料から成る部分と低蒸気圧性
材料から成る部分との境界上に停滞し容易に移行しな
い。従って、接点を高蒸気圧性材料と低蒸気圧性材料と
を単純に組み合せて構成しただけでは低サージ性能と大
電流遮断性能とを同時に満たすことはできない。本発明
の目的は、低サージ性能と大電流遮断性能に優れた真空
バルブを提供することにある。
However, even in the low current circuit breaker, the physical properties of a high vapor pressure material having a low surge performance and the physical properties of a low vapor pressure material having a large current interruption function are very different in terms of vapor pressure property. Therefore, even if the distribution of ions and metal particles existing between both contacts is changed by the magnetic field, for example, the longitudinal magnetic field H, the arc is stagnant on the boundary between the part made of the high vapor pressure material and the part made of the low vapor pressure material. Does not migrate easily. Therefore, the low surge performance and the large current interruption performance cannot be satisfied at the same time by simply configuring the contact point by simply combining the high vapor pressure material and the low vapor pressure material. An object of the present invention is to provide a vacuum valve excellent in low surge performance and large current interruption performance.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の真空バルブは、組成の異なる第1,第2の組
成領域と、その間にはさまれた中間領域からなる接点を
具備するものである。
In order to achieve the above object, the vacuum valve of the present invention comprises a contact composed of first and second composition regions having different compositions and an intermediate region sandwiched therebetween. It is a thing.

【0011】すなわち、本発明の真空バルブは、高導電
性材料と耐弧性材料とから構成される接点を具備してな
る真空バルブにおいて、前記接点が、それぞれ組成の異
なる第1組成領域〔I〕、第2組成領域〔II〕、および
第1組成領域〔I〕と第2組成領域〔II〕の中間位置に
介在する中間領域〔M〕から構成され、第1組成領域
〔I〕が低サージ性のAg−Mo2 C系合金からなり、
第2組成領域〔II〕が大電流遮断性のCu−Cr系合金
からなり、中間領域〔M〕が第1組成領域〔I〕と第2
組成領域〔II〕の中間的な性質を有する合金からなり、
前記〔M〕の導電性成分量が各領域中の導電性成分量に
対して〔II〕>〔M〕>〔I〕の範囲にあるようにし
た。
That is, the vacuum valve of the present invention is a vacuum valve comprising a contact made of a highly conductive material and an arc resistant material, wherein the contact has a first composition region [I ], A second composition region [II], and an intermediate region [M] interposed between the first composition region [I] and the second composition region [II], and the first composition region [I] is low. consists surge of Ag-Mo 2 C-based alloy,
The second composition region [II] is made of a Cu-Cr alloy having a large current blocking property, and the intermediate region [M] is composed of the first composition region [I] and the second
Composed of an alloy having intermediate properties in the composition region [II],
The amount of the conductive component of the above [M] was set in the range of [II]>[M]> [I] with respect to the amount of the conductive component in each region.

【0012】本発明の好ましい態様において、前記第1
組成領域〔I〕は、高導電性材料が10〜50重量%のA
g、残部の耐弧性材料がMo2 Cからなり、前記第2組
成領域〔II〕は、高導電性材料が20〜80重量%のCu、
残部の耐弧性材料がCrからなるようにした。
In a preferred embodiment of the present invention, the first
The composition region [I] contains 10 to 50% by weight of the highly conductive material A.
g, the balance of the arc-resistant material is Mo 2 C, and the second composition region [II] contains Cu of 20 to 80 wt% as the highly conductive material.
The balance of the arc resistant material was made of Cr.

【0013】本発明の好ましい他の態様において、前記
中間領域〔M〕は、高導電性材料がAgまたはCuの少
なくとも一方からなり、耐弧性材料がCrまたはMo2
Cの少なくとも一方からなるようにした。
In another preferred embodiment of the present invention, in the intermediate region [M], the highly conductive material is at least one of Ag and Cu, and the arc resistant material is Cr or Mo 2.
It was made to consist of at least one of C.

【0014】本発明の好ましい他の態様において、第1
組成領域〔I〕の高導電性材料がAgおよびCuからな
り、高導電性材料の含有量は10〜50重量%の範囲にあ
り、Cu量はAg量に対して40%以内であるようにし
た。
In another preferred embodiment of the present invention, the first
The highly conductive material in the composition region [I] consists of Ag and Cu, the content of the highly conductive material is in the range of 10 to 50% by weight, and the amount of Cu is within 40% with respect to the amount of Ag. did.

【0015】本発明の好ましい他の態様において、前記
中間領域〔M〕における耐弧性成分Cr+Mo2 Cは、
前記第1組成領域〔I〕に接する一側から前記第2組成
領域〔II〕に接する他側に向かってCrのMo2 Cに対
する比が第1組成領域〔I〕の耐弧性成分量から前記第
2組成領域〔II〕の耐弧性成分量へと段階的にまたは連
続的に変化するようにした。
In another preferred embodiment of the present invention, the arc resistance component Cr + Mo 2 C in the intermediate region [M] is
From the one side in contact with the first composition region [I] to the other side in contact with the second composition region [II], the ratio of Cr to Mo 2 C is from the arc-resistant component amount of the first composition region [I]. The amount of the arc resistant component in the second composition region [II] is changed stepwise or continuously.

