JP3101329B2 - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JP3101329B2
JP3101329B2 JP03001733A JP173391A JP3101329B2 JP 3101329 B2 JP3101329 B2 JP 3101329B2 JP 03001733 A JP03001733 A JP 03001733A JP 173391 A JP173391 A JP 173391A JP 3101329 B2 JP3101329 B2 JP 3101329B2
Authority
JP
Japan
Prior art keywords
contact
composition region
arc
region
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03001733A
Other languages
Japanese (ja)
Other versions
JPH04242029A (en
Inventor
冨 功 奥
川 幹 夫 大
経 世 関
本 敦 史 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03001733A priority Critical patent/JP3101329B2/en
Publication of JPH04242029A publication Critical patent/JPH04242029A/en
Application granted granted Critical
Publication of JP3101329B2 publication Critical patent/JP3101329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空開閉装置に係り特
に遮断容量が大きく、かつ低サージ性(裁断電流特性が
優れていること)を持つ真空バルブに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum switching device, and more particularly to a vacuum valve having a large breaking capacity and low surge characteristics (excellent cutting current characteristics).

【0002】[0002]

【従来の技術】真空開閉器は、他の開閉器に比較し、小
型、軽量、メンテナンスフリー、環境調和等種々の優れ
た特徴を有するため、近年次第にその適用範囲が拡大さ
れてきた。真空しゃ断器は、真空中でのアーク拡散性を
利用して高真空中で電流しゃ断を行なうものであり、そ
の側断面を示した図2を参照し説明する。
2. Description of the Related Art Vacuum switches have various excellent features such as small size, light weight, maintenance-free and environmental harmony compared with other switches, and their application range has been gradually expanded in recent years. The vacuum circuit breaker cuts off current in a high vacuum by utilizing arc diffusivity in a vacuum, and will be described with reference to FIG.

【0003】真空しゃ断器は真空気密に保たれたしゃ断
室1を有し、これは絶縁材料によりほぼ円筒状に形成さ
れた絶縁容器2と、この両端に封止金具3a,3bを介
して設けた金属製の蓋体4a,4bとで構成されてい
る。しゃ断室1内には、導電棒5,6の対向する端部に
取付けられた一対の固定電極7、可動電極8が配設され
る。可動電極8の導電棒6にはベローズ9が取付けら
れ、しゃ断室1内の真空気密を保持しつつ可動電極8が
軸方向に移動する。ベローズ9の上部には金属製のアー
クシールド10が設けられ、ベローズ9がアーク蒸気で
覆われることを防止している。同様に金属製のアークシ
ールド11は、しゃ断室1内において固定電極7および
可動電極8を覆うように設けられ、絶縁容器2がアーク
蒸気で覆われることを防止している。通電中は固定接点
13bに可動接点13aが接触しており、電流のしゃ断
は導電棒を下方向へ移動させ、この両接点の接触を断つ
ことにより行なう。
The vacuum circuit breaker has a vacuum chamber 1 kept in a vacuum-tight manner, which is provided with an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and provided at both ends thereof with sealing fittings 3a and 3b. And metal lids 4a and 4b. A pair of fixed electrodes 7 and a movable electrode 8 attached to opposing ends of the conductive rods 5 and 6 are provided in the cutoff chamber 1. A bellows 9 is attached to the conductive rod 6 of the movable electrode 8, and the movable electrode 8 moves in the axial direction while maintaining vacuum tightness in the cutoff chamber 1. A metal arc shield 10 is provided on the upper part of the bellows 9 to prevent the bellows 9 from being covered with the arc vapor. Similarly, a metal arc shield 11 is provided so as to cover the fixed electrode 7 and the movable electrode 8 in the cutoff chamber 1 to prevent the insulating container 2 from being covered with the arc vapor. During energization, the movable contact 13a is in contact with the fixed contact 13b, and the current is interrupted by moving the conductive rod downward and breaking the contact between the two contacts.

【0004】次に、導電棒5,6と電極7,8、電極
7,8と接点13a,13bとの相互の固定構造につい
て、図2における可動電極8周辺の詳細を示した図3を
参照し説明する。可動電極8は導電棒6に符号12で示
されたろう付または図示しないかしめ等により固定さ
れ、可動接点13aは可動電極8に符号14で示された
ろう付または図示しないかしめ等により固定される。固
定側の固定電極7と接点13bとの固定方法も同様であ
る。
Next, with respect to the mutual fixing structure between the conductive rods 5, 6 and the electrodes 7, 8, and between the electrodes 7, 8 and the contacts 13a, 13b, see FIG. 3 showing details around the movable electrode 8 in FIG. And explain. The movable electrode 8 is fixed to the conductive rod 6 by brazing indicated by reference numeral 12 or caulking (not shown), and the movable contact 13 a is fixed to the movable electrode 8 by brazing indicated by reference numeral 14 or caulking (not shown). The same applies to the method for fixing the fixed electrode 7 on the fixed side and the contact 13b.

【0005】[0005]

【発明が解決しようとする課題】真空開閉器用接点に要
求される要件として、(1)溶着性が少ないこと、
(2)耐電圧が高いこと、(3)耐消耗性に優れるこ
と、(4)接触抵抗が低く安定していること、等があ
る。この他に最近の真空開閉装置に対する期待が一層高
まり、(5)低サージ機能を有すること、(6)大電流
しゃ断機能を有することが要求されるが、この二つの要
求は相反するものである。
The requirements for a contact for a vacuum switch include (1) low weldability;
(2) high withstand voltage; (3) excellent wear resistance; and (4) low and stable contact resistance. In addition, expectations for the recent vacuum switchgear are further increased, and (5) a low surge function and (6) a high current cutoff function are required. These two requirements are contradictory. .

【0006】まず、低サージ機能を有するための要件に
ついて説明する。電動機負荷等の誘導回路で電流をしゃ
断する時などにおいて、過度のサージ電圧を発生させ、
負荷機器の絶縁を破壊させる恐れがある。この異常サー
ジ電圧の発生原因は、真空中におけるしゃ断時に低電流
側に発生する電流さい断現象(交流電流波形の自然ゼロ
点を待たずに強制的に電流しゃ断が行なわれること。)
によるものである。異常サージ電圧の値Vs は回路のサ
ージインピーダンスZo と電流さい断値Ic の積、すな
わちVs 比例Zo ・Ic で表わされ、異常サージ電圧V
s を低くするためには、つまり低サージ機能を有するた
めには、電流さい断値Icを小さくしなければならな
い。従って、しゃ断時において、アークによって可動接
点13aと固定接点13bの各表面からイオン、金属粒
子が多く蒸発して両接点間に浮游し、アークが容易に接
続されなければならない。従って、接点13a,13b
に用いられる材料は、大電流をしゃ断する時のみなら
ず、開閉電流が小さくて接点の温度上昇が小さい場合で
あっても蒸発性の高い高蒸気圧性を有することが要求さ
れる。
First, requirements for having a low surge function will be described. When the current is cut off by an induction circuit such as a motor load, an excessive surge voltage is generated,
There is a risk of breaking the insulation of the load equipment. The cause of this abnormal surge voltage is the current interruption phenomenon that occurs on the low current side during interruption in vacuum (current interruption is performed without waiting for the natural zero point of the AC current waveform.)
It is due to. The value of the abnormal surge voltage V s is represented by the product of the surge impedance Z o of the circuit and the current cut-off value I c , that is, V s proportional Z o · I c.
To lower the s, that is to have a low surge capabilities, it is necessary to reduce the current chopping value I c. Therefore, at the time of cutoff, a large amount of ions and metal particles evaporate from the surfaces of the movable contact 13a and the fixed contact 13b due to the arc, float between the two contacts, and the arc must be easily connected. Therefore, the contacts 13a, 13b
The material used is required to have a high vapor pressure and a high vapor pressure, not only when breaking a large current, but also when the switching current is small and the temperature rise of the contact is small.

