JPH0546707B2 - - Google Patents

Info

Publication number
JPH0546707B2
JPH0546707B2 JP59068025A JP6802584A JPH0546707B2 JP H0546707 B2 JPH0546707 B2 JP H0546707B2 JP 59068025 A JP59068025 A JP 59068025A JP 6802584 A JP6802584 A JP 6802584A JP H0546707 B2 JPH0546707 B2 JP H0546707B2
Authority
JP
Japan
Prior art keywords
single crystal
cdte
current path
film
hgcdte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59068025A
Other languages
Japanese (ja)
Other versions
JPS60211884A (en
Inventor
Toshio Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59068025A priority Critical patent/JPS60211884A/en
Publication of JPS60211884A publication Critical patent/JPS60211884A/en
Publication of JPH0546707B2 publication Critical patent/JPH0546707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はHg1-xCdxTeを用いた赤外線検出素子
とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an infrared detection element using Hg 1-x Cd x Te and a method for manufacturing the same.

(従来技術とその問題点) Hg1-xCdxTeはエネルギーバンドギヤツプの狭
い半導体であり、例えばx=0.2の組成のもので
は波長10μm程度の赤外線によつて電子・正孔対
が励起されて電気抵抗が変化するなど、高感度の
赤外線検出素子に最適の材料として知られてい
る。こうした赤外線検出素子は基本的には厚さ
10μm程度のHgCdTe結晶に電極端子を形成して
その間の抵抗変化を検出するものであり、その感
度はHgCdTe結晶の質、特に励起された少数キヤ
リアの寿命に大きく依存する。このためより高感
度の赤外線検出素子を得るため、少数キヤリア寿
命のより長いHgCdTe結晶の開発が計られてい
る。しかし現実の素子ではこの少数キヤリアの寿
命はHgCdTe結晶自体での値ではなくその表面状
態によつてきまつてしまう。すなわち、結晶の表
面に存在する欠陥は励起されたキヤリアの再結合
中心となるため、実効的な寿命は著しく低下して
しまう。これを改善するため、従来から結晶表面
に酸化膜を形成し、いわゆるアキユムレーシヨン
状態として励起された少数キヤリアを表面から遠
去けて表面欠陥の影響を逃れる方法がとられてき
た。この方法によつて実効的な少数キヤリア寿命
の改善は可能となつたのであるが、しかし、実際
に厚さ10μm程度のHgCdTe結晶の上下の面及び
側面に酸化膜を形成するには繁雑な処理を要し、
またHgCdTeは元来狭エネルギーギヤツプ半導体
であることから、バンドの曲げを十分に、また再
現性よく制御して形成することは容易ではなく、
高感度の赤外線検出素子を得ることは依然として
容易ではなかつた。
(Prior art and its problems) Hg 1-x Cd x Te is a semiconductor with a narrow energy band gap. For example, in a composition with x = 0.2, electron-hole pairs are generated by infrared rays with a wavelength of about 10 μm. It is known as an optimal material for highly sensitive infrared detection elements, as its electrical resistance changes when excited. These infrared detection elements basically depend on the thickness.
Electrode terminals are formed on a HgCdTe crystal with a diameter of about 10 μm, and changes in resistance between them are detected, and its sensitivity greatly depends on the quality of the HgCdTe crystal, especially the lifetime of excited minority carriers. Therefore, efforts are being made to develop HgCdTe crystals with longer minority carrier lifetimes in order to obtain more sensitive infrared detection elements. However, in actual devices, the lifetime of these minority carriers depends not on the value of the HgCdTe crystal itself but on its surface condition. That is, since defects existing on the surface of the crystal become recombination centers for excited carriers, the effective lifetime is significantly reduced. In order to improve this problem, a conventional method has been used to form an oxide film on the crystal surface and to move the excited minority carriers away from the surface into a so-called accumulation state, thereby escaping the influence of surface defects. Although this method has made it possible to effectively improve minority carrier life, it requires complicated processing to actually form oxide films on the top, bottom, and side surfaces of an HgCdTe crystal with a thickness of about 10 μm. It takes
Furthermore, since HgCdTe is originally a narrow energy gap semiconductor, it is difficult to form it with sufficient control of band bending and good reproducibility.
It is still not easy to obtain a highly sensitive infrared detection element.

(発明の目的) 本発明の目的はより高感度でかつ容易に再現性
よく製造できる赤外線検出素子、及びその製造方
法を提供することにある。
(Objective of the Invention) An object of the present invention is to provide an infrared detection element that has higher sensitivity and can be easily manufactured with good reproducibility, and a method for manufacturing the same.

(発明の構成) 本発明によればCdTe単結晶基板上にHg1-xCdx
Te単結晶膜からなる電流通路と、これに電流を
供給し電圧を検出するための電極端子とを有し、
電流通路の上面及び側面はCdTe膜でおおわれて
いることを特徴とする赤外線検出素子が得られ
る。さらに本発明によればCdTe単結晶基板上に
Hg1-xCdxTe単結晶膜をエピタクシヤル成長させ
る工程と、電流通路を形成する領域及びその周辺
部分を除く他の部分のHg1-xCdxTe単結晶膜をエ
ツチング除去する工程と、電流通路の感光領域と
する部分を除いて電極材料を積層する工程と、
Hg1-xCdxTe単結晶膜及び電極材料とを一括して
電流通路及び電極端子の形状にエツチング加工す
る工程と、及びCdTe膜を電極端子部分を除く全
面に形成する工程とを含むことを特徴とする赤外
線検出素子の製造方法が得られる。
(Structure of the Invention) According to the present invention, Hg 1-x Cd x
It has a current path made of a Te single crystal film and an electrode terminal for supplying current to this and detecting voltage.
An infrared detection element characterized in that the upper and side surfaces of the current path are covered with a CdTe film is obtained. Furthermore, according to the present invention, on a CdTe single crystal substrate,
a step of epitaxially growing a Hg 1-x Cd x Te single crystal film; a step of etching away the Hg 1-x Cd x Te single crystal film in other parts except for the region where a current path is formed and its surrounding area; a step of laminating an electrode material except for a portion to be a photosensitive area of the current path;
Includes a step of etching the Hg 1-x Cd x Te single crystal film and electrode material into the shape of a current path and an electrode terminal, and a step of forming a CdTe film on the entire surface except for the electrode terminal portion. A method for manufacturing an infrared detection element is obtained.

(実施例) 以下、図面を用いて本発明の赤外線検出素子及
びその製造方法を説明する。
(Example) Hereinafter, the infrared detecting element of the present invention and its manufacturing method will be explained using the drawings.

第1図はHgCdTeとCdTeとの接合部分のエネ
ルギーバンドを示す図であり、これを用いて実効
的少数キヤリア寿命を改善できることを説明す
る。尚、以下ではHgCdTe結晶をN型として説明
するが、P型であつても全く同様である。
HgCdTe結晶とCdTe結晶とは同じ結晶系でかつ
格子間隔も殆んど等しいため、いわゆるヘテロ接
合を生じる。この時、Hg1-xCdxTeのバンドギヤ
ツプが例えばx=0.2では約0.1eVであるのに対
し、CdTeでは約1.6eVと大きく、CdTe1にはさ
まれたHgCdTe2の部分にはエネルギー障壁で囲
まれた通路が形成される。このため、多数キヤリ
ア3及び少数キヤリア4共本来のHgCdTe表面、
すなわちCdTeとの界面5より十分内側に閉じ込
めることができ、表面欠陥の再結合中心6の影響
を受けることなく、HgCdTe単結晶本来の少数キ
ヤリア寿命に改善することができる。しかも、酸
化膜を形成してアキユムレーシヨン状態とする従
来の方法のように、バンドギヤツプが0.1eVと狭
いためにバンドを十分に曲げることができず完全
には表面欠陥の影響を除去できなかつたり、また
製作バラツキが大きかつたりする欠点もない。更
に、CdTe自体のキヤリア濃度はHgCdTeのキヤ
リア濃度に対して無視でき、両者を接合しても余
分のキヤリアを生ずることはなく、また検出しよ
うとする赤外線に対しても透明であり、CdTeと
接合することによる悪影響は全くない。
FIG. 1 is a diagram showing the energy band of the junction between HgCdTe and CdTe, and using this diagram, it will be explained that the effective minority carrier lifetime can be improved. Note that although the HgCdTe crystal will be explained below as being of N type, the same applies even if it is of P type.
Since the HgCdTe crystal and the CdTe crystal have the same crystal system and almost the same lattice spacing, they form a so-called heterojunction. At this time, the band gap of Hg 1-x Cd x Te is, for example, about 0.1 eV at x = 0.2, whereas in CdTe it is large, about 1.6 eV, and the part of HgCdTe2 sandwiched between CdTe1 is surrounded by an energy barrier. A passageway is formed. For this reason, the majority carrier 3 and minority carrier 4 both have the original HgCdTe surface,
That is, it can be confined sufficiently inside the interface 5 with CdTe, and it can be improved to the minority carrier lifetime inherent to the HgCdTe single crystal without being affected by recombination centers 6 of surface defects. Moreover, unlike the conventional method of forming an oxide film to create an accumulation state, the band gap is as narrow as 0.1 eV, so the band cannot be bent sufficiently and the effects of surface defects cannot be completely removed. Also, there is no disadvantage of large manufacturing variations or fluctuations. Furthermore, the carrier concentration of CdTe itself is negligible compared to the carrier concentration of HgCdTe, and even if they are bonded together, no extra carriers will be produced, and they are also transparent to the infrared rays that are to be detected. There are no negative effects from doing so.

第2図a及びbはそれぞれ本発明の赤外線検出
素子の実施例を示す平面図及び断面図である。こ
の実施例の赤外線検出素子はCdTe単結晶基板1
1上にHg1-xCdxTe単結晶から成る電流通路12
及び電極端子13が形成され、この電極端子13
上を除いて更にCdTe膜14が形成されたもので
ある。電極端子13は電流通路12に電流を供給
し、その間の電流通路の赤外線強度に応じた抵抗
変化を電圧変化として検出するものである。
Hg1-xCdxTe単結晶の電流通路12の下面は
CdTe単結晶基板11と接し、また上面及び側面
はCdTe膜14でおおわれており、全周囲が
CdTeと接合されている。これにより、前述のよ
うに、赤外線によつて電流通路12中に励起され
た少数キヤリアは上下面、及び側面の近傍に近付
くことがなくなり界面すなわちHg1-xCdxTe単結
晶の元々の表面に存在する欠陥によるキヤリア寿
命の低下がおこらない構成となつている。
FIGS. 2a and 2b are a plan view and a cross-sectional view, respectively, showing an embodiment of the infrared detecting element of the present invention. The infrared detection element of this example is a CdTe single crystal substrate 1
Current path 12 made of Hg 1-x Cd x Te single crystal on
and an electrode terminal 13 are formed, and this electrode terminal 13
A CdTe film 14 is further formed except for the upper part. The electrode terminal 13 supplies current to the current path 12, and detects a change in resistance depending on the infrared intensity of the current path therebetween as a voltage change.
The bottom surface of the current path 12 of the Hg 1-x Cd x Te single crystal is
It is in contact with the CdTe single crystal substrate 11, and its top and side surfaces are covered with a CdTe film 14, and the entire periphery is covered with a CdTe film 14.
Bonded with CdTe. As a result, as mentioned above, the minority carriers excited in the current path 12 by infrared rays do not come close to the upper, lower, and side surfaces, and are removed from the interface, that is, the original surface of the Hg 1-x Cd x Te single crystal. The structure is such that the carrier life does not decrease due to defects present in the carrier.

次に、この赤外線検出素子の製造方法を説明す
る。第3図は本発明の製造方法の実施例を工程順
に示した平面図及び断面図である。まず第3図a
の断面図に示すようにCdTe単結晶基板21に厚
さ10μm程度で所定の組成比xのHg1-xCdxTe単
結晶22をエピタクシヤル成長させる。このエピ
タクシヤル成長は周知の気相ないし液相エピタク
シヤル成長法によればよく、例えばTeを過剰に
したHgCdTe融液から550℃数時間の液相エピタ
クシヤル成長により形成できる。次に第3図b及
びcに示すようにレジスト23をマスクとして感
光部となる電流通路とする領域及びその周辺部の
HgCdTe単結晶22を残して他の部分をエツチン
グ除去する。この時、エツチングは周知の臭素メ
タノール液等による化学エツチング法を行なうこ
とにより、また必要に応じて更に全面をごくわず
かにエツチングすることによつて、HgCdTe単結
晶22の端部24の段差をなだらかにし、これに
続く電極形成の際のステツプカバレツジを良好に
することができる。次に第3図d及びeに示すよ
うに感光部とする領域に形成したレジストパター
ン25をマスクとして電極材料26を積層し、い
わゆるリフトオフ法によつてレジストパターン2
5上の不要の電極材料を除去する。この電極材料
としてはCrとAuとを積層したものやAl等が適し
ており、例えば蒸着法やスパッタリング法によつ
て形成できる。更に第3図f及びgに示すよう
に、所定の電流通路及び電極端子の形状のレジス
トパターン27をマスクとして、電極材料26及
びHgCdTe単結晶22の不要部分を一括してエツ
チング除去する。このエツチングにはイオンミリ
ング法や逆スパツタリング法が適している。最後
に、第3図h及びiに示すように、CdTe膜28
を蒸着法ないしスパツタリング法によつて全面に
形成した後、電極端子29上のCdTe膜を除去す
ることで赤外線検出素子の製造が完了する。
Next, a method of manufacturing this infrared detection element will be explained. FIG. 3 is a plan view and a sectional view showing an embodiment of the manufacturing method of the present invention in the order of steps. First, Figure 3a
As shown in the cross-sectional view, a Hg 1-x Cd x Te single crystal 22 having a thickness of about 10 μm and a predetermined composition ratio x is epitaxially grown on a CdTe single crystal substrate 21 . This epitaxial growth may be performed by a well-known vapor phase or liquid phase epitaxial growth method. For example, it can be formed by liquid phase epitaxial growth at 550° C. for several hours from an HgCdTe melt containing excess Te. Next, as shown in FIGS. 3b and 3c, the resist 23 is used as a mask to form the photosensitive area, which is the current path, and its surrounding area.
Leaving the HgCdTe single crystal 22, the other parts are removed by etching. At this time, the etching is performed by performing a well-known chemical etching method using a bromine methanol solution, etc., and if necessary, by etching the entire surface very slightly, the steps at the end portion 24 of the HgCdTe single crystal 22 are smoothed out. This makes it possible to improve step coverage during subsequent electrode formation. Next, as shown in FIGS. 3d and 3e, electrode material 26 is laminated using the resist pattern 25 formed in the area to be the photosensitive area as a mask, and the resist pattern 26 is laminated by the so-called lift-off method.
Remove unnecessary electrode material on 5. Suitable materials for this electrode include a laminate of Cr and Au, Al, and the like, and can be formed by, for example, vapor deposition or sputtering. Furthermore, as shown in FIGS. 3f and 3g, unnecessary portions of the electrode material 26 and the HgCdTe single crystal 22 are removed by etching all at once using the resist pattern 27 in the shape of a predetermined current path and electrode terminal as a mask. Ion milling and reverse sputtering are suitable for this etching. Finally, as shown in FIG. 3h and i, the CdTe film 28
is formed on the entire surface by a vapor deposition method or a sputtering method, and then the CdTe film on the electrode terminal 29 is removed to complete the manufacture of the infrared detection element.

(発明の効果) こうして製造した赤外線検出素子の少数キヤリ
ア寿命はCdTe膜を形成しないものに対し10倍以
上の改善が見られ、また従来の酸化膜形成による
ものに比較しても同等ないしそれ以上の効果が得
られた。更に、本発明の製造方法では従来の不安
定な酸化膜を利用する方法と異なり、比較的容易
にかつ再現性よく製造できることが確認された。
尚、上部に形成するCdTe膜は単結晶である必要
はなく、単に成膜したままの多結晶状態で充分な
効果が得られている。
(Effects of the invention) The minority carrier life of the infrared detection element manufactured in this way is more than 10 times improved compared to the one without forming a CdTe film, and is also equivalent to or better than that of the one formed with a conventional oxide film. The effect was obtained. Furthermore, it has been confirmed that the manufacturing method of the present invention can be manufactured relatively easily and with good reproducibility, unlike conventional methods that utilize unstable oxide films.
Note that the CdTe film formed on the top does not need to be single crystal, and a sufficient effect can be obtained by simply forming the film in a polycrystalline state.

以上説明したように、本発明の赤外線検出素子
及びその製造方法によれば、HgCdTeの電流通路
のまわりをCdTeでおおう構成をすることによ
り、表面欠陥の影響を受けないため、少数キヤリ
アの寿命の長い、すなわち高感度の赤外線検出素
子を比較的容易に、かつ再現性よく製造すること
ができる。
As explained above, according to the infrared detecting element and its manufacturing method of the present invention, by covering the current path of HgCdTe with CdTe, it is not affected by surface defects, and therefore the life of minority carriers is shortened. A long, high-sensitivity infrared detection element can be manufactured relatively easily and with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はHgCdTeとCdTeとの接合部分のエネ
ルギーバンドを示す図、第2図a及びbはそれぞ
れ本発明の赤外線検出素子の実施例を示す平面図
及び断面図、第3図a〜iは本発明の製造方法を
説明するための図で主要工程における素子断面図
と平面図である。 図において、1はCdTe領域、2はHgCdTe領
域、3は多数キヤリア、4は少数キヤリア、5は
CdTeとHgCdTeとの界面、6は表面欠陥、7は
伝導帯、8は価電子帯、9はフエルミ準位、11
及び21はCdTe単結晶基板、12及び22は
Hg1-xCdxTe単結晶、13及び29は電極端子、
14及び28はCdTe膜、23,25及び27は
レジストパターンであり、26は電極材料であ
る。
Figure 1 is a diagram showing the energy band of the junction between HgCdTe and CdTe, Figures 2a and b are a plan view and cross-sectional view, respectively, showing an embodiment of the infrared detection element of the present invention, and Figures 3a to i are FIG. 1 is a cross-sectional view and a plan view of an element in main steps for explaining the manufacturing method of the present invention. In the figure, 1 is a CdTe region, 2 is a HgCdTe region, 3 is a majority carrier, 4 is a minority carrier, and 5 is a
Interface between CdTe and HgCdTe, 6 is surface defect, 7 is conduction band, 8 is valence band, 9 is Fermi level, 11
and 21 are CdTe single crystal substrates, 12 and 22 are
Hg 1-x Cd x Te single crystal, 13 and 29 are electrode terminals,
14 and 28 are CdTe films, 23, 25 and 27 are resist patterns, and 26 is an electrode material.

Claims (1)

【特許請求の範囲】 1 CdTe単結晶基板上にHg1-xCdxTe単結晶か
らなる電流通路と、該電流通路に電流を供給し、
電圧を検出するための電極端子とを有し、前記電
流通路の上面及び側面はCdTe膜でおおわれてい
ることを特徴とする赤外線検出素子。 2 CdTe単結晶基板上にHg1-xCdxTe単結晶膜
をエピタクシヤル成長させる工程と、電流通路を
形成する領域及びその周辺部分を除く、他の部分
の前記Hg1-xCdxTe単結晶膜をエツチング除去す
る工程と、前記電流通路の感光領域とする部分を
除いて電極材料を積層する工程と、前記Hg1-x
CdxTe単結晶膜及び前記電極材料を一括して前記
電流通路及び電極端子の形状にエツチング加工す
る工程と、及びCdTe膜を前記電極端子の部分を
除いた全面に形成する工程とを含むことを特徴と
する赤外線検出素子の製造方法。
[Claims] 1. A current path made of Hg 1-x Cd x Te single crystal on a CdTe single crystal substrate, supplying current to the current path,
1. An infrared detection element, comprising an electrode terminal for detecting voltage, and the upper and side surfaces of the current path are covered with a CdTe film. 2 Epitaxially growing a Hg 1-x Cd x Te single crystal film on a CdTe single crystal substrate, and growing the Hg 1-x Cd x Te single crystal film in other parts except for the area where a current path is formed and its surrounding area. a step of removing the crystal film by etching, a step of laminating an electrode material except for a portion to be a photosensitive region of the current path, and a step of depositing the Hg 1-x
A step of etching the Cd x Te single crystal film and the electrode material together into the shape of the current path and electrode terminal, and a step of forming a CdTe film on the entire surface except for the electrode terminal portion. A method for manufacturing an infrared detection element characterized by:
JP59068025A 1984-04-05 1984-04-05 Infrared detecting element and manufacture thereof Granted JPS60211884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068025A JPS60211884A (en) 1984-04-05 1984-04-05 Infrared detecting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068025A JPS60211884A (en) 1984-04-05 1984-04-05 Infrared detecting element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60211884A JPS60211884A (en) 1985-10-24
JPH0546707B2 true JPH0546707B2 (en) 1993-07-14

Family

ID=13361856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068025A Granted JPS60211884A (en) 1984-04-05 1984-04-05 Infrared detecting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60211884A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604298B1 (en) * 1986-09-19 1988-10-28 Commissariat Energie Atomique PROCESS FOR MAKING AN ELECTRICAL CONTACT TAKING ON A SUBSTRATE IN P-CONDUCTIVITY HGCDTE AND APPLICATION TO THE MANUFACTURE OF A N / P DIODE

Also Published As

Publication number Publication date
JPS60211884A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
TWI263777B (en) Ultraviolet sensor and method for manufacturing the same
US6384459B1 (en) Semiconductor device and method for producing the same
US4665609A (en) Process of manufacturing a photosensitive device having a plurality of detectors separated by zones impervious to the radiation to be detected
US5602414A (en) Infrared detector having active regions and isolating regions formed of CdHgTe
JPH0613641A (en) Photodetector and manufacture thereof
JP5109049B2 (en) Photovoltaic UV sensor
JPS62160776A (en) Photovoltage detector and manufacture of the same
JPH05267705A (en) Thin solar cell and method of manufacturing therefor
JPH0546707B2 (en)
JPH05251726A (en) Photosensitive device including contact provided with compositional gradient and recess for trapping minority carriers and producing method therefor
JPH04318981A (en) Manufacture of infrared detector
JPS59189685A (en) Infrared-ray detecting element
US5497029A (en) Tin-indium antimonide infrared detector
JP2751702B2 (en) Infrared detector and manufacturing method thereof
JP3167604B2 (en) Solar cell and method of manufacturing the same
JPS62224983A (en) Formation of anode sulfide film
JPS63114178A (en) Manufacture of infrared detecting element
JPS62179773A (en) Photoconductive infrared ray detector and manufacture thereof
JP2689946B2 (en) Manufacturing method of infrared detector
JPS6265480A (en) Thin film solar battery
JPS62298186A (en) Manufacture of photoconductive infrared-ray detector
JP2671554B2 (en) Manufacturing method of infrared detector
JPS6051263B2 (en) Manufacturing method of semiconductor device
JP2003318238A (en) Forming method of electrode for compound semiconductor and measuring method of electric characteristic in compound semiconductor
JPH05129646A (en) Infrared detector and manufacture thereof