【0016】本発明の好ましい他の態様において、第1
組成領域〔I〕、第2組成領域〔II〕および中間領域
〔M〕の各領域が、接点の中心から半径方向に〔II〕
〔M〕〔I〕の順にまたは〔I〕〔M〕〔II〕の順に配
置されるようにした。
In another preferred aspect of the present invention, the first
Each of the composition region [I], the second composition region [II] and the intermediate region [M] is [II] in the radial direction from the center of the contact.
They are arranged in the order of [M] [I] or in the order of [I] [M] [II].

【0017】[0017]

【作用】本発明の真空バルブに用いる接点は、それぞれ
組成の異なる第1組成領域〔I〕、第2組成領域〔I
I〕、および〔I〕と〔II〕の中間位置に介在する中間
領域〔M〕とから構成され、第1組成領域〔I〕は低サ
ージ性に優れたAg−Mo2C系合金、第2組成領域〔I
I〕は大電流遮断性に優れたCu−Cr系合金、中間領
域〔M〕は〔I〕と〔II〕の中間的な性質を有する合金
で構成され、この〔M〕の導電性成分量が、各領域中の
導電性成分量に対して〔II〕>〔M〕>〔I〕の範囲に
あるように構成されている。従って、低サージ性に重要
な影響を及ぼす導電性成分量が、たとえば円形の接点で
は、半径方向に対し〔I〕〔M〕〔II〕の順、または
〔II〕〔M〕〔I〕の順で変化している。このような構
成を持つ接点を真空バルブに用いて電流遮断を行なう場
合、通電中に接触していた両接点が離れる際に、接点を
構成している領域のうち最も導電性分量の少ない材料か
ら成る第1の組成領域〔I〕から多くのイオンの放出或
いは金属粒子が蒸発して両接点のこの合金領域同志の間
に浮遊し、アークがこれに導かれて両者の間に接続され
る。この後、磁界の作用により両接点間に存在するイオ
ン、金属粒子の分布を変えると、第1の組成領域〔I〕
から中間領域〔M〕へアークが向かう。すなわち、高導
電性成分の量は第1の組成領域〔I〕から中間領域
〔M〕を経て第2の組成領域〔II〕へ向かうに従って徐
々に高くなるため、アークは停滞することなく容易に移
行する。このようにして磁界の制御により、強制的にア
ークを第2の組成領域〔II〕へ向かって移行させてい
く。そして低サージ性能が満たされるために、つまりア
ークが両接点間に接続されているために必要な時間経過
後、Agのない第2の組成領域〔II〕へ移行させると、
この瞬間にアークの接続が断たれることとなる。
The contact used in the vacuum valve of the present invention has a first composition region [I] and a second composition region [I] having different compositions.
I] and an intermediate region [M] interposed at an intermediate position between [I] and [II], and the first composition region [I] is an Ag-Mo 2 C-based alloy excellent in low surge property, 2 composition area [I
I] is composed of a Cu-Cr alloy excellent in blocking large currents, and the intermediate region [M] is composed of an alloy having intermediate properties between [I] and [II]. Is in the range of [II]>[M]> [I] with respect to the amount of the conductive component in each region. Therefore, in the case of a circular contact, for example, the amount of conductive components that have an important influence on the low surge property is [I] [M] [II] in the radial direction or [II] [M] [I]. It is changing in order. When using a contact with such a structure as a vacuum valve to cut off the current, when the two contacts that were in contact with each other during energization are separated, the material with the least amount of conductivity in the area that constitutes the contact is selected. A large number of ions are emitted from the first composition region [I] or metal particles are evaporated from the first composition region [I] to float between the alloy regions of both contacts, and an arc is introduced between them to connect them. After that, when the distribution of ions and metal particles existing between both contacts is changed by the action of the magnetic field, the first composition region [I]
The arc goes from the center to the intermediate region [M]. That is, since the amount of the highly conductive component gradually increases from the first composition region [I] through the intermediate region [M] to the second composition region [II], the arc can be easily maintained without stagnating. Transition. In this way, the arc is forcibly moved toward the second composition region [II] by controlling the magnetic field. Then, after the time required for satisfying the low surge performance, that is, because the arc is connected between both contacts, the second composition region [II] without Ag is moved,
At this moment, the arc will be disconnected.

【0018】上記の第1組成領域〔I〕は、低サージ性
のAg−Mo2 C系合金からなる。このAg−Mo2
系合金は、上述したように優れた低サージ機能を有する
合金である。
The first composition region [I] is made of a low surge Ag—Mo 2 C alloy. This Ag-Mo 2 C
The system alloy is an alloy having an excellent low surge function as described above.

