JPH0546666B2 - - Google Patents

Info

Publication number
JPH0546666B2
JPH0546666B2 JP60289567A JP28956785A JPH0546666B2 JP H0546666 B2 JPH0546666 B2 JP H0546666B2 JP 60289567 A JP60289567 A JP 60289567A JP 28956785 A JP28956785 A JP 28956785A JP H0546666 B2 JPH0546666 B2 JP H0546666B2
Authority
JP
Japan
Prior art keywords
tape
parts
electrode
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60289567A
Other languages
Japanese (ja)
Other versions
JPS62147660A (en
Inventor
Yoshikazu Yamamasu
Masataka Iketa
Sadao Nakaniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60289567A priority Critical patent/JPS62147660A/en
Publication of JPS62147660A publication Critical patent/JPS62147660A/en
Publication of JPH0546666B2 publication Critical patent/JPH0546666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は溶融炭酸塩型燃料電池用のテープ状
電極の製作方法に係る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method of manufacturing a tape-shaped electrode for a molten carbonate fuel cell.

(従来技術) 燃料電池は一般に電極反応が遅く、大きな電流
密度で電流を取り出すと電圧が下がつてしまうの
で、電極反応を早くするため例えば多孔質として
電極の表面積を大きくしたり、電極表面に触媒を
つけたりする。また温度を高くすることが有効な
ので溶融塩や固体電解質を用いておおよそ600〜
1000℃で使用する高温燃料電池の開発も研究され
ており、この場合には初期の電池性能を保持する
ため電極のクリープ強度を高くする必要がある。
(Prior art) In general, the electrode reaction in fuel cells is slow, and when current is extracted at a high current density, the voltage drops. Therefore, in order to speed up the electrode reaction, for example, the surface area of the electrode is increased by making it porous, or the electrode surface is Add a catalyst. In addition, it is effective to raise the temperature, so using molten salt or solid electrolyte, it is possible to
The development of high-temperature fuel cells that can be used at 1000°C is also being studied, and in this case it is necessary to increase the creep strength of the electrodes to maintain the initial cell performance.

これら燃料電池の電極の一例として本発明に係
る溶融炭酸塩型燃料電池用の電極について説明す
るに、この電極は微細なニツケル粉末を焼結した
多孔質体であり、電極の補強のために従来はニツ
ケルまたはステンレス鋼の金網を裏打ちしたり、
或いはテープ状電極の厚さの中央部に金網を入れ
ていた。
As an example of electrodes for these fuel cells, the electrode for a molten carbonate fuel cell according to the present invention will be explained. This electrode is a porous body made by sintering fine nickel powder, and is lined with nickel or stainless steel wire mesh,
Alternatively, a wire mesh was inserted in the center of the thickness of the tape-shaped electrode.

(発明が解決しようとする問題点) しかしながら補強材の金網を裏打ちしたものは
集電板と金網との接触は点接触となつて抵抗が大
きくなる等の欠点があり、また薄いテープ状電極
の丁度中心部に金網を入れることは難しく、金網
の片面と他方の面とのニツケル粉の量の差がある
ときは焼結時に歪が発生し、あるいは金網自体の
歪によつて焼結時にテープ状電極は凹凸を生ずる
ようになる。
(Problems to be Solved by the Invention) However, those lined with wire mesh as a reinforcing material have the disadvantage that the contact between the current collector plate and the wire mesh is a point contact, which increases the resistance. It is difficult to insert the wire mesh exactly in the center, and if there is a difference in the amount of nickel powder on one side of the wire mesh and the other side, distortion may occur during sintering, or the tape may be distorted during sintering due to distortion of the wire mesh itself. The shaped electrode becomes uneven.

このような凹凸の発生を防止するのにはテープ
状電極に押さえ板をのせて焼結すればよいのであ
るが、押さえ板によつて押し付けられたまま焼結
が行われるので空〓率あるいは空孔径が小さくな
り、所望の値が得られなくなる。
In order to prevent the occurrence of such unevenness, it is possible to place a holding plate on the tape-shaped electrode and sinter it, but since sintering is performed while being pressed by the holding plate, the void ratio or vacancy may increase. The pore diameter becomes smaller and the desired value cannot be obtained.

また電極を大型化し、かつ多量生産するために
は後述するように移動するフイルム上にドクター
ブレードを用いて一定厚さにのばしてテープ状に
成形する方法が望ましいが、キヤリアフイルム上
に金網を一様に張りつけることは困難である。
In addition, in order to increase the size of the electrode and mass-produce it, it is desirable to use a doctor blade on a moving film to form it into a tape shape using a doctor blade, as described later. It is difficult to attach it properly.

本発明は上記のような問題点を解決するため金
網を用いずにクリープ強度の大きなテープ状の電
極を製作する方法を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide a method for manufacturing a tape-shaped electrode with high creep strength without using a wire mesh.

(問題点を解決するための手段) この発明は、燃料電池用のテープ状電極を製作
する方法において、 金属繊維を分散剤を含む溶剤中でほぐして分離
しておき、 電極基材となるニツケル粉またはニツケル合金
粉100重量部に対して該混合液を金属繊維で3〜
15重量部、クリープ強度を改良するため金属酸化
物粉または合金粉を5〜20重量部、結合剤を3〜
5重量部を配合して混練してスラリーとし、 該スラリーの溶剤を揮発除去してテープ成形可
能な粘度に調整し、 移動するキヤリアフイルム上に所要厚さにのば
して生テープとすることを特徴とする燃料電池用
のテープ状電極の製作方法 に係る。以下材料の配合割合には特に記載しない
かぎり重量部で表すこととする。
(Means for Solving the Problems) The present invention is a method for manufacturing a tape-shaped electrode for a fuel cell, in which metal fibers are loosened and separated in a solvent containing a dispersant, and nickel, which is used as an electrode base material, is separated. 3~100 parts by weight of powder or nickel alloy powder with metal fibers
15 parts by weight, 5 to 20 parts by weight of metal oxide powder or alloy powder to improve creep strength, and 3 to 3 parts of binder.
5 parts by weight are mixed and kneaded to form a slurry, the solvent of the slurry is evaporated and removed to adjust the viscosity to a tape moldable level, and the tape is spread onto a moving carrier film to the required thickness to form a raw tape. The present invention relates to a method of manufacturing a tape-shaped electrode for a fuel cell. The blending ratios of materials below are expressed in parts by weight unless otherwise specified.

本発明において金属繊維は炭酸塩に対して耐食
性が高いものが好ましく、例えばニツケル、ニツ
ケル合金またはステンレス鋼の繊維が用いられ、
径が太くなるとテープの成形が困難になり、また
小さな空孔を多数作るためにも径が小さい方がよ
いので、2〜100μmの径で、長さはおよそ1mm以
下のものが適当である。
In the present invention, the metal fibers preferably have high corrosion resistance against carbonates; for example, nickel, nickel alloy, or stainless steel fibers are used.
The thicker the diameter, the more difficult it becomes to form the tape, and the smaller the diameter, the better to create a large number of small holes, so a diameter of 2 to 100 μm and a length of about 1 mm or less is suitable.

これらの市販の金属繊維を使用して解繊機によ
つて表面活性剤のごとき分散剤の中で繊維をほぐ
して一本づつに分離する。
Using these commercially available metal fibers, the fibers are loosened in a dispersant such as a surfactant using a defibrator and separated into individual fibers.

電極の基材としてはニツケルまたはニツケル合
金の粒径2〜7μmの粉末を用いる。粉末の径が余
り細かいと製品電極中の空孔が小さすぎ、空〓率
が小さくなるので好ましくなく、また径が大きす
ぎると空孔が大きくなつて好ましくないので2〜
7μmとするのが良い。
As the base material of the electrode, nickel or nickel alloy powder with a particle size of 2 to 7 μm is used. If the diameter of the powder is too small, the pores in the product electrode will be too small and the porosity will be small, which is undesirable.If the diameter is too large, the pores will become large, which is undesirable.
It is better to set it to 7μm.

クリープ強度の改善を目的として高温で安定な
Al2O3、Cr3O3あるいはLiAlO2のごとき酸化物粉
またはNi−Cr合金粉を使用する。その量は5〜
20部とし、少なすぎるとクリープ強度の向上は期
待できず、また20部もあれば充分なのでこれより
多く添加することは不経済である。
Stable at high temperatures to improve creep strength
Oxide powders such as Al 2 O 3 , Cr 3 O 3 or LiAlO 2 or Ni-Cr alloy powders are used. The amount is 5~
If the amount is too small, no improvement in creep strength can be expected, and since 20 parts is sufficient, it is uneconomical to add more than this.

結合剤としては一般に使用されているポリビニ
ルブチラール(PVB)またはポリビニルアルコ
ール(PVA)の如き高分子樹脂結合剤を3〜5
部混合し、テープ成形時のスラリーの粘度を上げ
て成形し易くすると共に、キヤリアフイルム上か
ら成形した生フイルムを容易に除去できるように
する。これが3倍以下では結合が不十分であり、
一方5部以上では成形後の焼結工程で結合剤の除
去が難しくなるので3〜5部とするのがよい。
As a binder, a commonly used polymeric resin binder such as polyvinyl butyral (PVB) or polyvinyl alcohol (PVA) is used.
The slurry is partially mixed to increase the viscosity of the slurry during tape molding to make it easier to mold, and also to make it easier to remove the molded raw film from the carrier film. If this is less than 3 times, the binding is insufficient,
On the other hand, if it exceeds 5 parts, it becomes difficult to remove the binder in the sintering process after molding, so it is preferably 3 to 5 parts.

電極基材に対する金属繊維の量は3部以下では
繊維強化が期待できず、また15部以上になるとス
ラリー中で金属繊維同士が絡み合い易くなつて均
一に分散し難くなるので好ましくない。
If the amount of metal fibers relative to the electrode base material is less than 3 parts, fiber reinforcement cannot be expected, and if it is more than 15 parts, the metal fibers tend to become entangled with each other in the slurry, making it difficult to disperse them uniformly, which is not preferable.

テープ状電極の成形は第2図に示すような装置
によると好都合である。図においてキヤリアフイ
ルム巻出リール1aと巻取リール1bとの間でキ
ヤリアフイルム2が移動し、スラリー供給室3内
のスラリー4はドクターブレード5の刃先とキヤ
リアフイルム2との〓間を通り一定厚さで、キヤ
リアフイルム2によつて供給室外へ運び出され
る。次いで乾燥室6を通過して乾燥した生テープ
となり、右端の切断機7で所定長さに切断され
る。
The formation of tape-like electrodes is conveniently carried out using an apparatus such as that shown in FIG. In the figure, the carrier film 2 moves between the carrier film unwinding reel 1a and the take-up reel 1b, and the slurry 4 in the slurry supply chamber 3 passes between the cutting edge of the doctor blade 5 and the carrier film 2 to a constant thickness. Then, it is carried out of the supply chamber by the carrier film 2. Next, it passes through a drying chamber 6 to become a dried raw tape, and is cut into a predetermined length by a cutter 7 at the right end.

(試験例) 分散剤(表面活性剤) 1部 結合剤(PVB) 5部 溶剤(メタノール) 100部 Ni粉(粒径2〜3μm) 100部 を混合したスラリーを金網を用いず上記のごとく
してテープ状に成形し、このテープを水素雰囲気
の電気炉で400〜550℃に3時間加熱乾燥したの
ち、800℃×30分加熱焼結して溶融炭酸塩型燃料
電池の電極とし、対比材とした。
(Test example) Dispersant (surfactant) 1 part Binder (PVB) 5 parts Solvent (methanol) 100 parts Ni powder (particle size 2 to 3 μm) A slurry mixed with 100 parts was mixed as above without using a wire mesh. This tape was heated and dried at 400 to 550℃ for 3 hours in an electric furnace in a hydrogen atmosphere, and then heated and sintered at 800℃ for 30 minutes to be used as an electrode for a molten carbonate fuel cell. And so.

これを用いて発電実験(650℃、200時間、締付
圧2Kgf/cm2)に供したところアノード型電極に
50%のクリープ変形を生じ、不適当であつた。し
たがつてクリープ強度を高めることが必要と判断
された。
When this was used in a power generation experiment (650℃, 200 hours, clamping pressure 2Kgf/cm 2 ), the anode type electrode was
Creep deformation of 50% occurred, which was inappropriate. Therefore, it was determined that it was necessary to increase the creep strength.

よつて分散剤、結合剤、溶剤は前記同様とし、
これにステンレス鋼繊維(公称100μmφ、300〜
500μm長さ)10部、Al2O3粉末(粒径6〜
12.5μm)10部、Ni粉(粒径2〜3μm)100部を混
合したスラリーをテープ状に成形して本発明に係
る生テープとし、前記試験と同様にして焼結した
のち同一条件で発電実験を行つたところ、クリー
プ変形は5%で満足すべき結果が得られた。
Therefore, the dispersant, binder, and solvent are the same as above,
Add stainless steel fiber (nominal 100μmφ, 300~
500μm length) 10 parts, Al2O3 powder ( particle size 6~
A slurry prepared by mixing 10 parts of Ni powder (particle size: 12.5 μm) and 100 parts of Ni powder (particle size: 2 to 3 μm) was formed into a tape shape to obtain the raw tape of the present invention, which was sintered in the same manner as in the above test, and then subjected to power generation under the same conditions. When experiments were conducted, satisfactory results were obtained with creep deformation of 5%.

第1図は本製法で製作した電極の断面の金属組
織を示す顕微鏡写真(100部)であり、地はニツ
ケル粉の焼結体で、白色の塊状または細長い形状
に示されるものはステンレス鋼繊維であつて、空
孔率はおよそ60%である。
Figure 1 is a micrograph (100 copies) showing the metallographic structure of the cross section of an electrode manufactured using this manufacturing method.The base is a sintered body of nickel powder, and the white lumps or elongated shapes are stainless steel fibers. The porosity is approximately 60%.

なお発電実験は次の通りであつた。電解質板と
して炭酸リチウム(LiCO3)62モル%、炭酸カリ
ウム(K2CO3)38モル%を含む混合塩60重量%
とリチユウムアルミネート(LiAlO2)40重量%
とを含むペースト型のものを用い、燃料ガスとし
て水素80%、CO220%、酸化剤ガスとして空気70
%、CO230%を含む混合ガスを用いて、650℃で
実験を行い、150mA/cm2、0.75Vを得たが、対比
材電極はクリープ変形が大きかつたため次第に発
電性能が低下した。使用した電極の厚さは燃料極
(アノード)は0.8mm、酸化剤極(カソード)は
0.35mmであつた。
The power generation experiment was as follows. Mixed salt 60% by weight containing 62 mol% lithium carbonate (LiCO 3 ) and 38 mol% potassium carbonate (K 2 CO 3 ) as electrolyte plate
and lithium aluminate (LiAlO 2 ) 40% by weight
80% hydrogen and 20% CO 2 as fuel gas, and 70% air as oxidizing gas.
An experiment was conducted at 650°C using a mixed gas containing 30% CO2 and 150mA/ cm2 , and 0.75V, but the contrast material electrode had large creep deformation, so the power generation performance gradually decreased. The thickness of the electrodes used was 0.8 mm for the fuel electrode (anode) and 0.8 mm for the oxidizer electrode (cathode).
It was 0.35mm.

(効果) 以上説明したように本発明の方法では金網を用
いず、金属繊維を骨材として用い、更にクリープ
強度を高めるため酸化物粉或いは合金粉を混合し
てあるので、金網をテープ状電極の厚さの中心部
に配置する困難が無くなる上に、金網の両側にお
ける不均質或いは金網自体の歪による変形も生じ
なくなり、連続成形によりテープ状電極を容易に
多量生産することができるようになる。
(Effects) As explained above, the method of the present invention does not use a wire mesh, but instead uses metal fibers as an aggregate, and furthermore, oxide powder or alloy powder is mixed to increase the creep strength. In addition to eliminating the difficulty of arranging the wire mesh at the center of its thickness, there is no possibility of non-uniformity on both sides of the wire mesh or deformation due to distortion of the wire mesh itself, making it possible to easily mass-produce tape-shaped electrodes by continuous molding. .

そのほかテープ状電極の厚さの精度が向上し、
或いは結合剤が電極の空孔形成剤として作用する
ので、多孔質電極を容易に製作することができ、
空〓率、空孔径の制御が容易になるうえに、本発
明の方法は燃料電池のアノード、カソードいずれ
の電極の成形にも適用出来る等その実用上の効果
はきわめて大きい。
In addition, the accuracy of the thickness of the tape-shaped electrode has been improved,
Alternatively, since the binder acts as a pore-forming agent in the electrode, porous electrodes can be easily produced;
In addition to making it easier to control the porosity and pore diameter, the method of the present invention has extremely great practical effects, such as being applicable to the molding of both anode and cathode electrodes of fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のテープ状電極の断面の金属組
織を示す顕微鏡写真(100部)、第2図は生テープ
状電極の製作に便利な装置である。 2……キヤリアフイルム、3……スラリー供給
室、4……スラリー、5……ドクターブレード、
6……乾燥室、7……切断機、8……生テープ。
Fig. 1 is a micrograph (100 copies) showing the metallographic structure of the cross section of the tape-shaped electrode of the present invention, and Fig. 2 shows a device convenient for producing the raw tape-shaped electrode. 2...Carrier film, 3...Slurry supply chamber, 4...Slurry, 5...Doctor blade,
6... Drying room, 7... Cutting machine, 8... Raw tape.

Claims (1)

【特許請求の範囲】 1 燃料電池用のテープ状電極を製作する方法に
おいて、 金属繊維を分散剤を含む溶剤中でほぐして分離
しておき、 電極基材となるニツケル粉またはニツケル合金
粉100重量部に対して該混合液を金属繊維で3〜
15重量部、クリープ強度を改良するため金属酸化
物粉または合金粉を5〜20重量部、結合剤を3〜
5重量部配合して混練してスラリーとし、 該スラリーの溶剤を揮発除去してテープ成形可
能な粘度に調整し、 移動するキヤリアフイルム上に所要厚さにのば
して生テープとすることを特徴とする燃料電池用
のテープ状電極の製作方法。
[Claims] 1. In a method for manufacturing a tape-shaped electrode for a fuel cell, metal fibers are loosened and separated in a solvent containing a dispersant, and 100 weight pieces of nickel powder or nickel alloy powder are prepared as an electrode base material. 3 to 3 parts of the mixed solution with metal fibers
15 parts by weight, 5 to 20 parts by weight of metal oxide powder or alloy powder to improve creep strength, and 3 to 3 parts of binder.
5 parts by weight are mixed and kneaded to form a slurry, the solvent of the slurry is evaporated and removed to adjust the viscosity to a tape moldable level, and the tape is spread onto a moving carrier film to the required thickness to form a raw tape. A method for manufacturing tape-shaped electrodes for fuel cells.
JP60289567A 1985-12-23 1985-12-23 Manufacture of electrode for fuel cell Granted JPS62147660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60289567A JPS62147660A (en) 1985-12-23 1985-12-23 Manufacture of electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60289567A JPS62147660A (en) 1985-12-23 1985-12-23 Manufacture of electrode for fuel cell

Publications (2)

Publication Number Publication Date
JPS62147660A JPS62147660A (en) 1987-07-01
JPH0546666B2 true JPH0546666B2 (en) 1993-07-14

Family

ID=17744896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60289567A Granted JPS62147660A (en) 1985-12-23 1985-12-23 Manufacture of electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS62147660A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206095A (en) * 1990-03-19 1993-04-27 Institute Of Gas Technology Carbonate fuel cell anodes
US20080050591A1 (en) * 2004-04-15 2008-02-28 Nv Bekaert Sa Method to Manufacture a Non Sintered Metal Fiber Medium
EP1753565B1 (en) * 2004-04-15 2010-01-27 NV Bekaert SA Method of manufacturing of a sintered metal fiber medium
JP6084404B2 (en) * 2012-08-31 2017-02-22 株式会社Ti Manufacturing method of electrode plate of fuel cell

Also Published As

Publication number Publication date
JPS62147660A (en) 1987-07-01

Similar Documents

Publication Publication Date Title
US4663250A (en) Reduction of electrode dissolution
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
EP0448517B1 (en) Carbonate fuel cell anodes
US6063141A (en) Cathode for a molten carbonate fuel cell and method for manufacturing same
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
Böhme et al. Development of materials and production technologies for molten carbonate fuel cells
JPH0546666B2 (en)
JPH0785876A (en) Manufacture of positive electrode for fused carbonate fuel cell
KR100681771B1 (en) Ni-Al alloy anode for molten carbonate fuel cell by in-situ sintering the Ni-Al alloy and Method for preparing the same
EP0433681B1 (en) Molten carbonate fuel cell start-up process
EP0473882A1 (en) A method for manufacturing cathodes for molten carbonate cells
JPS6366858A (en) Electrode for molten carbonate fuel cell
JP2517750B2 (en) Method for producing molten salt fuel cell
US6238619B1 (en) Process for the production of an electrode for a fused carbonate fuel cell
JPH0356631A (en) Production of sintered plate of porous cu alloy for anode electrode of fused carbonate type fuel cell
JPH06176764A (en) Electrode provided with rib for fuel cell and manufacture thereof
JPS63175346A (en) Manufacture of fuel cell electrode
CA2248341C (en) Method of producing a cathode by oxidation in a molten carbonate fuel cell
CA2244969C (en) Process for the production of an electrode for a fused carbonate fuel cell, electrode produced according to this process and fused carbonate fuel cell provided with an electrode produced according to this process
JPH0711962B2 (en) Method for manufacturing gas diffusion electrode
KR100392019B1 (en) Preparation method of cathode for molten carbonate fuel cell
JPS6343266A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
Pierce et al. A review of cathode development for molten carbonate fuel cells
LiFe02 et al. TMTN TENNAKOON1, BSB KARUNARATNE1, F. BORUP2 and B. BERGMAN3.