【0007】このような低サージ機能を満たすものとし
て、高蒸気圧性材料であるAgを含有したAg−WC合
金が知られている。この合金から成る接点は、 (1) WCの介在が接点表面からのイオンの放射を容
易にさせること、 (2) 電界放射電子の衝突による電極間の加熱に基づ
く接点表面から金属粒子の蒸発を促進させること、 (3) 接点材料中の炭化物がアークにより分解し、荷
電体を生成すること、等により、優れた低サージ機能を
有している。
As a material satisfying such a low surge function, an Ag-WC alloy containing Ag which is a high vapor pressure material is known. The contact made of this alloy has the following features: (1) the presence of WC facilitates the emission of ions from the contact surface; and (2) the evaporation of metal particles from the contact surface due to heating between the electrodes due to the collision of field emission electrons. (3) Carbide in the contact material is decomposed by an arc to form a charged body, and has an excellent low surge function.

【0008】これに対し、もう一方の相反する要件であ
る大電流しゃ断機能を有するためには接点が低蒸気圧性
の材料から成ることが要求される。大電流をしゃ断する
場合には接点の表面温度は極めて高温となるが、このよ
うな場合であってもアークによる接点表面からの蒸発量
が少なく、両接点間にイオン、金属粒子がほとんど浮遊
しない状態でなければしゃ断性が損われることとなる。
従って一般にどちらか一方の機能向上を追及すると、も
う一方の機能が低下する。
On the other hand, in order to have a high current breaking function, which is another contradictory requirement, it is required that the contacts be made of a material having a low vapor pressure. When cutting off a large current, the contact surface temperature becomes extremely high, but even in such a case, the amount of evaporation from the contact surface due to the arc is small, and ions and metal particles hardly float between both contacts. If it is not in a state, the breaking performance will be impaired.
Therefore, generally, when one of the functions is pursued, the other function is reduced.

【0009】この二つの相反する要件を満たすための手
段として、接点を高蒸気圧性材料と低蒸気圧性材料の二
種類の材料から構成するものがある。電流をしゃ断する
ために通電中接触していた両接点が離れる際において、
初めに高蒸気圧性材料から成る部分から多くのイオン、
金属粒子が蒸発して接点間に浮游し、アークがこれに導
かれて両接点における高蒸気圧性材料同志に接続され
る。低サージ機能が満たされるために必要な時間経過後
両接点における高蒸気圧性材料同志に接続されていたア
ークを両接点における低蒸気圧性材料同志に接続される
ように、アークを移行させる。これは、図5に示された
コイル電極44、図6に示されたスパイラル電極45等
を用いて、磁界Hを制御することにより両接点間に浮遊
するイオン、金属粒子の分布を変えて強制的にアークを
移行させるという方法等により行なうことができる。
As a means for satisfying these two conflicting requirements, there is a method in which the contact is made of two kinds of materials, a high vapor pressure material and a low vapor pressure material. When both contacts that were in contact during energization to cut off the current are separated,
First, many ions from the part composed of high vapor pressure material,
The metal particles evaporate and float between the contacts, whereupon the arc is guided and connected to the high vapor pressure material at both contacts. After a lapse of time necessary for the low surge function to be satisfied, the arc connected to the high vapor pressure material at the two contacts is transferred to the low vapor pressure material at the two contacts. This is done by controlling the magnetic field H using the coil electrode 44 shown in FIG. 5, the spiral electrode 45 shown in FIG. It can be carried out by a method of causing the arc to be transferred.

【0010】しかし、低電流しゃ断時にも低サージ機能
を有する高蒸気圧性材料の物性と、大電流しゃ断機能を
有する低蒸気圧性材料の物性とでは蒸気圧性という点に
おいて大きく異なる。このため、磁界例えば縦磁界Hに
より両接点間に存在するイオン、金属粒子の分布を変え
ても、アークが高蒸気圧性材料から成る部分と低蒸気圧
性材料から成る部分との境界上に停滞し、容易に移行し
ない。従って、接点を高蒸気圧性材料と低蒸気圧性材料
とを単純に組み合せて構成しただけでは低サージ機能と
大電流しゃ断機能とを同時に満たすことはできない。
However, the physical properties of a high vapor pressure material having a low surge function even at the time of low current interruption are significantly different from the physical properties of a low vapor pressure material having a large current interruption function in terms of vapor pressure. For this reason, even if the distribution of ions and metal particles existing between the two contacts is changed by a magnetic field, for example, a vertical magnetic field H, the arc stagnates on the boundary between the portion made of the high vapor pressure material and the portion made of the low vapor pressure material. Does not transition easily. Therefore, the low surge function and the large current interrupting function cannot be simultaneously satisfied by simply forming the contact by simply combining the high vapor pressure material and the low vapor pressure material.

【0011】そこで本発明は、上述した事情に鑑み、電
流しゃ断時における高蒸気圧性材料から低蒸気圧性材料
へのアークの移行が停滞せずに容易に行なわれ、低サー
ジ機能と大電流しゃ断機能という二つの相反する機能を
有した真空開閉器用接点を提供することを目的とする。
In view of the above circumstances, the present invention facilitates the transition of an arc from a high-vapor-pressure material to a low-vapor-pressure material during current interruption without stagnation, and provides a low surge function and a large current interruption function. It is an object of the present invention to provide a contact for a vacuum switch having two opposing functions.

【0012】[0012]

【課題を解決するための手段】本発明の真空バルブは、
組成の異なる第1、第2の組成領域と、その間にはさま
れた中間領域からなる接点を具備する真空バルブであ
る。すなわち、本発明の真空バルブは、高導電性材料と
耐弧性材料とから構成される接点を具備してなる真空バ
ルブにおいて、前記接点が、それぞれ組成の異なる第1
組成領域〔I〕、第2組成領域〔II〕、および該第1組
成領域〔I〕と第2組成領域〔II〕の中間位置に介在す
る中間領域〔M〕から構成され、前記第1組成領域
〔I〕が低サージ性のAg−WC系合金からなり、前記
第2組成領域〔II〕が大電流遮断性のCu−Cr系合金
からなり、前記中間領域〔M〕が前記第1組成領域
〔I〕と前記第2組成領域〔II〕の中間的な性質を有す
る合金からなり、前記〔M〕の導電性成分の量が、前記
各領域中の導電性成分量に対して〔II〕>〔M〕>
〔I〕の範囲にあることを特徴とする接点、を具備して
なるものである。
According to the present invention, there is provided a vacuum valve comprising:
A vacuum valve having a contact composed of first and second composition regions having different compositions and an intermediate region sandwiched between the first and second composition regions. That is, a vacuum valve according to the present invention is a vacuum valve comprising a contact made of a highly conductive material and an arc-resistant material, wherein the contact has a first composition having a different composition.
The first composition region [I], the second composition region [II], and the intermediate region [M] interposed between the first composition region [I] and the second composition region [II]. The region [I] is made of a low-surge Ag-WC alloy, the second composition region [II] is made of a large current blocking Cu-Cr alloy, and the intermediate region [M] is made of the first composition. It is made of an alloy having an intermediate property between the region [I] and the second composition region [II], and the amount of the conductive component of [M] is [II] with respect to the amount of the conductive component in each of the regions. ]>[M]>
A contact point characterized by being in the range of [I].

【0013】本発明の好ましい態様において、前記第1
組成領域〔I〕は、高導電性材料が10〜50重量%の
Ag、残部の耐弧性材料がWCからなり、前記第2組成
領域〔II〕は、高導電性材料が20〜80重量%のC
u、残部の耐弧性材料がCrからなる接点、を具備した
ものとすることができる。
In a preferred embodiment of the present invention, the first
In the composition region [I], the high-conductivity material is composed of 10 to 50% by weight of Ag, and the remaining arc-resistant material is composed of WC. In the second composition region [II], the high-conductivity material is composed of 20 to 80% by weight. % C
u, a contact whose remaining arc-resistant material is made of Cr.

【0014】本発明の好ましい他の態様において、前記
中間領域〔M〕は、高導電性材料がAgまたは/および
Cu、耐弧性材料がCrまたは/およびWCからなる接
点、を具備したものとすることができる。
In another preferred embodiment of the present invention, the intermediate region [M] includes a contact made of Ag or / and Cu as the highly conductive material and Cr or / and WC as the arc resistant material. can do.

【0015】本発明の好ましい他の態様において、前記
第1組成領域〔I〕の高導電性材料がAgおよびCuか
らなり、該高導電性材料の含有量は10〜50重量%の
範囲にあり、Cuの量はAg量に対して40%以内であ
る接点、を具備したものとすることができる。
In another preferred embodiment of the present invention, the highly conductive material in the first composition region [I] comprises Ag and Cu, and the content of the highly conductive material is in the range of 10 to 50% by weight. , Cu contact is 40% or less of the Ag content.

【0016】本発明の好ましい他の態様において、前記
中間領域〔M〕における耐弧性成分Cr+WCは、前記
第1組成領域〔I〕に接する一方の端部から前記第2組
成領域〔II〕に接する他方の端部に向かってCr/WC
の比率が前記第1組成領域〔I〕の耐弧性成分量から前
記第2組成領域〔II〕の耐弧性成分量へと段階的にまた
は連続的に変化するように構成した接点、を具備したも
のとすることができる。
In another preferred embodiment of the present invention, the arc resistant component Cr + WC in the intermediate region [M] is connected to the second composition region [II] from one end contacting the first composition region [I]. Cr / WC toward the other end in contact
Wherein the ratio of the arc resistance component of the first composition region [I] changes stepwise or continuously from the arc resistance component amount of the second composition region [II]. It can be provided.

【0017】本発明の好ましい他の態様において、前記
第1組成領域〔I〕、前記第2組成領域〔II〕および前
記中間領域〔M〕の各領域が、前記接点の中心から半径
方向に〔II〕〔M〕〔I〕の順にまたは〔I〕〔M〕
〔II〕の順に配置された接点、を具備してなるものとす
ることができる。
In another preferred aspect of the present invention, each of the first composition region [I], the second composition region [II], and the intermediate region [M] is radially shifted from the center of the contact. II] [M] [I] or [I] [M]
And contacts arranged in the order of [II].

【0018】[0018]

【作用】本発明の真空バルブに用いる接点は、それぞれ
組成の異なる第1組成領域〔I〕、第2組成領域〔I
I〕、および〔I〕と〔II〕の中間位置に介在する中間
領域〔M〕とから構成され、第1組成領域〔I〕は低サ
ージ性に優れたAg−WC系合金、第2組成領域〔II〕
は大電流遮断性に優れたCu−Cr系合金、中間領域
〔M〕は〔I〕と〔II〕の中間的な性質を有する合金で
構成され、この〔M〕の導電性成分量が、各領域中の導
電性成分量に対して〔II〕>〔M〕>〔I〕の範囲にあ
るように構成されている。したがって、低サージ性に重
要な影響を及ぼす導電性成分量が、たとえば円形の接点
では、半径方向に対し〔I〕〔M〕〔II〕の順、または
〔II〕〔M〕〔I〕の順で変化している。
The contact used in the vacuum valve of the present invention has a first composition region [I] and a second composition region [I] having different compositions.
I], and an intermediate region [M] interposed at an intermediate position between [I] and [II], wherein the first composition region [I] is an Ag-WC alloy excellent in low surge property, and the second composition region Area [II]
Is a Cu-Cr based alloy excellent in large current interrupting property, the intermediate region [M] is composed of an alloy having an intermediate property between [I] and [II], and the amount of the conductive component of this [M] is It is configured so that the amount of the conductive component in each region is in the range of [II]>[M]> [I]. Therefore, the amount of the conductive component that has an important effect on the low surge characteristic is, for example, in the case of a circular contact, in the order of [I] [M] [II] or [II] [M] [I] in the radial direction. It is changing in order.

【0019】このような構成を持つ接点を真空バルブに
用いて電流しゃ断を行なう場合、通電中に接触していた
両接点が離れる際に、接点を構成している領域のうち最
も導電性成分量の少ない材料から成る第1の組成領域
〔I〕から多くのイオンの放出或いは金属粒子が蒸発し
て両接点のこの合金領域同志の間に浮遊し、アークがこ
れに導かれて両者の間に接続される。
In the case where current is interrupted by using a contact having such a configuration as a vacuum valve, when the two contacts that have been in contact during energization are separated from each other, the amount of the conductive component in the region constituting the contact is the largest. A large amount of ions are emitted from the first composition region [I] made of a material having a small amount of metal or metal particles evaporate and float between the alloy regions of both contacts, and an arc is led to this and the arc is introduced between the two alloy regions. Connected.

【0020】この後、磁界の作用により両接点間に存在
するイオン、金属粒子の分布を変えると、第1の組成領
域〔I〕から、中間領域〔M〕へアークが向かう。すな
わち、高導電性成分の量は第1の組成領域〔I〕から中
間領域〔M〕を経て第2の組成領域〔II〕へ向かうに従
って徐々に高くなるため、アークは停滞することなく容
易に移行する。このようにして磁界の制御により、強制
的にアークを第2の組成領域〔II〕へ向かって移行させ
ていく。そして低サージ機能が満たされるために、つま
りアークが両接点間に接続されているために必要な時間
経過後、Agのない第2の組成領域〔II〕へ移行させる
と、この瞬間にアークの接続が断たれることとなる。
Thereafter, when the distribution of ions and metal particles existing between the two contacts is changed by the action of a magnetic field, the arc travels from the first composition region [I] to the intermediate region [M]. That is, the amount of the highly conductive component gradually increases from the first composition region [I] to the second composition region [II] through the intermediate region [M], so that the arc can be easily formed without stagnation. Transition. In this way, the arc is forcibly shifted toward the second composition region [II] by controlling the magnetic field. Then, after a lapse of time necessary for the low surge function to be satisfied, that is, for the arc to be connected between the two contacts, a transition is made to the second composition region [II] without Ag. The connection will be disconnected.

【0021】上記の第1組成領域〔I〕は、低サージ性
のAg−WC系合金からなる。このAg−WC系合金
は、上述したように優れた低サージ機能を有する合金で
ある。本発明においてAg−WC系合金というのは、導
電性材料としてAg、またはAgを主成分としその一部
をCuで置換したものからなり、耐弧性成分としてWC
からなる合金を意味する。そして、高導電性材料が10
〜50重量%のAg、残部の耐弧性成分がWCからなる
ものであることが好ましい。〔I〕中の導電性成分の量
が10重量%未満では、裁断電流値が十分低くならず、
またばらつきも大きく、開閉回数の経過とともに裁断の
劣化する傾向にある。一方50重量%を越えると、裁断
電流値が高く、好ましくない。
The first composition region [I] is made of a low-surge Ag-WC alloy. This Ag-WC alloy is an alloy having an excellent low surge function as described above. In the present invention, the Ag-WC alloy is made of Ag as a conductive material or a material having Ag as a main component and a part thereof replaced with Cu, and WC as an arc-resistant component.
Means an alloy consisting of And the high conductive material is 10
It is preferable that Ag of up to 50% by weight and the balance of the arc resistant component be WC. If the amount of the conductive component in [I] is less than 10% by weight, the cutting current value will not be sufficiently low,
Also, the dispersion is large, and the cutting tends to deteriorate with the passage of the number of times of opening and closing. On the other hand, if it exceeds 50% by weight, the cutting current value is high, which is not preferable.

【0022】また上記の第1組成領域〔I〕中の高導電
性材料としてはAgに限らずAgおよびCuからなる場
合であっても、該高導電性の含有量が10〜50重量%
の範囲にあり、Cuの量がAg量に対して40%以内で
あれば、中間領域〔M〕の導電性成分量が〔II〕>
〔M〕>〔I〕の範囲にある限り、アークは電極面全体
に拡がり好ましい遮断特性を示す。
The highly conductive material in the first composition region [I] is not limited to Ag, and even if it is made of Ag and Cu, the content of the highly conductive material is 10 to 50% by weight.
If the amount of Cu is within 40% of the amount of Ag, the amount of the conductive component in the intermediate region [M] is [II]>
As long as the range of [M]> [I] is satisfied, the arc spreads over the entire surface of the electrode and exhibits favorable breaking characteristics.

【0023】上記の第2組成領域〔II〕は大電流遮断性
のCu−Cr系合金からなる。このCu−Cr系合金は
上述したように優れた大電流遮断特性を有する合金であ
る。ここで、高導電性材料が20〜80重量%のCu、
残部の耐弧性材料がCrからなるものであることが好ま
しい。〔II〕中の導電性成分の量が20重量%未満で
は、アークが十分に〔M〕から〔II〕へ移行しにくい。
一方80重量%を越えると、アークによって〔II〕部の
消耗が大きくなる。
The second composition region [II] is made of a Cu—Cr-based alloy having a large current blocking property. This Cu-Cr-based alloy is an alloy having excellent large current interruption characteristics as described above. Here, the highly conductive material is 20 to 80% by weight of Cu,
It is preferable that the remaining arc-resistant material is made of Cr. If the amount of the conductive component in [II] is less than 20% by weight, it is difficult for the arc to sufficiently transfer from [M] to [II].
On the other hand, if it exceeds 80% by weight, the consumption of the portion [II] increases due to the arc.

【0024】上記の中間領域〔M〕は、上記第1組成領
域〔I〕と上記第2組成領域〔II〕の中間位置に介在
し、これら〔I〕と〔II〕の中間的性質を有する合金か
らなる。このような構成とすることによって、第1組成
領域〔I〕から中間領域〔M〕を経て第2組成領域〔I
I〕へのアークの移行がスムーズに行われるのである。
この〔M〕の構成材料としては、その高導電性材料がA
gまたは/およびCuからなり、耐弧性材料がCrまた
は/およびWCからなるものであることが好ましい。し
たがって、中間領域〔M〕の構成材料として具体的に
は、Ag−WC、Cu−WC、Ag+Cu−WC、Ag
−Cr、Cu−Cr、Ag+Cu−Cr、Ag+Cu−
WC+Cr、Ag−WC+CrおよびCu−WC+Cr
の組み合わせがあるが、そのいずれのものであっても、
導電性成分量が〔II〕>〔M〕>〔I〕の範囲にある限
り、好ましい遮断性能を示す。
The intermediate region [M] is located at an intermediate position between the first composition region [I] and the second composition region [II], and has an intermediate property between these [I] and [II]. Made of alloy. With such a configuration, the second composition region [I] from the first composition region [I] through the intermediate region [M].
The transition of the arc to [I] is performed smoothly.
As the constituent material of [M], the highly conductive material is A
Preferably, the arc-resistant material is made of g or / and Cu, and the arc-resistant material is made of Cr or / and WC. Therefore, specifically, as the constituent material of the intermediate region [M], Ag-WC, Cu-WC, Ag + Cu-WC, Ag
-Cr, Cu-Cr, Ag + Cu-Cr, Ag + Cu-
WC + Cr, Ag-WC + Cr and Cu-WC + Cr
There are combinations of
As long as the amount of the conductive component is in the range of [II]>[M]> [I], a preferable blocking performance is exhibited.

【0025】上記の中間領域〔M〕における耐弧性材料
としてWC+Crを用いる場合、第1組成領域〔I〕に
接する一方の端部から第2組成領域〔II〕に接する他方
の端部に向かってCr/WCの比率を第1組成領域
〔I〕の耐弧性成分量から前記第2組成領域〔II〕の耐
弧性成分量へと段階的にまたは連続的に変化するように
構成すれば、アークが〔I〕→〔M〕→〔II〕へとスム
ーズに移行するので好ましい。
When WC + Cr is used as the arc-resistant material in the intermediate region [M], one end contacting the first composition region [I] moves from one end contacting the second composition region [II] to the other end contacting the second composition region [II]. Thus, the ratio of Cr / WC is changed stepwise or continuously from the amount of the arc resistant component in the first composition region [I] to the amount of the arc resistant component in the second composition region [II]. This is preferable because the arc smoothly transitions from [I] to [M] to [II].

【0026】[0026]

【実施例】本発明の一実施例として、接点が第1の組成
領域〔I〕としてAg−WC、第2の組成領域〔II〕と
してCu−Cr、これらの中間の領域〔M〕からなる場
合について、接点を上部から見た図1を用いて説明す
る。図4に示した従来の接点と比較し〔I〕と〔II〕と
の間に中間領域〔M〕が配されている点が異なる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In one embodiment of the present invention, a contact is composed of Ag-WC as a first composition region [I], Cu-Cr as a second composition region [II], and an intermediate region [M] between them. The case will be described with reference to FIG. The difference from the conventional contact shown in FIG. 4 is that an intermediate region [M] is arranged between [I] and [II].

【0027】次に、本発明に係る接点の低サージ性およ
び大電流しゃ断性について試験評価した結果について説
明する。それぞれの接点の有する低サージ機能、大電流
しゃ断機能を比較対照するため、両接点間を接触した状
態における接点圧、この状態から離していくときの開極
スピード、真空度を同一条件とした。
Next, the results of tests and evaluations on the low surge property and the large current breaking property of the contact according to the present invention will be described. In order to compare and contrast the low surge function and the large current breaking function of each contact, the same conditions were used for the contact pressure in a state where both contacts were in contact, the opening speed when moving away from this state, and the degree of vacuum.

【0028】低サージ性の優劣は、離れている両接点間
にアークが接続されるために必要な電流さい断値の大小
により評価することができ、この値が小さいほど低サー
ジ性に優れることとなる。LC回路を介し、44AのA
C電流を与えたとき、真空しゃ断器に直列に挿入した同
軸シャントの電圧降下をオシロスコープで測定し、電流
さい断値を算出した。
The superiority of the low surge property can be evaluated by the magnitude of the current break required for the arc to be connected between the separated contacts, and the smaller this value is, the better the low surge property is. Becomes A of 44A through LC circuit
When a C current was applied, the voltage drop of the coaxial shunt inserted in series with the vacuum circuit breaker was measured with an oscilloscope, and the current break value was calculated.

【0029】大電流しゃ断性の優劣は、しゃ断成功した
ときの電流の大きさ、すなわちその電流の最大値により
評価することができ、この値が大きいほど大電流しゃ断
性に優れることとなる。接点表面をベーキング、電圧エ
ージング等によりクリーニングして条件を一定にした
後、7.2KV、50Hzで1KAずつ電流を増加しな
がらしゃ断限界時における電流の最大値を測定し、所定
の標準値に対する倍率をしゃ断倍率として算出した。
The superiority or inferiority of the large current interruption can be evaluated by the magnitude of the current when the interruption is successful, that is, the maximum value of the current. The larger this value is, the more excellent the large current interruption is. After cleaning the contact surface by baking, voltage aging, etc., and keeping the conditions constant, the maximum value of the current at the cutoff limit was measured while increasing the current at 1 KA at 7.2 KV, 50 Hz, and the magnification relative to a predetermined standard value. Was calculated as the cutoff magnification.

【0030】実施例1、比較例1〜2 以上の各接点に対するサージ電流値およびしゃ断倍率を
示した表1,2を参照し、本発明による接点の有する効
果について説明する。実施例1、および比較例1,2
は、いずれも低裁断材料の33Ag−WCを、図1での
(21)すなわち第1の組成領域〔I〕に、大電流しゃ
断材料の50Cu−Crを第2の組成領域〔II〕すなわ
ち図1での(23)に用いた。これに対して〔I〕〔I
I〕の間に存在する中間領域〔M〕すなわち図1での
(22)には、導電成分Agの量を15wt%(比較例
−1)、42wt%(実施例−1)、75wt%(比較
例−2)として評価したところ、〔M〕のAgの量が
〔I〕と〔II〕の導電性材料の中間の量の場合には、
〔I〕に点弧したアークが〔II〕にまで広がり、電極面
積を有効に活用できる結果、優れたしゃ断性能を示した
(実施例−1)。これに対して〔M〕のAgの量が15
wt%の場合、すなわち〔I〕のAg(導電性材料)の
量より少ない場合(比較例−1)には、アークが〔I〕
と〔M〕との境界で固着する傾向にあり、電極面を有効
に活用できず、しゃ断特性は充分でなかった(比較例−
1)。一方〔M〕のAgの量が75wt%の場合、すな
わち〔II〕の導電性材料(Cu)の量より多い場合(比
較例−2)には、アークが〔M〕と〔II〕の境界に固着
する傾向にあり、しゃ断性能の優れた〔II〕の領域の5
0Cu−Crの能力を充分発揮することができず、しゃ
断特性は充分でなかった(比較例−2)。以上から中間
領域〔M〕の高導電性材料の量は〔II〕>〔M〕>
〔I〕の範囲にあることが必要である。
The effects of the contact according to the present invention will be described with reference to Tables 1 and 2 showing the surge current value and the breaking ratio for each contact of Example 1 and Comparative Examples 1 and 2. Example 1 and Comparative Examples 1 and 2
In each case, 33Ag-WC of the low cutting material is used in (21) in FIG. 1, that is, the first composition region [I], and 50Cu-Cr of the high current blocking material is used in the second composition region [II], FIG. 1 used in (23). On the other hand, [I] [I
1], the amount of the conductive component Ag is 15 wt% (Comparative Example-1), 42 wt% (Example 1), and 75 wt% ( When evaluated as Comparative Example-2), when the amount of Ag in [M] was an intermediate amount between the conductive materials of [I] and [II],
The arc ignited in [I] spread to [II], and as a result of effectively utilizing the electrode area, excellent breaking performance was exhibited (Example-1). In contrast, the amount of Ag in [M] is 15
In the case of wt%, that is, when the amount of Ag (conductive material) in [I] was smaller than that in Comparative Example 1, the arc was [I].
And [M] tended to stick together, the electrode surface could not be used effectively, and the breaking characteristics were not sufficient (Comparative Example-
1). On the other hand, when the amount of Ag in [M] is 75 wt%, that is, when the amount of the conductive material (Cu) in [II] is larger (Comparative Example-2), the arc is at the boundary between [M] and [II]. In the area of [II], which has excellent breaking performance.
The ability of 0Cu-Cr could not be sufficiently exhibited, and the breaking characteristics were not sufficient (Comparative Example-2). From the above, the amount of the highly conductive material in the intermediate region [M] is [II]>[M]>
It must be within the range of [I].

【0031】実施例2、比較例3〜4 上記した事例は中間領域〔M〕の導電性成分としてAg
を用いたAg−WCについて述べたが、導電性成分とし
てCuを用いたCu−WCにおいても同じ傾向を得た。
すなわち、〔M〕のCuの量が〔I〕と〔II〕の導電性
成分の中間の量の場合には、〔I〕で点弧したアークが
〔II〕にまで速やかに広がり、電極表面を有効に活用し
ている結果、優れたしゃ断性能を発揮した(実施例−
2)。これに対して〔M〕のCuの量が20wt%の場
合、すなわち〔I〕のAg(導電性材料)の量より少な
い場合(比較例−3)には、アークが〔I〕と〔M〕と
の境界に停滞する傾向にあり、アーク集中による電極の
損傷によってしゃ断特性は充分でなかった(比較例−
3)。一方〔M〕のCuの量が70wt%の場合、すな
わち〔II〕のCu(導電性成分)の量より多い場合(比
較例−4)には、アークが〔M〕と〔II〕の境界に固着
する傾向にあり、しゃ断性能の優れた〔II〕の領域の5
0Cu−Crの能力を充分発揮することができず、好ま
しいしゃ断特性を得ることはできなかった(比較例−
4)。以上から中間領域〔M〕の高導電性材料の量は、
前述実施例−1で述べたAgの場合と同様に〔II〕>
〔M〕>〔I〕の範囲にあることが望ましい。
Example 2, Comparative Examples 3 and 4 The case described above is based on the fact that Ag is used as the conductive component in the intermediate region [M].
Was described for Ag-WC using Cu, but the same tendency was obtained in Cu-WC using Cu as the conductive component.
That is, when the amount of Cu in [M] is an intermediate amount between the conductive components of [I] and [II], the arc ignited in [I] quickly spreads to [II], and the electrode surface As a result of the effective use of
2). On the other hand, when the amount of Cu in [M] is 20 wt%, that is, when the amount of Ag (conductive material) in [I] is smaller (Comparative Example-3), the arcs are [I] and [M]. ], And the breaking characteristics were not sufficient due to electrode damage due to arc concentration (Comparative Example-
3). On the other hand, when the amount of Cu in [M] is 70 wt%, that is, when the amount of Cu (conductive component) in [II] is larger (Comparative Example-4), the arc is at the boundary between [M] and [II]. In the area of [II], which has excellent breaking performance.
0 Cu-Cr was not able to exhibit its ability sufficiently, and it was not possible to obtain favorable breaking characteristics (Comparative Example-
4). From the above, the amount of the highly conductive material in the intermediate region [M] is:
[II]> as in the case of Ag described in Example 1 above.
It is desirable to be in the range of [M]> [I].

【0032】実施例3〜7 〔M〕に使用する接点は、上記実施例1,2で示したよ
うなAg−WC、Cu−WCに限らず、Ag−Cr、C
u−Cr(実施例3〜4)でも上記したように導電性成
分の量が〔II〕>〔M〕>〔I〕を満すとき、好ましい
しゃ断性能を得た。同様に〔M〕に使用する接点の導電
性成分がAg+Cuでも同様な効果を得た(実施例5〜
7)。耐弧性成分がWC+Crであっても同様の効果が
得られた(実施例−7)。
Embodiments 3 to 7 The contacts used in [M] are not limited to Ag-WC and Cu-WC as shown in Embodiments 1 and 2, but Ag-Cr, C
In the case of u-Cr (Examples 3 and 4), when the amount of the conductive component satisfies [II]>[M]> [I], preferable breaking performance was obtained. Similarly, the same effect was obtained when the conductive component of the contact used in [M] was Ag + Cu (Examples 5 to 5).
7). The same effect was obtained even when the arc resistance component was WC + Cr (Example-7).

【0033】実施例−8 実施例1〜7、比較例1〜4では、第1の組成領域
〔I〕としてAg−WC合金の例で示したが、これに限
ることなく導電性成分がAg+Cuであっても、その合
計量が29wt%の場合、中間領域〔M〕の導電性成分
の量が〔II〕>〔M〕>〔I〕の範囲にあれば好ましい
しゃ断特性を示した(実施例−8)。この場合には前記
実施例と同様、アークは電極面全体に良好に拡がってい
る。
Example -8 In Examples 1 to 7 and Comparative Examples 1 to 4, the first composition region [I] was described using an example of an Ag-WC alloy. However, the present invention is not limited to this. However, when the total amount is 29 wt%, the preferred shut-off characteristic is exhibited when the amount of the conductive component in the intermediate region [M] is in the range of [II]>[M]> [I] (implementation). Example-8). In this case, the arc spreads favorably over the entire electrode surface, as in the previous embodiment.

【0034】実施例9〜10、比較例7〜8 上記によって中間領域〔M〕の存在によって第2の組成
領域〔II〕の材料の有するしゃ断特性を充分発揮させる
条件として合金中の導電性成分の量を〔II〕>〔M〕>
〔I〕とすることが必要であることが判った。一方、第
1の組成領域〔I〕中の導電成分の量が、4wt%Ag
のときには、裁断電流値は充分に低く(改善)されず、
またばらつきも大きく(比較例−7)、少なとくも10
wt%Ag(実施例−9)であることが必要でありま
た、同じく〔I〕中の導電成分の量が75wt%Agの
ときには、裁断電流値は高く、好ましくない(比較例−
8)。これらより本発明での真空バルブでは第1の組成
領域〔I〕中の導電性成分の量は10−50wt%が好
ましい。特に4Ag−WC(比較例−7)では開閉回数
の経過と共に裁断の劣化(裁断電流値が高くなる)の傾
向にある。
Examples 9 to 10 and Comparative Examples 7 to 8 As described above, the conductive component in the alloy is used as a condition for sufficiently exhibiting the breaking characteristics of the material of the second composition region [II] due to the presence of the intermediate region [M]. [II]>[M]>
It was found that [I] was necessary. On the other hand, the amount of the conductive component in the first composition region [I] is 4 wt% Ag.
In the case of, the cutting current value is not sufficiently low (improved),
In addition, the variation was large (Comparative Example-7),
wt% Ag (Example-9). Also, when the amount of the conductive component in [I] is 75 wt% Ag, the cutting current value is high, which is not preferable (Comparative Example- 9).
8). From these, in the vacuum valve of the present invention, the amount of the conductive component in the first composition region [I] is preferably 10 to 50 wt%. In particular, in the case of 4Ag-WC (Comparative Example-7), the cutting tends to deteriorate (the cutting current value increases) with the passage of the number of times of opening and closing.

【0035】実施例11〜13、比較例9〜10 第2の組成領域〔II〕に用いるCu−Cr合金中の導電
性成分の量が、10wt%Cuでは、アークが十分には
〔M〕から〔II〕への移行が見られず、また、95wt
%Cuでは、アークによって〔II〕部の消耗が大きい。
従って第2の組成領域〔II〕における導電性成分の量は
20〜80wt%の範囲にあることが好ましい。以上示
したように〔M〕の導電成分の量は〔II〕>〔M〕>
〔I〕の範囲にあることが必須であり、この範囲にある
ならば〔M〕における導電成分は単一成分でなく多成分
であってもよく、特に〔II〕から〔I〕に向って連続的
にまたは段階的に変化していてもよい。
Examples 11 to 13 and Comparative Examples 9 to 10 When the amount of the conductive component in the Cu—Cr alloy used in the second composition region [II] is 10 wt% Cu, the arc is sufficiently [M]. From [II] to 95 wt.
In the case of% Cu, the arc greatly consumes the portion [II].
Therefore, the amount of the conductive component in the second composition region [II] is preferably in the range of 20 to 80% by weight. As described above, the amount of the conductive component of [M] is [II]>[M]>
It is essential to be within the range of [I], and if it is within this range, the conductive component in [M] may be not a single component but a multi-component, particularly from [II] to [I]. It may change continuously or stepwise.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】以上説明したように、本発明による真空
開閉器用接点は、低サージ機能を有するAg−WC系合
金領域と、大電流しゃ断機能を有するCu−Cr系合金
領域とを少なくとも2種類有し、それぞれの合金領域の
間に、これら両合金領域の中間的な性質を有する合金か
らなり、その導電性成分量が、Cu−Cr系合金領域>
中間領域>Ag−WC系合金領域、の範囲にある境界領
域を有する。このため、Ag−WC系合金領域からCu
−Cr系合金領域への磁界の制御による強制的なアーク
の移行が容易に行なわれて停滞することがなく、低サー
ジ機能と大電流しゃ断機能という二つの相反する要求を
同時に満たすことができる。
As described above, the vacuum switch contact according to the present invention has at least two types of Ag-WC alloy regions having a low surge function and Cu-Cr alloy regions having a large current breaking function. And an alloy having an intermediate property between the two alloy regions, and the conductive component amount of the alloy is Cu-Cr based alloy region>
There is a boundary region in the range of the intermediate region> Ag-WC alloy region. For this reason, from the Ag-WC alloy region, Cu
-Forced arc transfer by controlling the magnetic field to the Cr-based alloy region is easily performed without stagnation, and the two contradictory requirements of a low surge function and a large current interruption function can be satisfied at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の真空開閉器用接点の一実施例を示す
図。
FIG. 1 is a view showing one embodiment of a contact for a vacuum switch of the present invention.

【図2】真空開閉器を示す図。FIG. 2 shows a vacuum switch.

【図3】図2における可動電極8周辺の詳細を示す部分
拡大図。
FIG. 3 is a partially enlarged view showing details around a movable electrode 8 in FIG. 2;

【図4】従来の真空開閉器用接点を示す図。FIG. 4 is a view showing a conventional contact for a vacuum switch.

【図5】真空開閉器に用いられるコイル電極を示す図。FIG. 5 is a diagram showing a coil electrode used in a vacuum switch.

【図6】真空開閉器に用いられるスパイラル電極を示す
図。
FIG. 6 is a diagram showing a spiral electrode used in a vacuum switch.

【符号の説明】[Explanation of symbols]

1 しゃ断室 2 絶縁容器 3a 封止金具 3b 封止金具 4a 金属製蓋体 4b 金属製蓋体 5 導電棒 6 導電棒 7 固定電極 8 可動電極 9 ベローズ 10 アークシールド 11 アークシールド 12 ろう付 13a 可動接点 13b 固定接点 14 ろう付 21 第1の組成領域〔I〕 22 中間領域〔M〕 23 第2の組成領域〔II〕 44 コイル電極 45 スパイラル電極 H 磁界 DESCRIPTION OF SYMBOLS 1 Cut-off room 2 Insulating container 3a Sealing fitting 3b Sealing fitting 4a Metal lid 4b Metal lid 5 Conductive rod 6 Conductive rod 7 Fixed electrode 8 Movable electrode 9 Bellows 10 Arc shield 11 Arc shield 12 Brazing 13a Movable contact 13b Fixed contact 14 Brazing 21 First composition region [I] 22 Intermediate region [M] 23 Second composition region [II] 44 Coil electrode 45 Spiral electrode H Magnetic field

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山 本 敦 史 東京都府中市東芝町1 株式会社東芝 府中工場内 (56)参考文献 特開 昭63−266720(JP,A) 特開 昭63−175308(JP,A) 特開 昭56−121228(JP,A) 特開 昭63−86835(JP,A) 特開 平2−270232(JP,A) 特開 平2−288033(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu Plant, Toshiba Corporation (56) References JP-A-63-266720 (JP, A) JP-A-63- 175308 (JP, A) JP-A-56-121228 (JP, A) JP-A-63-86835 (JP, A) JP-A-2-270232 (JP, A) JP-A 2-288033 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01H 33/66

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高導電性材料と耐弧性材料とから構成され
る接点を具備してなる真空バルブにおいて、 前記接点が、それぞれ組成の異なる第1組成領域
〔I〕、第2組成領域〔II〕、および該第1組成領域
〔I〕と第2組成領域〔II〕の中間位置に介在する中間
領域〔M〕から構成され、 前記第1組成領域〔I〕が低サージ性のAg−WC系合
金からなり、前記第2組成領域〔II〕が大電流遮断性の
Cu−Cr系合金からなり、前記中間領域〔M〕が前記
第1組成領域〔I〕と前記第2組成領域〔II〕の中間的
な性質を有する合金からなり、 前記〔M〕の導電性成分の量(重量%)が、前記各領域
中の導電性成分量(重量%)に対して〔II〕>〔M〕>
〔I〕の範囲にあることを特徴とする接点、を具備して
なる真空バルブ。
1. A vacuum valve comprising a contact made of a highly conductive material and an arc-resistant material, wherein the contact has a first composition region [I] and a second composition region [2] having different compositions, respectively. II] and an intermediate region [M] interposed between the first composition region [I] and the second composition region [II], wherein the first composition region [I] has a low surge Ag- WC-based alloy, the second composition region [II] is composed of a large current blocking Cu-Cr-based alloy, and the intermediate region [M] is the first composition region [I] and the second composition region [ II], wherein the amount (% by weight) of the conductive component (M) is based on the amount (% by weight) of the conductive component in each of the regions. M]>
A vacuum valve, comprising: a contact in the range of [I].
【請求項2】前記第1組成領域〔I〕は、高導電性材料
が10〜50重量%のAg、残部の耐弧性材料がWCか
らなり、前記第2組成領域〔II〕は、高導電性材料が2
0〜80重量%のCu、残部の耐弧性材料がCrからな
ること、を特徴とする接点を具備した請求項1に記載の
真空バルブ。
2. The first composition region [I] is composed of 10 to 50% by weight of a highly conductive material Ag and the remaining arc resistant material is WC. 2 conductive materials
2. The vacuum valve according to claim 1, further comprising a contact, wherein 0 to 80% by weight of Cu and the balance of the arc-resistant material are made of Cr.
【請求項3】前記中間領域〔M〕は、高導電性材料がA
gまたは/およびCuからなり、耐弧性材料がCrまた
は/およびWCからなること、を特徴とする接点を具備
した請求項1または2のいずれかに記載の真空バルブ。
3. The intermediate region [M] is made of a highly conductive material of A
The vacuum valve according to claim 1, further comprising a contact made of g or / and Cu, and wherein the arc-resistant material is made of Cr or / and WC.
【請求項4】前記第1組成領域〔I〕の高導電性材料が
AgおよびCuからなり、該高導電性材料の含有量は1
0〜50重量%の範囲にあり、Cuの量はAg量に対し
て40%以内であること、を特徴とする接点を具備した
請求項1または3のいずれかに記載の真空バルブ。
4. The highly conductive material of the first composition region [I] is made of Ag and Cu, and the content of the highly conductive material is 1
The vacuum valve according to claim 1, further comprising a contact in a range of 0 to 50% by weight, and the amount of Cu is within 40% of the amount of Ag.
【請求項5】前記中間領域〔M〕における耐弧性成分C
r+WCは、前記第1組成領域〔I〕に接する一方の端
部から前記第2組成領域〔II〕に接する他方の端部に向
かってCr/WCの比率が前記第1組成領域〔I〕の耐
弧性成分量から前記第2組成領域〔II〕の耐弧性成分量
へと段階的にまたは連続的に変化するように構成したこ
と、を特徴とする接点を具備した請求項1〜4のいずれ
か1項に記載の真空バルブ。
5. An arc-resistant component C in said intermediate area [M].
r + WC is such that the ratio of Cr / WC from one end contacting the first composition region [I] to the other end contacting the second composition region [II] is equal to that of the first composition region [I]. 5. The contact according to claim 1, wherein the contact resistance is changed stepwise or continuously from the arc resistance component amount to the arc resistance component amount of the second composition region [II]. The vacuum valve according to any one of the preceding claims.
【請求項6】前記第1組成領域〔I〕、前記第2組成領
域〔II〕および前記中間領域〔M〕の各領域が、前記接
点の中心から半径方向に〔II〕〔M〕〔I〕の順にまた
は〔I〕〔M〕〔II〕の順に配置されたことを特徴とす
る接点、を具備してなる請求項1〜5のいずれか1項に
記載の真空バルブ。
6. The first composition region [I], the second composition region [II], and the intermediate region [M] are radially [II] [M] [I] from the center of the contact. 6. The vacuum valve according to any one of claims 1 to 5, further comprising a contact arranged in the order of [I], [M], and [II].
JP03001733A 1991-01-10 1991-01-10 Vacuum valve Expired - Fee Related JP3101329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03001733A JP3101329B2 (en) 1991-01-10 1991-01-10 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03001733A JP3101329B2 (en) 1991-01-10 1991-01-10 Vacuum valve

Publications (2)

Publication Number Publication Date
JPH04242029A JPH04242029A (en) 1992-08-28
JP3101329B2 true JP3101329B2 (en) 2000-10-23

Family

ID=11509766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03001733A Expired - Fee Related JP3101329B2 (en) 1991-01-10 1991-01-10 Vacuum valve

Country Status (1)

Country Link
JP (1) JP3101329B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428386C (en) * 2005-01-31 2008-10-22 北京京东方真空电器有限责任公司 Arc-resistance piece structure and vacuum switch contact
CN103515139A (en) * 2013-09-23 2014-01-15 西安交通大学 Vacuum arc-extinguishing chamber composite contact structure and arc-extinguishing chamber suitable for capacity current connecting and disconnecting

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249991A (en) * 1995-03-10 1996-09-27 Toshiba Corp Contact electrode for vacuum valve
DE69635605T2 (en) * 1995-09-04 2006-10-05 Kabushiki Kaisha Toshiba, Kawasaki VACUUM SWITCH
JP5683515B2 (en) * 2012-03-16 2015-03-11 株式会社日立製作所 Switch
CN103489701A (en) * 2013-10-15 2014-01-01 中国振华电子集团宇光电工有限公司(国营第七七一厂) Multi-property contact
EP4276864A1 (en) * 2022-05-08 2023-11-15 Abb Schweiz Ag Vacuum interrupter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428386C (en) * 2005-01-31 2008-10-22 北京京东方真空电器有限责任公司 Arc-resistance piece structure and vacuum switch contact
CN103515139A (en) * 2013-09-23 2014-01-15 西安交通大学 Vacuum arc-extinguishing chamber composite contact structure and arc-extinguishing chamber suitable for capacity current connecting and disconnecting
CN103515139B (en) * 2013-09-23 2016-05-04 西安交通大学 Be applicable to vacuum interrupter composite contact structure and arc-chutes that capacity current cut-offs

Also Published As

Publication number Publication date
JPH04242029A (en) 1992-08-28

Similar Documents

Publication Publication Date Title
US3246979A (en) Vacuum circuit interrupter contacts
US2975255A (en) Vacuum circuit interrupters
EP0488083B1 (en) Contact material for a vacuum interrupter
US5149362A (en) Contact forming material for a vacuum interrupter
Yanabu et al. Post arc current of vacuum interrupters
KR930011829B1 (en) Vacuum interrupter
JP3101329B2 (en) Vacuum valve
EP0172912B1 (en) Contact material for vacuum breaker
US4372783A (en) Electrical contact composition for a vacuum type circuit interrupter
US3008022A (en) Contact structure for a vacuum-type circuit interrupter
EP0090579A2 (en) Surge-absorberless vacuum circuit interrupter
JP3441331B2 (en) Manufacturing method of contact material for vacuum valve
JP2944788B2 (en) Vacuum valve
JPH06228704A (en) Contact material for vacuum bulb and its production
JPH0547275A (en) Vacuum valve
JPH0777101B2 (en) Contact for vacuum switch
JPH04324219A (en) Contact material for vacuum bulb
Godechot et al. Late breakdown phenomena investigation with various kinds of contact material
US4129761A (en) Vacuum circuit breaker
JPH1083746A (en) Electrode for vacuum valve and its manufacture
JPH03138827A (en) Vacuum valve
JPH04132127A (en) Contact point for vacuum bulb
Yan et al. An investigation of CuCr contact materials with low chopping current
JP2904448B2 (en) Contact material for vacuum valve
JPH04206122A (en) Vacuum value

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees