JPH0546792B2 - - Google Patents

Info

Publication number
JPH0546792B2
JPH0546792B2 JP58186022A JP18602283A JPH0546792B2 JP H0546792 B2 JPH0546792 B2 JP H0546792B2 JP 58186022 A JP58186022 A JP 58186022A JP 18602283 A JP18602283 A JP 18602283A JP H0546792 B2 JPH0546792 B2 JP H0546792B2
Authority
JP
Japan
Prior art keywords
magnetic fluid
flow path
magnetic
temperature heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58186022A
Other languages
Japanese (ja)
Other versions
JPS6082057A (en
Inventor
Koji Takeshita
Masaharu Minami
Nobuyuki Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18602283A priority Critical patent/JPS6082057A/en
Publication of JPS6082057A publication Critical patent/JPS6082057A/en
Publication of JPH0546792B2 publication Critical patent/JPH0546792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 本発明は、磁性流体を用いて潤滑するために、
軸受に磁性流体を加圧、移送したり比較的低温の
熱源の熱エネルギーを電気エネルギーに変換した
りするための磁性流体の昇圧装置に関するもの
で、電動機などを用いないで熱エネルギーによつ
て磁性流体の昇圧を行なうものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for lubricating using a magnetic fluid.
This device relates to a pressurizing device for magnetic fluid that pressurizes and transfers magnetic fluid to bearings and converts thermal energy from a relatively low-temperature heat source into electrical energy. This increases the pressure of fluid.

油や水などの流体に極めて微細な強磁性体を浮
遊させた磁性流体は、多くの特性を有しているこ
とが知られており、その特性利用の研究開発が各
方面において進められているとともに、その特性
の一例として、磁性流体を加熱し磁化率を低下さ
せて、該磁性流体を加圧することができる加圧特
性は、既に文献等によつて発表されている。
Magnetic fluid, which is made by suspending extremely fine ferromagnetic materials in a fluid such as oil or water, is known to have many properties, and research and development to utilize these properties is progressing in various fields. In addition, as an example of the characteristics, a pressurizing characteristic that can heat a magnetic fluid to lower its magnetic susceptibility and pressurize the magnetic fluid has already been published in literature.

本発明は、前記磁性流体の特性を活用するため
に開発されたものであつて、磁性流体の前記加圧
特性を多段にてかつ連続的に発生させることによ
り、磁性流体を高い圧力にすることを可能とし、
容積形原動機の動力源や装置冷却の冷却源等に活
用できるようにした磁性流体の昇圧装置を提供す
るものであつて、 複数の磁石1と、磁性流体が流通する偏平状の
磁性流体流路4と、高温熱媒が流通する高温熱流
路5と、低温熱媒が流通する低温熱流路6とを有
する磁性流体の昇圧装置であつて、 磁石1は所定の間隔で、磁性流体流路4に沿つ
て配置され、各磁石1のS極とN極が磁性流体流
路4を介して対抗され、 高温熱流路5は、各磁石1のS極とN極間にお
いて、磁性流体流路4の外壁に接して配置され、
その間における磁性流体の温度をキユーリポイン
ト以上に加熱し、 低温熱流路6は、各磁石1間において、前記磁
性流体流路4の外壁に接して配置され、その間に
おける磁性流体の温度をキユーリポイント以下に
冷却するものである。
The present invention was developed in order to utilize the characteristics of the magnetic fluid, and it is possible to make the magnetic fluid under high pressure by continuously generating the pressurizing characteristics of the magnetic fluid in multiple stages. enable,
The present invention provides a magnetic fluid booster that can be used as a power source for a positive displacement prime mover, a cooling source for equipment cooling, etc., which includes a plurality of magnets 1 and a flat magnetic fluid channel through which magnetic fluid flows. 4, a high-temperature heat flow path 5 through which a high-temperature heat medium flows, and a low-temperature heat flow path 6 through which a low-temperature heat medium flows. The south pole and north pole of each magnet 1 are opposed to each other via the magnetic fluid flow path 4, and the high temperature heat flow path 5 is arranged along the magnetic fluid flow path 4 between the south pole and the north pole of each magnet 1. It is placed in contact with the outer wall of
The temperature of the magnetic fluid between them is heated to the Curie point or higher, and the low-temperature heat channel 6 is arranged between each magnet 1 in contact with the outer wall of the magnetic fluid channel 4, and the temperature of the magnetic fluid therebetween is heated to the Curie point or higher. It is meant to cool down below the point.

以下、本発明の実施例およびその作用効果を説
明する。
Examples of the present invention and their effects will be described below.

第1図ないし第3図に本発明の一実施例を示す
磁性流体の昇圧装置の構成を示しており、図中1
は磁石、2はコイル、3は巻枠、4は磁性流体X
の流路、5は高熱源(図示省略)から供給される
高温熱媒Yの流路、6は低熱源(図示省略)から
供給される低温熱媒Zの流路であつて、前記各流
路4,5,6は、非磁性材で製作して磁石の磁束
を乱さないようになつており、コイル2には一定
電圧の直流を流して磁石1を磁化し、流路4,5
を挟んだ空間に磁場を作る構成になつていて、該
磁場の磁界を強くするために磁石1の先端断面積
を小さく絞つて形成し、また、前記磁石1は、流
路4,5,6の長手方向に適宜間隔で多数配置さ
れ、かつ、第3図に示すように前記流路の両側に
交互に配置させて、狭いスペースにできるだけ大
きい磁石を設けている。
Figures 1 to 3 show the configuration of a magnetic fluid booster according to an embodiment of the present invention.
is a magnet, 2 is a coil, 3 is a winding frame, 4 is a magnetic fluid
5 is a flow path for high-temperature heat medium Y supplied from a high heat source (not shown), 6 is a flow path for low-temperature heat medium Z supplied from a low heat source (not shown); The channels 4, 5, and 6 are made of non-magnetic material so as not to disturb the magnetic flux of the magnet, and a constant voltage of direct current is passed through the coil 2 to magnetize the magnet 1.
The structure is such that a magnetic field is created in the space between the flow channels 4, 5, and A large number of magnets are arranged at appropriate intervals in the longitudinal direction of the magnets, and as shown in FIG. 3, they are arranged alternately on both sides of the flow path to provide as large a magnet as possible in a narrow space.

第4図は、第1図、第2図、第3図を斜視図で
示したもので、隠線が多くならないように磁石1
は磁極近くのみ二点鎖線で示した。図において偏
平な磁性流体流路4をそれぞれの磁石1の磁極間
とほぼ直線状に設け、図では流路4の上面で、か
つ磁極間で磁性流体を加熱するように高温熱媒の
流路5を設け、磁極と磁極の間は、左右いずれか
の方に寄せ流路4に対する接触面積を小さくし、
磁性流体Xへの入熱を抑える。一方、図において
流路4の下面で、磁石1と磁石1の間では流路4
の中の磁性流体Xを冷却するように、低温熱媒の
流路6が設けられている。磁極間の磁性流体Xか
らの熱を取らないように、磁極間では左また右側
にう回し、伝熱面積が小さくなるようにしてい
る。
Figure 4 is a perspective view of Figures 1, 2, and 3.
is shown by a chain double-dashed line only near the magnetic pole. In the figure, a flat magnetic fluid flow path 4 is provided almost linearly between the magnetic poles of each magnet 1, and in the figure, a high temperature heating medium flow path is provided so as to heat the magnetic fluid on the upper surface of the flow path 4 and between the magnetic poles. 5 is provided, and between the magnetic poles, the contact area with the flow path 4 is reduced to the left or right side,
Suppress heat input to magnetic fluid X. On the other hand, in the figure, on the lower surface of the flow path 4, between the magnets 1 and 1, the flow path 4
A flow path 6 for a low-temperature heat medium is provided to cool the magnetic fluid X in the . In order to prevent heat from being absorbed from the magnetic fluid X between the magnetic poles, the magnetic fluid X is routed to the left or right between the magnetic poles to reduce the heat transfer area.

それぞれの流路5,6には、図の左端の矢印が
示すように高温熱媒Yおよび低温熱媒Zを流す。
A high-temperature heat medium Y and a low-temperature heat medium Z flow through the respective flow paths 5 and 6 as indicated by the arrows at the left end of the figure.

さらに、本発明の実施例においては、磁性流体
Xの流路4を中心にして、その上側に蛇行形(第
3図参照)の高温熱媒Yが流通される前記流路5
を沿わせて設け、また、その下側に前記流路5と
同様に形成された低温熱媒Z流通用の前記流路6
を沿わせて設け、前記流路5に対し前記流路6が
半ピツチずらせて配置されており、前記流路5に
よつて高温熱媒Yの加熱部5aが形成されかつ前
記流路6によつて低温熱媒Zの冷却部6aが形成
されて、磁性流体Xの流路4に、前記加熱部5a
と前記冷却部6aを交互に順次に配置し、かつそ
れを多数個設けて複数段に形成してなる磁性流体
Xの加熱・冷却機構を沿わせて設けた構成になつ
ている。
Furthermore, in the embodiment of the present invention, the flow path 5 has a meandering shape (see FIG. 3) in which the high temperature heating medium Y is passed around the flow path 4 of the magnetic fluid X at its center.
are provided along the same line, and the flow path 6 for flowing the low temperature heat medium Z is formed below the flow path 5 in the same manner as the flow path 5.
The flow path 6 is arranged to be shifted by half a pitch from the flow path 5, and the flow path 5 forms a heating section 5a for the high-temperature heat medium Y. Therefore, a cooling section 6a for the low-temperature heating medium Z is formed, and the heating section 5a is provided in the flow path 4 for the magnetic fluid X.
The cooling parts 6a are arranged alternately in sequence, and a heating/cooling mechanism for the magnetic fluid X, which is formed by providing a large number of the cooling parts 6a and forming a plurality of stages, is arranged side by side.

また、前記の磁石1、コイル2および巻枠3に
よつて磁石が構成され、前記磁石は図示のように
加熱部5aが設けられた流路4部分に配設され
て、各加熱部5aが配置されている流路4部分に
磁場を形成した構成になつている。
Further, a magnet is constituted by the magnet 1, coil 2, and winding frame 3, and the magnet is disposed in a portion of the flow path 4 where the heating section 5a is provided as shown in the figure. It has a configuration in which a magnetic field is formed in the 4 portions of the flow channels arranged therein.

前記流路4には磁性流体Xが充満されその流れ
を生ずるようになつているとともに、流路5には
高熱源(図示省略)から高温熱媒Yが流通されて
磁性流体Xを加熱し、流路6には低熱源(図示省
略)から低温流体Zが流通されて磁性流体Xを冷
却するように構成され、また、流路4の図示上下
側に、プレス成形された流路5,6を溶接して一
体的に沿設している。
The flow path 4 is filled with the magnetic fluid X to cause its flow, and a high temperature heating medium Y is passed through the flow path 5 from a high heat source (not shown) to heat the magnetic fluid X. The flow path 6 is configured so that a low-temperature fluid Z flows from a low heat source (not shown) to cool the magnetic fluid X, and press-formed flow paths 5 and 6 are formed on the upper and lower sides of the flow path 4 in the figure. are welded together and installed together.

また、流路4,5に付設された磁石を数段ない
し数10段並べ、さらにそれを1組にすると数10組
ないし数100組を組合せて、それに対応させて多
数の加熱部5a、冷却部6aを設け、1台の磁性
流体の昇圧装置になつている。
In addition, if the magnets attached to the flow channels 4 and 5 are arranged in several stages to several tens of stages, and if these are combined into one set, then several tens to several hundred sets can be combined, and a corresponding number of heating parts 5a and cooling parts can be arranged. A section 6a is provided to form a single magnetic fluid pressure booster.

図示した本発明の実施例は、前記のような構成
になつており作用効果について説明すると、磁性
流体は、油や水などの流体に極めて微細な強磁性
体を浮遊させたものであつて、一般の流体に較べ
ると、透磁率が極めて大きくそれを磁場に置くこ
とによつて、流体内に浮遊した強磁性体が吸引さ
れ圧力が発生する。その圧力P(Kgf/cm2)の大
きさは、磁化の強さをJ(Gauss)、磁場の強さを
H(Oe)とすると、 P=1/4π∫H 0J dH と表わされる。磁石によつて大きな磁界を加える
ので、磁性流体Xの磁化の強さJは飽和してほぼ
一定の値になる。従つて、第5図のように、一方
が開放された容器14に磁性流体Xを充満させた
状態で磁力線Sが生ずるように磁場を加えると、
磁束を着る方向に圧力が発生し、中央で圧力が最
高になり、右の方に行くに従つて磁束密度が小さ
くなつて圧力が低くなる。
The illustrated embodiment of the present invention has the above-mentioned configuration, and to explain the operation and effect, a magnetic fluid is a fluid such as oil or water with extremely fine ferromagnetic material suspended in it. Compared to ordinary fluids, it has extremely high magnetic permeability, and by placing it in a magnetic field, ferromagnetic substances suspended in the fluid are attracted and pressure is generated. The magnitude of the pressure P (Kgf/cm 2 ) is expressed as P=1/4π∫H 0J dH, where the magnetization strength is J (Gauss) and the magnetic field strength is H (Oe). Since a large magnetic field is applied by the magnet, the magnetization strength J of the magnetic fluid X is saturated and becomes a substantially constant value. Therefore, as shown in FIG. 5, when a magnetic field is applied to a container 14 with one side open and filled with magnetic fluid X so that lines of magnetic force S are generated,
Pressure is generated in the direction of magnetic flux, and the pressure is highest in the center, and as you move to the right, the magnetic flux density decreases and the pressure becomes lower.

ところが、磁性流体Xの中の微細な磁性体は、
第6図に示すように、磁性流体の温度がキユーリ
ポイントTeより高いところでは磁化率が大幅に
低下することが知られている。従つて、磁性流体
Xの温度を磁場の中で変化させると、昇圧時と降
圧時の値が変化する。第5図に示すように左右の
圧力の変化は対称にならずに第7図のようにな
る。これは磁性流体の温度がキユーリポイント以
上になると磁性流体の中に含まれている磁性体の
磁化率が低下し磁性流体は磁気的特性が著しく弱
くなり一般の流体に戻つてしまうためであつて、
このときは、磁性流体の特性はなくなり磁束密度
が高くても前記の式には支配されずほぼ一定の圧
力となる。従つて、第7図の容器14の右端に圧
力が発生する。
However, the fine magnetic material in the magnetic fluid
As shown in FIG. 6, it is known that the magnetic susceptibility decreases significantly where the temperature of the magnetic fluid is higher than the Curie point Te. Therefore, when the temperature of the magnetic fluid X is changed in the magnetic field, the values when the pressure increases and when the pressure decreases change. As shown in FIG. 5, the left and right pressure changes are not symmetrical, but as shown in FIG. 7. This is because when the temperature of the magnetic fluid exceeds the Curie point, the magnetic susceptibility of the magnetic material contained in the magnetic fluid decreases, and the magnetic properties of the magnetic fluid become significantly weaker, returning to a normal fluid. hand,
At this time, the characteristics of the magnetic fluid disappear and even if the magnetic flux density is high, it is not governed by the above equation and the pressure remains almost constant. Therefore, pressure is generated at the right end of the container 14 in FIG.

前述の磁性流体の昇圧装置は、前記のような原
理を用いたものであつて磁性流体の大きな圧力と
大きな流量が得られる装置にすることができる。
磁性流体Xを充満した流路4の上面に高熱源から
高温熱媒Yを流す流路5を設け、また下面には冷
熱源から低温熱媒Zを流す流路6を設けて、磁性
流体Xを流路4の流れに従つて交互に加熱と冷却
を繰返して行なうとともに、加熱部5aの流路4
部分に大きな磁場を加えると、第8図のように、
流路4中の温度が加熱部5aで上昇し、該温度が
ある点に達すると磁性流体Xの磁化率が低下す
る。その結果、圧力は、磁石のほぼ中心までは上
昇し、その後圧力は僅かに低下するが、磁化率が
小さくなつているので、その降下幅は小さい。流
路4,5,6に沿わせて適宜間隔で磁石を多数段
並べることによつて、第8図に示すように圧力は
重ね合せられて高められる。
The above-mentioned magnetic fluid pressurization device uses the above-described principle, and can be a device that can obtain a large pressure and a large flow rate of the magnetic fluid.
A flow path 5 for flowing a high temperature heat medium Y from a high heat source is provided on the upper surface of the flow path 4 filled with the magnetic fluid X, and a flow path 6 for flowing a low temperature heat medium Z from a cold heat source is provided on the lower surface. Heating and cooling are repeated alternately according to the flow of the flow path 4, and the flow path 4 of the heating section 5a is heated and cooled repeatedly.
When a large magnetic field is applied to the part, as shown in Figure 8,
The temperature in the flow path 4 increases in the heating section 5a, and when the temperature reaches a certain point, the magnetic susceptibility of the magnetic fluid X decreases. As a result, the pressure increases almost to the center of the magnet, and then decreases slightly, but since the magnetic susceptibility has decreased, the amount of the decrease is small. By arranging a large number of magnets at appropriate intervals along the flow paths 4, 5, and 6, the pressures are superimposed and increased as shown in FIG.

なお、第8図において磁性流体Xの流れる方向
を矢印で示しているが、起動時は初速度がないた
め、右にも左にも流れない。このために、第9図
に示すように複数段の各磁石のそれぞれの後流側
一部のみに高温熱媒Yの流路を設けることによつ
て、第7図に示すように磁石の磁場内に温度勾配
を作ることができ初速を得ることができる。一
旦、速度を持つと加熱時に磁性流体が温度上昇す
るのに、時間的に遅れがあつて、第8図に示すよ
うな温度分布となる。
Note that in FIG. 8, the direction in which the magnetic fluid X flows is indicated by an arrow, but since there is no initial velocity at the time of startup, it does not flow to the right or left. For this purpose, as shown in FIG. 9, by providing a flow path for the high-temperature heating medium Y only in a part of the wake side of each of the multiple stages of magnets, the magnetic field of the magnet is reduced as shown in FIG. It is possible to create a temperature gradient within and obtain an initial velocity. Once the magnetic fluid has a velocity, there is a time delay in the temperature rise of the magnetic fluid during heating, resulting in a temperature distribution as shown in FIG.

実験の結果では、5000Gaussの磁場内で飽和磁
束密300Gaussの磁性流体を用いた100〜160℃に
加熱して、1段当り0.1〜0.2Kgf/cm2の差圧が得
られており、数段から数10段の磁石を組合せるこ
とによつて、実用の圧力の昇圧装置とすることが
できる。また磁石を大きくすることは、磁気抵抗
が大きくなるのであまり大きくすることはなく得
策でなく、流路4,5,6を並列に配列して数10
列ないし数100列の組とすることによつて実用規
模の昇圧装置とすることができる。
According to the experimental results, a pressure difference of 0.1 to 0.2 Kgf/cm 2 per stage was obtained by heating to 100 to 160 °C using a magnetic fluid with a saturation magnetic flux density of 300 Gauss in a magnetic field of 5000 Gauss, and a pressure difference of 0.1 to 0.2 Kgf/cm 2 was obtained per stage. By combining several tens of stages of magnets, it is possible to create a practical pressure booster. In addition, it is not a good idea to make the magnets too large because the magnetic resistance will increase.
By forming a row or a set of several hundred rows, a practical scale booster can be obtained.

第10図に本発明の昇圧装置の一応用例を示し
ており、図中100は前記実施例の昇圧装置であ
つて、該昇圧装置100の流路5には、高温熱媒
Yを流通させるポンプ101と排ガス等の熱を吸
収して高温熱媒Yを発生する高熱源102とが連
結されて、高温熱媒Yに排熱利用ができるように
なつているとともに、流路6には、低温熱媒Zを
流通させるポンプ103と、冷却水によつて低温
熱媒Zを得る低熱源104が連結され、さらに、
昇圧装置100によつて発生された高い圧力の磁
性流体Xは、流路4からタービンまたは油圧ポン
プ105に供給されそれらの動力として活用され
たのち、循環されるようになつており、発電機1
06を駆動して電力動力として変換することがで
き、前記のように排熱を利用し動力源とすること
ができる。
FIG. 10 shows an application example of the pressure boosting device of the present invention, and in the figure, 100 is the pressure boosting device of the above embodiment, and the flow path 5 of the pressure boosting device 100 is connected to a pump through which a high temperature heat medium Y flows. 101 is connected to a high heat source 102 that absorbs heat from exhaust gas, etc. and generates a high temperature heat medium Y, so that waste heat can be used for the high temperature heat medium Y. A pump 103 that circulates the heat medium Z is connected to a low heat source 104 that obtains the low temperature heat medium Z by cooling water, and further,
The high-pressure magnetic fluid X generated by the booster 100 is supplied to the turbine or hydraulic pump 105 from the flow path 4 and used as power for the turbine or hydraulic pump 105, and then circulated.
06 can be driven and converted into electric power, and exhaust heat can be used as a power source as described above.

本発明は、前述のように磁性流体を比較的に低
温度の熱源を用いてしかも高い圧力に極めて効率
よく昇圧することができ、加圧された磁性流体
は、タービンや油圧モータのような容積形原動機
に導入して動力として取出すことができ、そのま
ま装置冷却に活用することなどもできる。
As mentioned above, the present invention can extremely efficiently boost the pressure of a magnetic fluid to a high pressure using a relatively low-temperature heat source, and the pressurized magnetic fluid can be It can be introduced into a motor and extracted as power, and can also be used as is for equipment cooling.

以上本発明を実施例について説明したが、勿論
本発明はこのような実施例にだけ局限されるもの
ではなく、本発明の精神を逸脱しない範囲内で
種々の設計の改変を施しうるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第
2図は第1図の−部分の断面図、第3図は第
1図の−部分の断面図、第4図は斜視図、第
5図A,Bは磁性流体の昇圧実験器を示す側面図
と圧力分布図、第6図は磁性流体の温度に対する
磁化率特性図、第7図A,Bは昇圧実験器を示す
側面図と温度および圧力分布図、第8図A,Bは
本発明の作用説明用の要部側面図と温度、磁化率
および圧力分布図、第9図は高温熱媒の流路配置
の1例を示す側面図、第10図は本発明昇圧装置
の排熱利用プラントへの応用例を示す機構図であ
る。 1:鉄心、2:コイル、4:磁性流体の流路、
5:高温熱媒の流路、6:低温熱媒の流路、5
a:加熱部、6a:冷却部。
Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, Fig. 2 is a cross-sectional view of the - part in Fig. 1, Fig. 3 is a cross-sectional view of the - part in Fig. 1, and Fig. 4 is a perspective view. , Figures 5A and B are side views and pressure distribution diagrams showing a pressure boosting experimental device for magnetic fluid, Figure 6 is a diagram of magnetic susceptibility characteristics versus temperature of magnetic fluid, and Figures 7 A and B are side views showing a pressure boosting experimental device. Figures 8A and 8B are side views of main parts and temperature, magnetic susceptibility and pressure distribution diagrams for explaining the operation of the present invention. Figure 9 is an example of the flow path arrangement of high temperature heating medium. FIG. 10 is a mechanical diagram showing an example of application of the pressure booster of the present invention to an exhaust heat utilization plant. 1: iron core, 2: coil, 4: magnetic fluid flow path,
5: High temperature heat medium flow path, 6: Low temperature heat medium flow path, 5
a: heating section, 6a: cooling section.

Claims (1)

【特許請求の範囲】 1 複数の磁石1と、磁性流体が流通する偏平状
の磁性流体流路4と、高温熱媒が流通する高温熱
流路5と、低温熱媒が流通する低温熱流路6とを
有する磁性流体の昇圧装置であつて、 磁石1は所定の間隔で、磁性流体流路4に沿つ
て配置され、各磁石1のS極とN極が磁性流体流
路4を介して対抗され、 高温熱流路5は、各磁石1のS極とN極間にお
いて、磁性流体流路4の外壁に接して配置され、
その間における磁性流体の温度をキユーリポイン
ト以上に加熱し、 低温熱流路6は、各磁石1間において、磁性流
体流路4の外壁に接して配置され、その間におけ
る磁性流体の温度をキユーリポイント以下に冷却
するものである 磁性流体の昇圧装置。
[Claims] 1. A plurality of magnets 1, a flat magnetic fluid flow path 4 through which a magnetic fluid flows, a high temperature heat flow path 5 through which a high temperature heat medium flows, and a low temperature heat flow path 6 through which a low temperature heat medium flows. A magnetic fluid booster comprising: magnets 1 are arranged along a magnetic fluid flow path 4 at predetermined intervals, and the S and N poles of each magnet 1 are opposed to each other via the magnetic fluid flow path 4; The high-temperature heat flow path 5 is arranged in contact with the outer wall of the magnetic fluid flow path 4 between the south pole and the north pole of each magnet 1,
The temperature of the magnetic fluid between them is heated to the Curie point or higher, and the low-temperature heat flow path 6 is arranged between each magnet 1 in contact with the outer wall of the magnetic fluid flow path 4, and the temperature of the magnetic fluid therebetween is heated to the Curie point or higher. A pressurizing device for magnetic fluid that is to be cooled below.
JP18602283A 1983-10-06 1983-10-06 Booster of magnetic fluid Granted JPS6082057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18602283A JPS6082057A (en) 1983-10-06 1983-10-06 Booster of magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18602283A JPS6082057A (en) 1983-10-06 1983-10-06 Booster of magnetic fluid

Publications (2)

Publication Number Publication Date
JPS6082057A JPS6082057A (en) 1985-05-10
JPH0546792B2 true JPH0546792B2 (en) 1993-07-14

Family

ID=16181022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18602283A Granted JPS6082057A (en) 1983-10-06 1983-10-06 Booster of magnetic fluid

Country Status (1)

Country Link
JP (1) JPS6082057A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172945B2 (en) * 2013-01-09 2017-08-02 株式会社Kri MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160814A (en) * 1974-06-19 1975-12-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160814A (en) * 1974-06-19 1975-12-26

Also Published As

Publication number Publication date
JPS6082057A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
US3627678A (en) Magnetic separator and magnetic separation method
US4916907A (en) Magnetocaloric monostable and bistable inductors for electrical energy and refrigeration
EP1832828A1 (en) Magnetic convection heat circulation pump
Kirol et al. Numerical analysis of thermomagnetic generators
DE2807093A1 (en) COOLING DEVICE
DE102012020486A1 (en) Thermomagnetic generator
US5209646A (en) Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Fadaei et al. Forced-convection heat transfer of ferrofluids in a circular duct partially filled with porous medium in the presence of magnetic field
JPS6241567A (en) Method and device for cooling body by using superfluid helium
Zhang et al. Investigation of ferrofluid cooling for high power density permanent magnet machines
JPH0546792B2 (en)
CN204718476U (en) Thermomagnetic convection is utilized to strengthen the device of low temperature oxygen-bearing fluid heat transfer
US20050146140A1 (en) Modular liquid-metal magnetohydrodynamic (LMMHD) power generation cell
Yao et al. A novel Halbach array electromagnetic pump for liquid metal flow: Design proposal and performance analysis
Ahmed Heat and mass transfer in MHD Poiseuille flow with porous walls
CN104792218A (en) Method and device for utilizing magneto-thermal convection to intensify low-temperature oxygen-containing fluid heat transfer
JP6113439B2 (en) MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME
KR102008401B1 (en) high efficient and continuous electric generation cycle device employing ferrofluid with Tandem configuration of permanent magnet and generating coil of generator
KR20180029135A (en) high efficient and continuous electric generation cycle device employing ferrofluid with hybrid magnetic and nonmagnetic floating objects
Fumoto et al. Heat transfer characteristics of a thermo-sensitive magnetic fluid in micro-channel
US1748927A (en) Electrical method and apparatus
Zhai et al. Modeling and simulation of thermomagnetic materials for thermally actuated magnetization flux pumping method
JPS6335180A (en) Magnetic fluid driving device
RU2210839C1 (en) Electrochemical thermomagnetic power- generating system
Karimi-Moghaddam et al. Thermomagnetic liquid cooling: A novel variable speed motor drives thermal management solution