JPH0546015B2 - - Google Patents

Info

Publication number
JPH0546015B2
JPH0546015B2 JP58192766A JP19276683A JPH0546015B2 JP H0546015 B2 JPH0546015 B2 JP H0546015B2 JP 58192766 A JP58192766 A JP 58192766A JP 19276683 A JP19276683 A JP 19276683A JP H0546015 B2 JPH0546015 B2 JP H0546015B2
Authority
JP
Japan
Prior art keywords
lubricant
thin film
magnetic recording
cracks
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58192766A
Other languages
Japanese (ja)
Other versions
JPS6085418A (en
Inventor
Koichi Shinohara
Akio Hogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19276683A priority Critical patent/JPS6085418A/en
Publication of JPS6085418A publication Critical patent/JPS6085418A/en
Publication of JPH0546015B2 publication Critical patent/JPH0546015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高密度磁気記録再生用の磁気記録媒体
に関する。 従来例の構成とその問題点 回転磁気ヘツドにより音声、画像の記録再生を
行う技術は磁気記録の中で最も高密度記録が進ん
でいる技術であり、更に狭ギヤツプ磁気ヘツドの
開発や狭トラツク化による高密度化の努力が払わ
れ、近年最短記録波長0.5μm、トラツク幅10μm
の期待がもたれるところまできている。 しかし、この実現には、強磁性金属薄膜の磁気
記録層とする磁気記録媒体の実用化が必要であ
る。 強磁性金属薄膜を磁気記録層とする磁気記録媒
体は、磁気記録層の耐久性の向上が実用化の鍵を
握つており、各方面で改良が進められている。 耐久性は機械的な性質と化学的な性質に大別さ
れる。即ち傷の発生防止と腐食の抑制に対して有
効な手段を見出すことが重要である。 前記課題に対しての対策として、磁気記録層上
に保護層を設ける構成がある。 現在までに提案されている保護層は、無機物の
薄膜単独、有機物の薄膜単独、その両方の積層で
ある。一方、高密度記録、再生ではスペーシング
損失が支配的であり、保護層の厚みは100Å以下
で期待される耐すり傷性、耐腐食性を有すること
が必要になることから、300Åから1000Åの膜厚
を必要とするSiO、SiO2、TiN、TiC、Si3N4
WC、MoS2等のスパツタ膜はこれからの高密度
磁気記録には適さない。 現時点で最も期待される保護膜は、脂肪酸、脂
肪酸エステル等の有機物保護膜であり、工法を最
適化することで、前記した無機物系のスパツタ膜
ほどの厚みを必要としないで保護効果を有するも
のを得ることができるのであるが、低温低湿、低
温高湿、高温高湿の各種の環境でくり返し使用に
耐えるにはスペーシング損失の制約で量をおさえ
ざるを得ないため量が不足してくることから起る
走行不良等の現象が起り、くり返し使用後スチル
状態で静止画像を得ると殆んど数分とただずに磁
気記録層に傷が発生するなどの欠点が従来の構成
の磁気記録媒体は有していた。 発明の目的 本発明は磁気記録の高密度化に適した耐久性の
ある磁気記録媒体を提供するものである。 発明の構成 本発明の磁気記録媒体は、支持体上に滑剤を含
有する樹脂層を配し、その樹脂層上に亀裂の面積
分率が亀裂を有しない平面部に対して10-3ないし
10-6の範囲の亀裂を有する強磁性金属薄膜層を設
けた構成であり、強磁性金属薄膜層の表面に滑剤
が亀裂を通路として析出することにより、耐久性
が図れるものである。 実施例の説明 以下本発明の一実施例について、図面を参照し
ながら説明する。 第1図は本発明の一実施例における磁気記録媒
体の断面図、第2図は同磁気記録媒体の上面図で
ある。図中、1は支持体、2は支持体1上に配さ
れた滑剤を含有する樹脂層、3は樹脂層2上に配
され亀裂4を有する強磁性金属薄膜層である。こ
こで支持体1は、ポリエチレンテレフタレート、
ポリエチレンナフタレート、芳香族ポリアミド、
ポリイミド、ポリカーイボネート、セルローズデ
イアセテート等の高分子フイルムである。また、
滑剤を含む樹脂層2は例えば磁気粉末を前記支持
体1上に公知の塗布機で塗布乾燥し、且つ高密度
の磁気記録用媒体として必要な表面の平滑性を得
るためのカレンダ処理をして得ることができるも
ので、厚みは1μmから5μm、好ましくは2μmか
ら3μmで飽和磁束密度は1200〔G〕から4000
〔G〕、保磁力は500〔O¨e〕から1500〔O¨e〕の範囲
で適宜選択される。この磁性粉末を含む樹脂層2
は、γ−Fe2O3、Coを添加したγ−Fe2O3、CrO2
等の酸化物強磁性微粒子、Fe、Co等の強磁性金
属微粒子、Co−Ni、Co−Fe等の強磁性合金微粒
子等から選ばれた磁性粉末と、滑剤が結合剤であ
る塩化ビニル系共重合体、塩化ビニリデン系共重
合体、繊維素系樹脂、ブチラール系樹脂、ポリウ
レタン系樹脂等から選ばれた1種又は2種以上の
樹脂中に分散したものである。 勿論、前記樹脂層を得るには、前記した材料の
他に溶剤、希釈剤が磁気塗料を作る時には用いら
れるし、分散剤、非磁性微粒子の添加も必要に応
じて行えるものである。 滑剤としては、脂肪酸、脂肪酸塩、脂肪酸エス
テル等から用いられ、重量部としては、樹脂を
100部とすると、1部から10部、好ましくは3部
から5部が適当である。 亀裂4は、前記した樹脂層が含有する滑剤を強
磁性金属薄膜層表面に供給するための通路にな
る。強磁性金属薄膜層は、よく知られるように短
波長記録再生特性が優れているが、特に厚み損失
の面から強磁性金属薄膜層の厚さを薄くした方が
より短波長出力が大きくできるが、そうすると、
長波長の出力が低くなり、広帯域を必要とするビ
デオテープレコーダにてバランスのとれた性能が
得にくいのが従来構成であつた。しかし、本実施
例では強磁性金属薄膜層の下層に滑剤を含有した
樹脂層が長波長の出力の大きい磁性粉末を含んで
いる為、強磁性金属薄膜層の厚さを薄く出来、ビ
デオ用途の記録媒体としてより高密度領域でバラ
ンスした性能が得られる。 又、前記したように強磁性金属薄膜層は薄くし
た方が良いから、滑剤の亀裂を通しての供給もよ
り容易で確実になる。 従つて、強磁性金属薄膜層の求められる耐久性
をくり返し使用でも充分確保できることになる。 亀裂の形状については特別の制約はないが、第
2図に示したように、亀裂を有しない平面部5
と、亀裂4の面積分率が約10-3ないし10-6好まし
くは5×10-3ないし2×10-4で、且つ亀裂4の幅
Wは0.05μmから最大でも1μmであれば良い結果
をもたらす。 亀裂の面積分率については、150〜500倍の倍率
の顕微鏡視野内で、テープの任意に選んだ10点に
つき、亀裂と亀裂を除く部分の面積を反射率の差
を情報処理する、画像処理によつて平均値として
求めた亀裂面積の和と亀裂以外の部分の面積の和
の比から計算される数値である。 亀裂の条件を第3図の亀裂を有しない平面部に
対する亀裂の面積分率とスチル寿命、S/Nとの
相関図を用いて説明する。 面積分率の上限はテープの信号対雑音比(S/
N)で決まり、値としては視感補正で40〔dB〕以
上が実用になるS/Nであることを考慮すると
10-3となる。また、下限はスチル寿命で決まり、
値としてはスチル寿命が10分以上であれば実用範
囲であることを考慮すると、10-6となる。面積分
率の最適範囲の上限はS/Nが低下傾向を示す5
×10-3、下限はスチル寿命が低下傾向を示しバラ
ツキが大きくなる2×10-4である。 なお、第3図に示す相関関係は後述する本実施
例の試料2のデータであり、この相関関係は他の
試料及び他の材料の組み合わせでも同一であつ
た。 亀裂4の幅Wもほぼ同様の特性傾向から決り、
上限の1μmは、S/Nからくる限界値で、下限
の0.05μmはスチル寿命の低下傾向のはじまりと、
バラツキが大きくなることから決る値である。 強磁性金属薄膜層3はCo、Fe、Co−Fe、Co
−Ni、Co−Cr、Co−Mo、Co−V、Co−W、
Co−Ti、Co−Cu、Co−Ru、Co−Mn、Co−Si、
Co−Ni−Cr、Co−Ni−Mg等及びそれらの部分
酸化膜などで構成され、強磁性金属薄膜層の形成
法は、電子ビーム蒸着法、スパツタリング法、イ
オンプレーテイング法、無電解メツキ法などから
適宜選択でき、亀裂の形成法は、延伸処理、加熱
冷却サイクル等で行うことができる。 磁気記録媒体も従来の構成と同様の保護層を配
することも勿論可能であるが、耐久性の著しい改
良は、亀裂を通しての強磁性金属薄膜層表面への
滑剤の連続供給によりなされるもので、表面に塗
布する従来構成ではスペース損失の制約から単位
当りの滑剤量が少なく、本発明では樹脂層に体積
的に含まれているため、約10倍から30倍の滑剤を
少しずつ強磁性金属薄膜の表面に供給できること
から各種の実用環境での耐久性が得られる訳であ
る。もちろん、スペース担失の影響を受けない
100Å以内の厚さの滑剤を含有する保護層を、本
発明の磁気記録媒体上に形成することにより、保
護層の滑剤と樹脂層の滑剤とにより、さらに耐久
性の向上が図れるものである。 なお、以上の説明では樹脂層に磁性粉末を含有
する構成を説明したが、記録波長が広帯域を必要
としない磁気記録媒体であれば、樹脂層は磁性粉
末を含まない構成としてもよいことは言うまでも
ない。 以下に、本発明のさらに具体的な一実施例を説
明する。 コバルト含有γ−Fe2O3の平均径が300Åの球
状微粒子を80部、塩化ビニル 酢酸ビニル ビニ
ルアルコール共重合体12部、アクリロニトリル
ブタジエン共重合体8部、ステアリン酸バリウム
3.5部、シクロヘキサノン、メチルイソブチルケ
トン混合溶剤(混合比1:1)100部から成る塗
料成分をボールミル中で70時間混合分散させて磁
性粉末を含有した樹脂塗料を調製した。 この樹脂塗料を厚さ9.5μmのポリエチレンテレ
フタレートフイルム上にグラビアコータにて乾燥
塗膜厚が3μmになるように塗布し、乾燥し樹脂
層を形成した。 次に樹脂層の表面を平滑化するためのカレンダ
処理を行い、平均表面粗さ80Åに制約した。この
磁性粉末を含む樹脂層の磁気特性は飽和磁束密度
が1300〔G〕、保持力は610〔O¨e〕である。 次に樹脂層を有するポリエチレンテレフタレー
トフイルムの基板を巻取蒸着機により処理した。
ここで、用いた巻取蒸着機は、第4図に要部構成
図を示したように、基板6を円筒状のキヤン7の
周側面に沿わせて移動できる巻取機構と蒸発源8
が図示せぬ真空容器内に配設して成るものであ
る。 基板6は送り出し軸9から巻取軸10へ移動す
る間に蒸発源容器11に配設された蒸着材料A1
2、蒸着材料B13を加熱して得られた蒸気流A
14、蒸気流B15により蒸着材料のA成分とB
成分からなる合金薄膜の被着を受ける。 16は蒸気流の特定の入射角成分を限定する、
主として保磁力の制御に誓われる遮へい板であ
る。 蒸着は、真空ポンプで連続排気しながら行う
か、真空容器内に酸素ガス等を導入しながら行う
ことができ、必要に応じて電界をかけたり、基板
6と蒸発源8の間に高周波コイル電極を配置し
て、高周波グロー放電を生ぜしめ、イオンプレー
テイングとすることもできる。 蒸着をスパツタに変えることもでき、その場合
は、前記巻取蒸着機の蒸発源をスパツタカソード
に置きかえれば良い。 強磁性金属薄膜層の亀裂を形成する方法は前記
蒸着又はスパツタを円筒状のキヤン7の内部に循
環する冷却媒体をドライアイスで冷却したアルコ
ールとして行うことでできるし、他の有効な方法
として、熱を強磁性金属薄膜を付与した基板に加
えて、例えば100℃に制御した基板に、特定の方
向に張力を与えて、基板の変位が5%程度になる
ようにすることで得ることもできる。 上記したような方法で得られた亀裂の面積分率
を計測し、その範囲が10-3〜10-6に入る条件を実
験的にきめてやればよい。 次表はこのようにして得られた磁気記録媒体の
特性と評価結果である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a magnetic recording medium for high-density magnetic recording and reproduction. Conventional configurations and their problems The technology of recording and reproducing audio and images using a rotating magnetic head is the most advanced technology for high-density recording among magnetic recording systems. In recent years, efforts have been made to increase density, and in recent years the shortest recording wavelength has been 0.5 μm and the track width 10 μm.
It has reached the point where expectations are high. However, to realize this, it is necessary to put into practical use a magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film. 2. Description of the Related Art The key to practical application of magnetic recording media that use a ferromagnetic metal thin film as a magnetic recording layer is to improve the durability of the magnetic recording layer, and improvements are being made in various fields. Durability is broadly divided into mechanical properties and chemical properties. That is, it is important to find effective means for preventing scratches and inhibiting corrosion. As a countermeasure to the above problem, there is a configuration in which a protective layer is provided on the magnetic recording layer. The protective layers that have been proposed to date include an inorganic thin film alone, an organic thin film alone, and a stack of both. On the other hand, in high-density recording and playback, spacing loss is dominant, and the protective layer must have the expected scratch and corrosion resistance with a thickness of 100 Å or less. SiO, SiO 2 , TiN, TiC, Si 3 N 4 , which require a thick film,
Sputtered films such as WC and MoS 2 are not suitable for future high-density magnetic recording. At present, the most promising protective film is an organic protective film made of fatty acids, fatty acid esters, etc., and by optimizing the construction method, it is possible to achieve a protective effect without requiring the same thickness as the inorganic spatter film mentioned above. However, in order to withstand repeated use in various environments of low temperature and low humidity, low temperature and high humidity, and high temperature and high humidity, the amount must be suppressed due to the constraint of spacing loss, so the amount becomes insufficient. Magnetic recording with conventional configurations has drawbacks such as problems such as poor running due to this, and scratches on the magnetic recording layer that occur within a few minutes when capturing still images after repeated use. The medium had. OBJECTS OF THE INVENTION The present invention provides a durable magnetic recording medium suitable for high-density magnetic recording. Structure of the Invention The magnetic recording medium of the present invention has a resin layer containing a lubricant disposed on a support, and the area fraction of cracks on the resin layer is 10 -3 to 10 -3 to a flat area without cracks.
It has a structure in which a ferromagnetic metal thin film layer with cracks in the range of 10 -6 is provided, and durability is achieved by depositing a lubricant on the surface of the ferromagnetic metal thin film layer using the cracks as passages. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention, and FIG. 2 is a top view of the same magnetic recording medium. In the figure, 1 is a support, 2 is a resin layer containing a lubricant disposed on the support 1, and 3 is a ferromagnetic metal thin film layer disposed on the resin layer 2 and having cracks 4. Here, the support 1 is polyethylene terephthalate,
polyethylene naphthalate, aromatic polyamide,
Polymer films such as polyimide, polycarbonate, and cellulose diacetate. Also,
The resin layer 2 containing a lubricant is formed by applying, for example, magnetic powder onto the support 1 using a known coating machine and drying it, and then calendering it to obtain the surface smoothness required for a high-density magnetic recording medium. The thickness is 1 μm to 5 μm, preferably 2 μm to 3 μm, and the saturation magnetic flux density is 1200 [G] to 4000.
[G], and the coercive force is appropriately selected in the range of 500 [O¨e] to 1500 [O¨e]. Resin layer 2 containing this magnetic powder
are γ-Fe 2 O 3 , γ-Fe 2 O 3 with Co added, CrO 2
Magnetic powder selected from oxide ferromagnetic particles such as oxide ferromagnetic particles, ferromagnetic metal particles such as Fe and Co, ferromagnetic alloy particles such as Co-Ni and Co-Fe, and vinyl chloride-based powders in which the lubricant is the binder. It is dispersed in one or more resins selected from polymers, vinylidene chloride copolymers, cellulose resins, butyral resins, polyurethane resins, and the like. Of course, in order to obtain the resin layer, in addition to the above-mentioned materials, a solvent and a diluent are used when making a magnetic paint, and a dispersant and non-magnetic fine particles can also be added as necessary. As a lubricant, fatty acids, fatty acid salts, fatty acid esters, etc. are used, and the weight part is based on resin.
Assuming 100 parts, 1 part to 10 parts, preferably 3 parts to 5 parts is suitable. The cracks 4 serve as passages for supplying the lubricant contained in the resin layer to the surface of the ferromagnetic metal thin film layer. As is well known, the ferromagnetic metal thin film layer has excellent short wavelength recording and reproducing properties, but from the perspective of thickness loss, the short wavelength output can be increased by reducing the thickness of the ferromagnetic metal thin film layer. , then,
With the conventional configuration, the output of long wavelengths is low, making it difficult to obtain balanced performance in video tape recorders that require a wide band. However, in this example, the resin layer containing a lubricant under the ferromagnetic metal thin film layer contains magnetic powder that has a large output at long wavelengths, so the thickness of the ferromagnetic metal thin film layer can be made thinner, making it suitable for video applications. As a recording medium, balanced performance can be obtained in a higher density area. Furthermore, as described above, it is better to make the ferromagnetic metal thin film layer thinner, so that the lubricant can be more easily and reliably supplied through the cracks. Therefore, the required durability of the ferromagnetic metal thin film layer can be sufficiently ensured even after repeated use. There are no particular restrictions on the shape of the crack, but as shown in FIG.
A good result is obtained if the area fraction of the crack 4 is about 10 -3 to 10 -6 , preferably 5×10 -3 to 2×10 -4 , and the width W of the crack 4 is 0.05 μm to 1 μm at the most. bring about. Regarding the area fraction of cracks, image processing is performed to calculate the difference in reflectance between the cracks and the area excluding the cracks for 10 arbitrarily selected points on the tape within the field of view of a microscope with a magnification of 150 to 500 times. This is a numerical value calculated from the ratio of the sum of the crack areas found as an average value by the sum of the areas other than the cracks. The conditions for cracks will be explained with reference to the correlation diagram of the area fraction of cracks, still life, and S/N for a plane portion without cracks shown in FIG. The upper limit of the area fraction is the signal-to-noise ratio (S/
N), and considering that the value is 40 [dB] or more with visual correction, it is a practical S/N.
10 -3 . Also, the lower limit is determined by the still life,
Considering that a still life of 10 minutes or more is within the practical range, the value is 10 -6 . The upper limit of the optimal range of area fraction is 5 where the S/N tends to decrease.
×10 −3 , and the lower limit is 2×10 −4 at which the still life tends to decrease and the variation increases. Note that the correlation shown in FIG. 3 is data for sample 2 of this example, which will be described later, and this correlation was the same for other samples and other combinations of materials. The width W of the crack 4 is also determined from almost the same characteristic tendency,
The upper limit of 1μm is the limit value due to S/N, and the lower limit of 0.05μm is the beginning of a downward trend in still life.
This value is determined because the variation becomes large. The ferromagnetic metal thin film layer 3 is made of Co, Fe, Co-Fe, Co
-Ni, Co-Cr, Co-Mo, Co-V, Co-W,
Co-Ti, Co-Cu, Co-Ru, Co-Mn, Co-Si,
The ferromagnetic metal thin film layer is composed of Co-Ni-Cr, Co-Ni-Mg, etc. and their partially oxidized films, and can be formed using electron beam evaporation, sputtering, ion plating, or electroless plating. The method for forming cracks may be a stretching treatment, a heating/cooling cycle, or the like. It is of course possible to arrange a protective layer on the magnetic recording medium in the same manner as in the conventional structure, but the remarkable improvement in durability is achieved by continuously supplying a lubricant to the surface of the ferromagnetic metal thin film layer through the cracks. In the conventional configuration in which the lubricant is applied to the surface, the amount of lubricant per unit is small due to space loss constraints, but in the present invention, since it is contained volumetrically in the resin layer, about 10 to 30 times the lubricant is gradually applied to the ferromagnetic metal. Since it can be supplied to the surface of a thin film, it has durability in various practical environments. Of course, it is not affected by space loss.
By forming a protective layer containing a lubricant with a thickness of 100 Å or less on the magnetic recording medium of the present invention, durability can be further improved by the lubricant in the protective layer and the lubricant in the resin layer. In the above explanation, the resin layer contains magnetic powder, but it goes without saying that the resin layer may not contain magnetic powder if the magnetic recording medium does not require a wide range of recording wavelengths. stomach. A more specific embodiment of the present invention will be described below. 80 parts of cobalt-containing γ-Fe 2 O 3 spherical fine particles with an average diameter of 300 Å, 12 parts of vinyl chloride vinyl acetate vinyl alcohol copolymer, acrylonitrile
8 parts of butadiene copolymer, barium stearate
A resin paint containing magnetic powder was prepared by mixing and dispersing paint components consisting of 3.5 parts of cyclohexanone and 100 parts of a mixed solvent of cyclohexanone and methyl isobutyl ketone (mixing ratio 1:1) for 70 hours in a ball mill. This resin paint was applied onto a 9.5 μm thick polyethylene terephthalate film using a gravure coater so that the dry film thickness was 3 μm, and dried to form a resin layer. Next, a calender treatment was performed to smooth the surface of the resin layer, and the average surface roughness was limited to 80 Å. The magnetic properties of the resin layer containing this magnetic powder include a saturation magnetic flux density of 1300 [G] and a coercive force of 610 [O¨e]. Next, a polyethylene terephthalate film substrate having a resin layer was processed using a winding vapor deposition machine.
The winding vapor deposition machine used here includes a winding mechanism that can move the substrate 6 along the circumferential side of a cylindrical can 7, and an evaporation source 8, as shown in FIG.
is arranged in a vacuum container (not shown). While the substrate 6 is moving from the delivery shaft 9 to the take-up shaft 10, the evaporation material A1 placed in the evaporation source container 11 is removed.
2. Vapor flow A obtained by heating vapor deposition material B13
14. A component and B of the vapor deposition material are separated by vapor flow B15.
A thin alloy film consisting of the following components is deposited. 16 defines a particular angle of incidence component of the vapor flow;
It is a shielding plate that is mainly used to control coercive force. