JPH0546509B2 - - Google Patents

Info

Publication number
JPH0546509B2
JPH0546509B2 JP59195450A JP19545084A JPH0546509B2 JP H0546509 B2 JPH0546509 B2 JP H0546509B2 JP 59195450 A JP59195450 A JP 59195450A JP 19545084 A JP19545084 A JP 19545084A JP H0546509 B2 JPH0546509 B2 JP H0546509B2
Authority
JP
Japan
Prior art keywords
antenna
loop
receiving
saddle
frequency power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59195450A
Other languages
Japanese (ja)
Other versions
JPS6173061A (en
Inventor
Takahisa Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59195450A priority Critical patent/JPS6173061A/en
Publication of JPS6173061A publication Critical patent/JPS6173061A/en
Publication of JPH0546509B2 publication Critical patent/JPH0546509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34069Saddle coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はNMR信号送・受信用アンテナに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an antenna for transmitting and receiving NMR signals.

(ロ) 従来技術 ループ型のNMR信号送・受信用アンテナ、例
えば、NMR−CTに用いる鞍型コイル状に形成
されたアンテナにおいては、使用する高周波の波
長に対する鞍型コイルの相対的な寸法が大きくな
るにつれて、コイルの給・受電端とコイルの先端
との間での位相差が問題になり、それに伴うコイ
ル上での定在波の電流強度の分布に対応して、発
生する高周波磁場の均一度が低下するだけでな
く、被検体中の対象部位における磁場強度も低下
する。また、これにより高周波電場の被検体を貫
通する成分の強度が増すため、誘電体損失も増大
するようになる。以上のように、コイルが大型化
し、また、使用周波数が高くなるにつれ、コイル
のアンテナとしての性能が低下する。
(b) Prior art In a loop-type NMR signal transmission/reception antenna, for example, an antenna formed in a saddle-shaped coil shape used for NMR-CT, the relative dimensions of the saddle-shaped coil with respect to the wavelength of the high frequency used are As the size increases, the phase difference between the feeding/receiving end of the coil and the tip of the coil becomes a problem, and the resulting high-frequency magnetic field changes in response to the distribution of the current strength of the standing wave on the coil. Not only is the uniformity reduced, but the magnetic field strength at the target site in the subject is also reduced. Furthermore, this increases the strength of the component of the high-frequency electric field that penetrates the object, and therefore the dielectric loss also increases. As described above, as the coil becomes larger and the frequency used becomes higher, the performance of the coil as an antenna deteriorates.

(ハ) 目的 本発明の目的は従来技術に伴う上記の欠点を排
除するため、アンテナを構成するループ状回路中
での電流強度分布を可変し得る手段を設けた、
NMR信号送・受信用アンテナを提供することに
ある。
(c) Purpose An object of the present invention is to provide means for varying the current intensity distribution in a loop-shaped circuit constituting an antenna, in order to eliminate the above-mentioned drawbacks associated with the prior art.
The purpose of the present invention is to provide an antenna for transmitting and receiving NMR signals.

(ニ) 構成 以上の目的を達成するため、本発明は高周波信
号送・受信用のループ型アンテナであつて、アン
テナを構成するループ状に形成された回路中の、
高周波電力給・受電端から最遠隔の部位に可変リ
アクタンス素子を設けたことを特徴としている。
(d) Structure In order to achieve the above object, the present invention is a loop antenna for transmitting and receiving high frequency signals, and in a loop-shaped circuit constituting the antenna,
A feature is that a variable reactance element is provided at the farthest point from the high-frequency power supply/receiver end.

(ホ) 実施例 以下に本発明の実施例を図面に基づいて説明す
る。
(e) Examples Examples of the present invention will be described below based on the drawings.

第1図は鞍型コイル・ペア状に形成された
NMR−CT用アンテナに本発明を実施した場合
の構成を示す斜視図である。2つの鞍型コイル状
アンテナ回路1および1aには、それぞれ高周波
電力給・受電端A,Hおよびa,hから見た最遠
隔部の端子DE間およびd,e間にそれぞれ、容
量性リアクタンス素子としての可変キヤパシタ2
および2aが挿入されている。なお、高周波電力
給・受電端に挿入されているキヤパシタ3および
3aは共振用キヤパシタであつて、このアンテナ
回路全体の高周波電力入出力端子4,4aに対し
て、例えば直列に接続されるべき整合用キヤパシ
タと共に、高周波電源ないしは受信部との間に共
振と整合の条件を満たすよう調節するためのキヤ
パシタである。
Figure 1 shows a pair of saddle-shaped coils.
FIG. 1 is a perspective view showing a configuration when the present invention is implemented in an NMR-CT antenna. In the two saddle-shaped coiled antenna circuits 1 and 1a, capacitive reactance elements are installed between terminals DE and d and e at the farthest points as seen from the high-frequency power feeding/receiving ends A, H and a, h, respectively. variable capacitor 2 as
and 2a are inserted. Note that the capacitors 3 and 3a inserted in the high frequency power supply/receiver end are resonance capacitors, and are matching capacitors to be connected in series, for example, to the high frequency power input/output terminals 4 and 4a of the entire antenna circuit. This capacitor is used to adjust the relationship between the high-frequency power source or the receiving section so as to satisfy the conditions of resonance and matching.

以上の構成において、端子4,4aより、例え
ば高周波電力を供給する場合、キヤパシタ2およ
び2aを調節して反射波の位相を適当に選べば、
アンテナの大きさが高周波の波長に比べて無視し
得ない程充分に大きい場合でも、第2図に示すよ
うに、鞍型ループ回路の直線部B−C,F−G,
b−cおよびf−gの中央に電流定在波の腹をも
たらすことができる。即ち、第2図において
は、第1図の鞍型ループ回路1に、出力インピー
ダンスがRの高周波電源6より、整合用キヤパシ
タ5を介して高周波電力が供給されている状態を
示す等価回路であり、およびはそれぞれ、鞍
型ループの直線部C−BおよびF−Gにおける電
流(実線)と電圧(点線)の定在波波形を示すグ
ラフである。図は鞍型ループ1における電流、電
圧の分布のみを示すが、鞍型ループ1aについて
も同様な結果が得れることはもちろんである。
In the above configuration, when, for example, high frequency power is supplied from the terminals 4 and 4a, if the phase of the reflected wave is appropriately selected by adjusting the capacitors 2 and 2a,
Even if the size of the antenna is sufficiently large that it cannot be ignored compared to the wavelength of the high frequency, as shown in Fig. 2, the straight portions B-C, F-G,
An antinode of the current standing wave can be created at the center of b-c and f-g. That is, FIG. 2 is an equivalent circuit showing a state in which high-frequency power is supplied to the saddle-shaped loop circuit 1 of FIG. 1 from a high-frequency power supply 6 with an output impedance of R via a matching capacitor 5. , and are graphs showing the standing wave waveforms of current (solid line) and voltage (dotted line) in the straight portions CB and FG of the saddle loop, respectively. Although the figure only shows the distribution of current and voltage in the saddle loop 1, it goes without saying that similar results can be obtained for the saddle loop 1a.

第2図からわかるように、電流安定波の腹が鞍
型ループの直線部の中央にくるので、アンテナ中
央部において高周波磁場の値は最大となり、磁場
均一性もよくなる。また、電流定在波の腹は電圧
定在波の節と一致するので、アンテナ中央部にお
ける電場強度はゼロとなり、その近傍に位置すべ
き被検体中に生ずる誘電損失は最小となり、アン
テナの効率も増大する。なお、もしキヤパシタ
2,2aがなければ、アンテナの寸法と使用高周
波の波長との関係によつては、極端な場合、電流
定在波の腹がループの先端部にくるようになり、
アンテナ中央部の高周波数磁場は弱く、かつ、不
均一になり、しかもそこで電場強度が最大となつ
て誘電体損失のみが増大するようなことにもな
る。
As can be seen from FIG. 2, since the antinode of the current stable wave is located at the center of the straight section of the saddle-shaped loop, the value of the high-frequency magnetic field becomes maximum at the center of the antenna, and the uniformity of the magnetic field is also improved. In addition, since the antinode of the current standing wave coincides with the node of the voltage standing wave, the electric field strength at the center of the antenna becomes zero, and the dielectric loss that occurs in the object that should be located near it is minimized, making the antenna efficient. also increases. Note that if the capacitors 2 and 2a are not provided, depending on the relationship between the dimensions of the antenna and the wavelength of the high frequency used, in extreme cases, the antinode of the current standing wave will be at the tip of the loop.
The high-frequency magnetic field at the center of the antenna is weak and non-uniform, and the electric field strength reaches its maximum there, causing only dielectric loss to increase.

また、本発明は第3図に示すように構成するこ
ともできる。この実施例においては、第1図に示
した実施例におけるキヤパシタ3および3aが、
共通のキヤパシタ3bで置きかえられている。
Further, the present invention can also be configured as shown in FIG. In this embodiment, the capacitors 3 and 3a in the embodiment shown in FIG.
It has been replaced with a common capacitor 3b.

さらに、アンテナと高周波電源(または受信回
路)との間の接続は、第4図A,BおよびCに示
すように実施することもできる。第4図Aにおい
ては第2図、第3図におけるキヤパシタ3(およ
び3a)が2個の直列キヤパシタで置きかえられ
ており、また、第2図Bではキヤパシタ3(およ
び3a)を挿入する代わりに、給・受電端部の弧
状回路の長さを変え、誘導性リアクタンスを調節
することにより整合がとられるようになつてい
る。またCでは端子4および4aの側にそれぞれ
整合用キヤパシタが接続されている。
Furthermore, the connection between the antenna and the high frequency power source (or receiving circuit) can also be implemented as shown in FIGS. 4A, B and C. In FIG. 4A, capacitor 3 (and 3a) in FIGS. 2 and 3 is replaced with two series capacitors, and in FIG. 2B, instead of inserting capacitor 3 (and 3a), , matching is achieved by changing the length of the arcuate circuit at the feeding and receiving ends and adjusting the inductive reactance. Further, at C, matching capacitors are connected to the terminals 4 and 4a, respectively.

(ヘ) 効果 以上の説明から明らかなように、本発明に、よ
るNMR信号送・受信用アンテナによれば、アン
テナの寸法および使用高周波の波長に関係なく、
電流定在波の腹の位置をアンテナ回路中の位置の
部位、特に、アンテナ回路の中央部にもたらすこ
とかできるため、例えば、NMR−CT用のアン
テナに適用して、高周波信号の効率のよい送・受
信が可能となる。
(f) Effects As is clear from the above explanation, according to the NMR signal transmission/reception antenna according to the present invention, regardless of the dimensions of the antenna and the wavelength of the high frequency used,
Since the position of the antinode of the current standing wave can be brought to a position in the antenna circuit, in particular, to the center of the antenna circuit, it can be applied to an NMR-CT antenna, for example, to improve the efficiency of high-frequency signals. Sending/receiving becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成を示す斜視図であ
る。第2図は上記実施例の作用を説明する図であ
る。第3図は本発明の他の実施例の構成を示す斜
視図である。第4図は本発明によるアンテナの
給・受電回路を示す図である。 1,1a…鞍型ループ回路、2,2a,2b…
電流定在波位置調節用キヤパシタ、4,4a…ア
ンテナ入・出力端子。
FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention. FIG. 2 is a diagram illustrating the operation of the above embodiment. FIG. 3 is a perspective view showing the configuration of another embodiment of the present invention. FIG. 4 is a diagram showing an antenna feeding/receiving circuit according to the present invention. 1, 1a...Saddle type loop circuit, 2, 2a, 2b...
Capacitor for adjusting current standing wave position, 4, 4a...Antenna input/output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波信号送・受信用のループ型アンテナで
あつて、アンテナを構成するループ状に形成され
た回路中の、高周波電力給・受電端から最遠隔の
部位に可変リアクタンス素子を設けたことを特徴
とする、NMR信号送・受信用アンテナ。
1. A loop-type antenna for transmitting and receiving high-frequency signals, characterized in that a variable reactance element is provided at the farthest point from the high-frequency power supply/receiver end in the loop-shaped circuit that constitutes the antenna. An antenna for transmitting and receiving NMR signals.
JP59195450A 1984-09-17 1984-09-17 Antenna for nmr signal transmission and reception Granted JPS6173061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195450A JPS6173061A (en) 1984-09-17 1984-09-17 Antenna for nmr signal transmission and reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195450A JPS6173061A (en) 1984-09-17 1984-09-17 Antenna for nmr signal transmission and reception

Publications (2)

Publication Number Publication Date
JPS6173061A JPS6173061A (en) 1986-04-15
JPH0546509B2 true JPH0546509B2 (en) 1993-07-14

Family

ID=16341265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195450A Granted JPS6173061A (en) 1984-09-17 1984-09-17 Antenna for nmr signal transmission and reception

Country Status (1)

Country Link
JP (1) JPS6173061A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671364B2 (en) * 1988-04-05 1997-10-29 株式会社日立製作所 Inspection equipment using nuclear magnetic resonance
EP1617515B1 (en) * 2004-07-13 2007-09-19 TDK Corporation PxM antenna for high-power, broadband applications
JP5182742B2 (en) * 2007-08-14 2013-04-17 株式会社 Jeol Resonance NMR detector
CN105223526A (en) 2015-09-25 2016-01-06 沈阳东软医疗系统有限公司 A kind of radio-frequency sending coil impedance matching circuit and method

Also Published As

Publication number Publication date
JPS6173061A (en) 1986-04-15

Similar Documents

Publication Publication Date Title
JP3296189B2 (en) Antenna device
JP3185233B2 (en) Small antenna for portable radio
US8125208B2 (en) Transformer device utilizing an air gap for non-contact energy transmission from the primary side to the secondary side
US6956535B2 (en) Coaxial inductor and dipole EH antenna
US5346300A (en) Back fire helical antenna
KR100291156B1 (en) A small helical antenna with non-directional radiation pattern
JPH08148949A (en) High frequency amplifier
US5559524A (en) Antenna system including a plurality of meander conductors for a portable radio apparatus
US3581311A (en) Linearly polarized microwave feed assembly for parabolic antennas and the like
KR20010106460A (en) Antenna device
US3950757A (en) Broadband whip antennas
JPH09294013A (en) Antenna system
JPH0546509B2 (en)
US4630061A (en) Antenna with unbalanced feed
US3942119A (en) Multiple-transmission-channel active antenna arrangement
US7084825B2 (en) Antenna and electronic device using the same
US5751255A (en) Electrically small receiving antennas
EP0403579A4 (en) Antenna with impedance matching member
CN112072290A (en) Dipole antenna
CN212366201U (en) Dipole antenna
JP2000196337A (en) Antenna system
JPS61125205A (en) Loaded antenna
JP4023369B2 (en) Dipole antenna
JPH0373170B2 (en)
KR200205639Y1 (en) Member for connecting antenna to wireless communication apparatus