【0019】本発明においてAg−Mo2 C系合金とい
うのは、導電性材料としてAg、またはAgを主成分と
しその一部をCuで置換したものからなり、耐弧性成分
としてMo2 Cからなる合金を意味する。そして、高導
電性材料が10〜50重量%のAg、残部の耐弧性成分がM
2 Cからなるものであることが好ましい。第1組成領
域〔I〕中に導電性成分量が10重量%未満では、さい断
電流値が十分低くならず、またばらつきも大きく、開閉
回路の経過とともにさい断の劣化する傾向にある。一方
50重量%を越えると、さい断電流値が高く好ましくな
い。
[0019] because Ag-Mo 2 C-based alloy in the present invention, Ag as a conductive material, or as main component and a part of the Ag composed those substituted with Cu, the Mo 2 C as arc-proof component It means an alloy. Then, the highly conductive material is 10 to 50% by weight of Ag, and the remaining arc resistant component is M.
It is preferably composed of o 2 C. When the amount of the conductive component in the first composition region [I] is less than 10% by weight, the breaking current value is not sufficiently low, and the fluctuation is large, and the breaking tendency tends to deteriorate with the passage of the switching circuit. on the other hand
If it exceeds 50% by weight, the breaking current value becomes high, which is not preferable.

【0020】また上記の第1組成領域〔I〕中の高導電
性材料としてはAgに限らず、AgおよびCuからなる
場合であっても、該高導電性の含有量が10〜50重量%の
範囲にあり、Cuの量がAg量に対して40%以内であれ
ば、中間領域〔M〕の導電性成分量が〔II〕>〔M〕>
〔I〕の範囲にある限り、アークは電極面全体に拡がり
好ましい遮断特性を示す。
The highly conductive material in the first composition region [I] is not limited to Ag, and even if it is made of Ag and Cu, the content of the highly conductive material is 10 to 50% by weight. And the amount of Cu is within 40% of the amount of Ag, the amount of conductive component in the intermediate region [M] is [II]>[M]>
As long as it is in the range of [I], the arc spreads over the entire electrode surface and exhibits favorable interruption characteristics.

【0021】上記の第2組成領域〔II〕は大電流遮断性
のCu−Cr系合金からなる。このCu−Cr系合金は
上述したように優れた大電流遮断特性を有する合金であ
る。ここで、高導電性材料が20〜80重量%のCu、残部
の耐弧性材料がCrからなるものであることが好まし
い。第2組成領域〔II〕中に導電性成分の量が20重量%
未満では、アークが十分に中間領域〔M〕から第2組成
領域〔II〕へ移行しにくい。一方80重量%を越えると、
アークによって第2組成領域〔II〕の消耗が大きくな
る。
The above-mentioned second composition region [II] is made of a Cu-Cr type alloy having a large current interrupting property. This Cu-Cr alloy is an alloy having excellent large current interruption characteristics as described above. Here, it is preferable that the highly conductive material is 20 to 80% by weight of Cu, and the balance of the arc resistant material is Cr. The amount of the conductive component in the second composition region [II] is 20% by weight.
When it is less than the above range, the arc is not easily transferred from the intermediate region [M] to the second composition region [II]. On the other hand, if it exceeds 80% by weight,
The arc increases the consumption of the second composition region [II].

【0022】上記の中間領域〔M〕は、上記第1組成領
域〔I〕と上記第2組成領域〔II〕の中間位置に介在
し、これら第1組成領域〔I〕と第2組成領域〔II〕の
中間的性質を有する合金からなる。
The intermediate region [M] is located at an intermediate position between the first composition region [I] and the second composition region [II], and the first composition region [I] and the second composition region [I]. It is composed of an alloy having an intermediate property of [II].

【0023】このような構成とすることによって、第1
組成領域〔I〕から中間領域〔M〕を経て第2組成領域
〔II〕へのアークの移行がスムーズに行われるのであ
る。この中間領域〔M〕の構成材料としては、その高導
電性材料がAgまたはCuの少なくとも一方からなり、
耐弧性材料がCrまたはMo2 Cの少なくとも一方から
なるものであることが好ましい。
With this structure, the first
The arc is smoothly transferred from the composition region [I] through the intermediate region [M] to the second composition region [II]. As the constituent material of the intermediate region [M], the highly conductive material is at least one of Ag and Cu,
It is preferable that the arc resistant material is made of at least one of Cr and Mo 2 C.

【0024】従って、中間領域〔M〕の構成材料として
具体的には、Ag−Mo2 C、Cu−Mo2 C、Ag+
Cu−Mo2 C、Ag−Cr、Cu−Cr、Ag+Cu
−Cr、Ag+Cu−Mo2 C+Cr、Ag−Mo2
+CrおよびCu−Mo2 C+Crの組み合わせがある
が、そのいずれのものであっても、導電性成分量が〔I
I〕>〔M〕>〔I〕の範囲にある限り、好ましい遮断
性能を示す。
Therefore, as the constituent material of the intermediate region [M], specifically, Ag--Mo 2 C, Cu--Mo 2 C, Ag +
Cu-Mo 2 C, Ag- Cr, Cu-Cr, Ag + Cu
-Cr, Ag + Cu-Mo 2 C + Cr, Ag-Mo 2 C
There are + Cr and Cu-Mo 2 C + Cr combinations, be of any thereof, conductive component amount [I
As long as it is in the range of I]>[M]> [I], it shows a preferable breaking performance.

【0025】上記の中間領域〔M〕における耐弧性材料
としてMo2 C+Crを用いる場合、第1組成領域
〔I〕に接する一側から第2組成領域〔II〕に接する他
側に向かってCrのMo2 Cに対する比を第1組成領域
〔I〕の耐弧性成分量から前記第2組成領域〔II〕の耐
弧性成分量へと段階的にまたは連続的に変化するように
構成すれば、アークが〔I〕→〔M〕→〔II〕へとスム
ーズに移行するので好ましい。
When Mo 2 C + Cr is used as the arc resistant material in the above-mentioned intermediate region [M], Cr is applied from one side in contact with the first composition region [I] to the other side in contact with the second composition region [II]. by forming the ratio of Mo 2 C as stepwise or continuously changes from arc-proof component content of the first compositional region [I] to arc-proof component content of the second composition region (II) This is preferable because the arc smoothly transitions from [I] → [M] → [II].

【0026】[0026]

【実施例】本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described with reference to the drawings.

【0027】本発明の一実施例として、接点が第1の組
成領域〔I〕としてAg−Mo2 C、第2の組成領域
〔II〕としてCu−Cr、これらの中間の領域〔M〕か
らなる場合について、接点を上部から見た図1を用いて
説明する。図4に示した従来の接点と比較し〔I〕と
〔II〕との間に中間領域〔M〕が配されている点が異な
る。
According to one embodiment of the present invention, the contact is made from Ag--Mo 2 C as the first composition region [I], Cu-Cr as the second composition region [II], and an intermediate region [M] between them. This case will be described with reference to FIG. 1 in which the contacts are viewed from above. It differs from the conventional contact shown in FIG. 4 in that an intermediate region [M] is arranged between [I] and [II].

【0028】次に、本発明に係る接点の低サージ性およ
び大電流遮断性について試験評価した結果について説明
する。それぞれの接点の有する低サージ性能、大電流遮
断性能を比較対照するため、両接点間を接触した状態に
おける接点圧、この状態から離していくときの開極スピ
ード、真空度を同一条件とした。
Next, the results of test evaluation of the low surge property and large current interruption property of the contact according to the present invention will be described. In order to compare and contrast the low surge performance and large current interruption performance of each contact, the contact pressure when both contacts were in contact, the contact opening speed when separating from this condition, and the degree of vacuum were the same conditions.

【0029】低サージ性の優劣は、離れている両接点間
にアークが接続されるために必要な電流さい断値の大小
により評価することができ、この値が小さいほど低サー
ジ性に優れることとなる。LC回路を介し、44AのAC
電流を与えたとき、真空遮断器に直列に挿入した同軸シ
ャフトの電圧降下をオシロスコープで測定し、電流さい
断値を算出した。
The superiority or inferiority of the low surge property can be evaluated by the magnitude of the current interruption value required for the arc to be connected between the separated contacts. The smaller this value, the better the low surge property. Becomes 44A AC via LC circuit
When an electric current was applied, the voltage drop of the coaxial shaft inserted in series with the vacuum circuit breaker was measured with an oscilloscope to calculate the current interruption value.

【0030】大電流遮断性の優劣は、遮断が成功したと
きの電流の大きさ、すなわちその電流の最大値により評
価することができ、この値が大きいほど大電流遮断性に
優れることになる。接点表面をベーキング、電圧エージ
ング等によりクリーニングして条件を一定にした後、7.
2 KV、50Hzで1KAずつ電流を増加しながら遮断限
界時における電流の最大値を測定し、所定の標準値に対
する倍率を遮断倍率として算出した。 実施例1、比較例1〜2 以上の各接点に対するサージ電流値および遮断倍率を示
した表1,2を参照し、本発明による接点の効果につい
て説明する。
The superiority or inferiority of the large current interruption property can be evaluated by the magnitude of the current when the interruption is successful, that is, the maximum value of the current. The larger this value, the better the large current interruption property. After cleaning the contact surface by baking, voltage aging, etc. to make the conditions constant, 7.
The maximum value of the current at the interruption limit was measured while increasing the current by 1 KA at 2 KV and 50 Hz, and the magnification against a predetermined standard value was calculated as the interruption magnification. Example 1 and Comparative Examples 1 to 2 The effects of the contact according to the present invention will be described with reference to Tables 1 and 2 showing the surge current value and the breaking ratio for each contact described above.

【0031】実施例1、および比較例1,2は、いずれ
も低さい断材料の33Ag−Mo2 Cを、図1での(21)
すなわち第1の組成領域〔I〕に、大電流遮断材料の50
Cu−Crを第2の組成領域〔II〕すなわち図1での
(23)に用いた。これに対して〔I〕〔II〕の間に存在
する中間領域〔M〕すなわち図1での(22)には、導電
成分Agの量を15wt%(比較例−1)、42wt%(実
施例−1)、75wt%(比較例−2)として評価したと
ころ、〔M〕のAgの量が〔I〕と〔II〕の導電性材料
の中間の量の場合には、〔I〕に点弧したアークが〔I
I〕にまで広がり、電極面積を有効に活用できる結果、
優れた遮断性能を示した(実施例−1)。
In each of Example 1 and Comparative Examples 1 and 2, 33Ag-Mo 2 C, which is a low breaking material, is used as (21) in FIG.
That is, in the first composition region [I], 50
Cu-Cr was used for the second composition region [II], that is, (23) in FIG. On the other hand, in the intermediate region [M] existing between [I] and [II], that is, (22) in FIG. 1, the amount of the conductive component Ag is 15 wt% (Comparative Example-1) and 42 wt% (implementation). Example-1) and 75 wt% (Comparative Example-2) were evaluated, and when the amount of Ag of [M] was an intermediate amount between the conductive materials of [I] and [II], it became [I]. The ignited arc is [I
I) and the effective use of the electrode area,
It showed excellent blocking performance (Example-1).

【0032】これに対して〔M〕のAgの量が15wt%
の場合、すなわち〔I〕のAg(導電性材料)の量より
少ない場合(比較例−1)には、アークが〔I〕と
〔M〕との境界で固着する傾向にあり、電極面を有効に
活用できず、遮断特性は充分でなかった(比較例−
1)。
On the other hand, the amount of Ag of [M] is 15 wt%
In the case of, that is, when the amount of Ag (conductive material) of [I] is smaller (Comparative Example-1), the arc tends to stick at the boundary between [I] and [M], and the electrode surface It could not be used effectively and the blocking characteristics were not sufficient (Comparative Example-
1).

【0033】一方〔M〕のAgの量が75wt%の場合、
すなわち〔II〕の導電性材料Cuの量より多い場合(比
較例−2)には、アークが〔M〕と〔II〕の境界に固着
する傾向にあり、遮断性能の優れた〔II〕の領域の50C
u−Crの能力を充分発揮することができず、遮断特性
は充分でなかった(比較例−2)。以上から中間領域
〔M〕の高導電性材料の量は〔II〕>〔M〕>〔I〕の
範囲にあることが必要である。 実施例2、比較例3〜4
On the other hand, when the amount of Ag of [M] is 75 wt%,
That is, when the amount of the conductive material Cu of [II] is larger (Comparative Example-2), the arc tends to stick to the boundary between [M] and [II], and the breaking performance of [II] is excellent. 50C of area
The ability of u-Cr could not be fully exhibited, and the blocking characteristics were not sufficient (Comparative Example-2). From the above, the amount of the highly conductive material in the intermediate region [M] needs to be in the range of [II]>[M]> [I]. Example 2, Comparative Examples 3-4

【0034】上記した事例は中間領域〔M〕の導電性成
分としてAgを用いたAg−Mo2Cについて述べた
が、導電性成分としてCuを用いたCu−Mo2 Cにお
いても同じ傾向を得た。
In the above-mentioned case, Ag-Mo 2 C using Ag as a conductive component in the intermediate region [M] is described, but the same tendency is obtained in Cu-Mo 2 C using Cu as a conductive component. It was

【0035】すなわち、〔M〕のCuの量が〔I〕と
〔II〕の導電性成分の中間の量の場合には、〔I〕点弧
したアークが〔II〕にまで速やかに広がり、電極表面を
有効に活用している結果、優れた遮断性能を発揮した
(実施例−2)。
That is, when the amount of Cu in [M] is an intermediate amount between the conductive components of [I] and [II], the arc ignited by [I] spreads rapidly to [II], As a result of effectively utilizing the electrode surface, excellent blocking performance was exhibited (Example-2).

【0036】これに対して〔M〕のCuの量が20wt%
の場合、すなわち〔I〕のAg(導電性材料)の量より
少ない場合(比較例−3)には、アークが〔I〕と
〔M〕との境界に停滞する傾向にあり、アーク集中によ
る電極の損傷によって遮断特性は充分でなかった(比較
例−3)。
On the other hand, the amount of Cu in [M] is 20 wt%
In the case of, that is, when it is less than the amount of Ag (conductive material) of [I] (Comparative Example-3), the arc tends to stagnate at the boundary between [I] and [M]. The blocking property was not sufficient due to electrode damage (Comparative Example-3).

【0037】一方〔M〕のCuの量が70wt%の場合、
すなわち〔II〕のCu(導電性成分)の量より多い場合
(比較例−4)には、アークが〔M〕と〔II〕の境界に
固着する傾向にあり、遮断性能の優れた〔II〕の領域の
50Cu−Crの能力を充分発揮することができず、好ま
しい遮断特性を得ることはできなかった(比較例−
4)。以上から中間領域〔M〕の高導電性材料の量は、
前述実施例−1で述べたAgの場合と同様に〔II〕>
〔M〕>〔I〕の範囲にあることが望ましい。 実施例3〜7
On the other hand, when the amount of Cu in [M] is 70 wt%,
That is, when the amount of Cu (conductive component) of [II] is larger than that (Comparative Example-4), the arc tends to stick to the boundary between [M] and [II], resulting in excellent breaking performance [II]. ] Area
The ability of 50Cu-Cr could not be fully exerted, and favorable blocking characteristics could not be obtained (Comparative Example-
4). From the above, the amount of highly conductive material in the intermediate region [M] is
[II]> as in the case of Ag described in Example-1 above
It is desirable that it is in the range of [M]> [I]. Examples 3 to 7

【0038】〔M〕に使用する接点は、上記実施例1,
2で示したようなAg−Mo2 C、Cu−Mo2 Cに限
らず、Ag−Cr、Cu−Cr(実施例3〜4)でも上
記したように導電性成分の量が〔II〕>〔M〕>〔I〕
を満すとき、好ましい遮断性能を得た。
The contacts used in [M] are the same as those used in the first embodiment.
Not only Ag—Mo 2 C and Cu—Mo 2 C as shown in 2 but also Ag—Cr and Cu—Cr (Examples 3 to 4), the amount of the conductive component is [II]> as described above. [M]> [I]
, The favorable blocking performance was obtained.

【0039】同様に〔M〕に使用する接点の導電性成分
がAg+Cuでも同様な効果を得た(実施例5〜7)。
耐弧性成分がC+Crであっても同様の効果が得られた
(実施例−7)。 実施例−8
Similarly, the same effect was obtained when the conductive component of the contact used for [M] was Ag + Cu (Examples 5 to 7).
Similar effects were obtained even when the arc resistance component was C + Cr (Example-7). Example-8

【0040】実施例1〜7、比較例1〜4では、第1の
組成領域〔I〕としてAg−Mo2C合金の例で示した
が、これに限ることなく導電性成分がAg+Cuであっ
ても、その合計量が29wt%の場合、中間領域〔M〕の
導電性成分の量が〔II〕>〔M〕>〔I〕の範囲にあれ
ば好ましい遮断特性を示した(実施例−8)。この場合
には前記実施例と同様、アークは電極面全体に良好に拡
がっている。 実施例9〜10、7〜8
In Examples 1 to 7 and Comparative Examples 1 to 4, the first composition region [I] is an example of Ag-Mo 2 C alloy, but the conductive component is not limited to Ag + Cu. However, when the total amount is 29 wt%, preferable blocking characteristics are exhibited when the amount of the conductive component in the intermediate region [M] is within the range of [II]>[M]> [I] (Example- 8). In this case, the arc spreads well over the entire electrode surface, as in the above-described embodiment. Examples 9-10, 7-8

【0041】上記によって中間領域〔M〕の存在によっ
て第2の組成領域〔II〕の材料の有する遮断特性を充分
発揮させる条件として合金中の導電性成分の量を〔II〕
>〔M〕>〔I〕とすることが必要であることが判っ
た。
As described above, the amount of the conductive component in the alloy is [II] as a condition for sufficiently exhibiting the blocking characteristics of the material of the second composition region [II] due to the presence of the intermediate region [M].
It has been found that it is necessary to satisfy>[M]> [I].

【0042】一方、第1の組成領域〔I〕中の導電成分
の量が、4wt%Agのときには、さい断電流値は充分
に低く(改善)されず、またばらつきも大きく(比較例
−7)、少なくとも10wt%Ag(実施例−9)である
ことが必要でありまた、同じく〔I〕中の導電成分の量
が75wt%Agのときには、さい断電流値は高く、好ま
しくない(比較例−8)。
On the other hand, when the amount of the conductive component in the first composition region [I] is 4 wt% Ag, the breaking current value is not sufficiently low (improved) and the variation is large (Comparative Example-7). ), At least 10 wt% Ag (Example-9), and also when the amount of the conductive component in [I] is 75 wt% Ag, the dicing current value is high, which is not preferable (Comparative Example). -8).

【0043】これらより本発明での真空バルブでは第1
の組成領域〔I〕中の導電性成分の量は10−50wt%が
好ましい。特に4Ag−Mo2C(比較例−7)では開
閉回数の経過と共にさい断の劣化(さい断電流値が高く
なる)の傾向にある。 実施例11〜13、比較例9〜10
From these, in the vacuum valve of the present invention, the first
The amount of the conductive component in the composition region [I] is preferably 10 to 50 wt%. In particular there is a tendency of 4Ag-Mo 2 C (Comparative Example -7) the chopping of deterioration with the lapse of opening and closing times (chopping current is increased). Examples 11-13, Comparative Examples 9-10

【0044】第2の組成領域〔II〕に用いるCu−Cr
合金中の導電性成分の量が、10wt%Cuでは、アーク
が十分には〔M〕かに〔II〕への移行が見られず、ま
た、95wt%Cuでは、アークによって〔II〕部の消耗
が大きい。従って第2の組成領域〔II〕における導電性
成分の量は20〜80wt%の範囲にあることが好ましい。
Cu-Cr used in the second composition region [II]
When the amount of the conductive component in the alloy is 10 wt% Cu, the arc does not show a sufficient transition to [M] or [II], and in the case of 95 wt% Cu, the arc causes [II] Exhaustion is large. Therefore, it is preferable that the amount of the conductive component in the second composition region [II] is in the range of 20 to 80 wt%.

【0045】以上示したように〔M〕の導電成分の量は
〔II〕>〔M〕>〔I〕の範囲にあることが必須であ
り、この範囲にあるならば〔M〕における導電成分は単
一成分でなく多成分であってもよく、特に〔II〕から
〔I〕に向って連続的にまたは段階的に変化してもよ
い。
As shown above, it is essential that the amount of the conductive component of [M] is within the range of [II]>[M]> [I]. May be a multi-component instead of a single component, and particularly may change continuously or stepwise from [II] to [I].

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】以上説明したように、本発明の真空バル
ブの接点は、低サージ性能を有するAg−Mo2 C系合
金領域と、大電流遮断性能を有するCu−Cr系合金領
域とを有し、それぞれの合金領域の間にこれら両合金領
域の中間的な性質を有する合金からなり、その導電性成
分量がCu−Cr系合金領域>中間領域>Ag−Mo2
C系合金領域の範囲にある境界領域を有するので、Ag
−Mo2 C系合金領域からCu−Cr系合金領域への磁
界の制御による強制的なアークの移行が容易に行なわれ
て停滞することがなく、低サージ性能と大電流遮断性能
に優れた真空バルブを得ることができる。
As described above, according to the present invention, the contacts of the vacuum valve of the present invention, organic and Ag-Mo 2 C based alloy region having a low surge performance, and a Cu-Cr-based alloy region having a high current interruption performance However, it is composed of an alloy having properties intermediate between these alloy regions between the respective alloy regions, and the amount of conductive components thereof is Cu—Cr alloy region> intermediate region> Ag—Mo 2
Since it has a boundary region within the range of the C-based alloy region, Ag
-Mo 2 C alloy region to Cu-Cr alloy region is controlled by a magnetic field to easily perform forced arc transfer without stagnation, and a vacuum excellent in low surge performance and large current interruption performance. You can get a valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空バルブの接点の一実施例を示す
図。
FIG. 1 is a diagram showing an embodiment of a contact of a vacuum valve of the present invention.

【図2】真空バルブを示す図。FIG. 2 is a diagram showing a vacuum valve.

【図3】[図2]における可動電極部分拡大図。FIG. 3 is an enlarged view of a movable electrode portion in FIG.

【図4】従来の真空バルブの接点を示す図。FIG. 4 is a view showing a contact of a conventional vacuum valve.

【図5】真空バルブに用いられるコイル電極を示す図。FIG. 5 is a view showing a coil electrode used in a vacuum valve.

【図6】真空バルブに用いられるスパイラル電極を示す
図。
FIG. 6 is a view showing a spiral electrode used in a vacuum valve.

【符号の説明】[Explanation of symbols]

13a,13b…接点、 21…第1組成領域、22…中
間領域、 23…第2組成領域。
13a, 13b ... Contact, 21 ... First composition region, 22 ... Intermediate region, 23 ... Second composition region.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に接離自在に対向配置された
一対の電極の接点が高導電性材料と耐弧性材料とから成
る真空バルブにおいて、前記接点は、それぞれ組成の異
なる第1組成領域〔I〕、第2組成領域〔II〕、および
前記第1組成領域〔I〕と前記第2組成領域〔II〕の中
間位置に介在する中間領域〔M〕から構成され、前記第
1組成領域〔I〕が低サージ性のAg−Mo2 C系合金
からなり、前記第2組成領域〔II〕が大電流遮断性のC
u−Cr系合金からなり、前記中間領域〔M〕が前記第
1組成領域〔I〕と前記第2組成領域〔II〕の中間的な
性質を有する合金からなり、前記〔M〕の導電性成分量
が、前記第1組成領域および前記第2の組成領域中の導
電性成分量に対して〔II〕>〔M〕>〔I〕の範囲にあ
ることを特徴とする真空バルブ。
1. A vacuum valve in which a contact of a pair of electrodes arranged to face each other in a vacuum container so as to come into contact with and separate from each other is made of a highly conductive material and an arc resistant material, wherein the contact has a first composition different from each other. The first composition is composed of a region [I], a second composition region [II], and an intermediate region [M] interposed between the first composition region [I] and the second composition region [II]. The region [I] is made of a low surge Ag—Mo 2 C-based alloy, and the second composition region [II] is a large current interrupting C.
It is made of a u-Cr alloy, the intermediate region [M] is made of an alloy having intermediate properties between the first composition region [I] and the second composition region [II], and the conductivity of the [M]. A vacuum valve, wherein the amount of the component is in the range of [II]>[M]> [I] with respect to the amount of the conductive component in the first composition region and the second composition region.
【請求項2】 前記接点は、前記第1組成領域〔I〕が
高導電性材料が10〜50重量%のAg、残部が耐弧性材料
Mo2 Cからなり、前記第2組成領域〔II〕が高導電性
材料が20〜80重量%のCu、残部が耐弧性材料Crから
なることを特徴とする請求項1記載の真空バルブ。
2. The contact comprises the first composition region [I] made of a highly conductive material of 10 to 50% by weight of Ag, and the balance made of an arc resistant material Mo 2 C, and the second composition region [II]. ] The vacuum valve according to claim 1, wherein the highly conductive material comprises 20 to 80% by weight of Cu, and the balance comprises the arc resistant material Cr.
【請求項3】 前記接点は、前記中間領域〔M〕が高導
電性材料がAgまたはCuの少なくとも一方からなり、
耐弧性材料がCrまたはMo2 Cの少なくとも一方から
なることを特徴とする請求項1または2記載の真空バル
ブ。
3. The contact has a highly conductive material in at least one of Ag and Cu in the intermediate region [M],
Claim 1 or 2 vacuum valve according arc-proof material is characterized in that it consists of at least one of Cr or Mo 2 C.
【請求項4】 前記接点は、前記第1組成領域〔I〕の
高導電性材料がAgおよびCuからなり、前記接点の高
導電性材料の含有量は10〜50重量%の範囲で且つCu量
はAg量に対して40%以内であることを特徴とする請求
項1または3記載の真空バルブ。
4. The high-conductivity material of the first composition region [I] of the contact comprises Ag and Cu, and the content of the high-conductivity material of the contact is in the range of 10 to 50% by weight and Cu. The vacuum valve according to claim 1 or 3, wherein the amount is within 40% with respect to the amount of Ag.
【請求項5】 前記接点は、前記中間領域〔M〕におけ
る耐弧性成分Cr+Mo2 Cは、前記第1組成領域
〔I〕に接する側から前記第2組成領域〔II〕に接する
他側に向かってCrのMo2 Cに対する比が前記第1組
成領域〔I〕の耐弧性成分量から前記第2組成領域〔I
I〕の耐弧性成分量へと段階的にまた連続的に変化する
ようにしたことを特徴とする請求項1乃至4記載の真空
バルブ。
5. The contact is such that the arc-resistant component Cr + Mo 2 C in the intermediate region [M] changes from the side in contact with the first composition region [I] to the other side in contact with the second composition region [II]. The ratio of Cr to Mo 2 C from the arc-resistant component amount of the first composition region [I] to the second composition region [I
The vacuum valve according to any one of claims 1 to 4, wherein the arc resistant component amount of I] is changed stepwise and continuously.
【請求項6】 前記接点は、前記第1組成領域〔I〕、
前記第2組成領域〔II〕および前記中間領域〔M〕の各
領域が、前記接点の中心から半径方向に〔II〕〔M〕
〔I〕の順または〔I〕〔M〕〔II〕の順に配置された
ことを特徴とする請求項1乃至5記載の真空バルブ。
6. The contact comprises the first composition region [I],
Each region of the second composition region [II] and the intermediate region [M] is [II] [M] in the radial direction from the center of the contact.
6. The vacuum valve according to claim 1, wherein the vacuum valves are arranged in the order [I] or [I] [M] [II].
JP19969491A 1991-08-09 1991-08-09 Vacuum valve Pending JPH0547275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19969491A JPH0547275A (en) 1991-08-09 1991-08-09 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19969491A JPH0547275A (en) 1991-08-09 1991-08-09 Vacuum valve

Publications (1)

Publication Number Publication Date
JPH0547275A true JPH0547275A (en) 1993-02-26

Family

ID=16412063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19969491A Pending JPH0547275A (en) 1991-08-09 1991-08-09 Vacuum valve

Country Status (1)

Country Link
JP (1) JPH0547275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300408B2 (en) 2009-04-14 2012-10-30 Fujitsu Limited Electronic device
DE112017006731T5 (en) 2017-02-02 2019-10-10 Meidensha Corporation METHOD FOR PRODUCING AN ELECTRODE MATERIAL AND ELECTRODE MATERIAL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300408B2 (en) 2009-04-14 2012-10-30 Fujitsu Limited Electronic device
DE112017006731T5 (en) 2017-02-02 2019-10-10 Meidensha Corporation METHOD FOR PRODUCING AN ELECTRODE MATERIAL AND ELECTRODE MATERIAL
US10614969B2 (en) 2017-02-02 2020-04-07 Meidensha Corporation Method for manufacturing electrode material and electrode material

Similar Documents

Publication Publication Date Title
US2975255A (en) Vacuum circuit interrupters
EP0488083B1 (en) Contact material for a vacuum interrupter
Yanabu et al. Post arc current of vacuum interrupters
KR930011829B1 (en) Vacuum interrupter
WO2008151187A1 (en) Vacuum interrupter
EP0354997B1 (en) Contact forming material for a vacuum interrupter
JP3101329B2 (en) Vacuum valve
JPH08249991A (en) Contact electrode for vacuum valve
EP0090579A2 (en) Surge-absorberless vacuum circuit interrupter
GB2050060A (en) Vacuum switches
JPH0547275A (en) Vacuum valve
Renz On criteria of optimized application of AMF-and RMF-contact systems in vacuum interrupters
Slade et al. A comparison of the short circuit interruption performance using transverse magnetic field contacts and axial magnetic field contacts in low frequency circuits with long arcing times i
JP2944788B2 (en) Vacuum valve
Mo et al. Experimental research of post-arc currents in vacuum circuit breakers
Reece et al. A Discussion on recent advances in heavy electrical plant-A review of the development of the vacuum interrupter
JPS63266720A (en) Contact for vacuum switch gear
JP2859394B2 (en) Contact material for vacuum valve
US4129761A (en) Vacuum circuit breaker
US4695688A (en) Electrical contact construction
JPH04324219A (en) Contact material for vacuum bulb
Fischer et al. Influence of Switching Contact Materials with Superimposed Axial Magnetic Field on the Vacuum Arc’s Chopping Behavior
JPH04206122A (en) Vacuum value
Renz Vacuum interrupters
JP2904452B2 (en) Contact material for vacuum valve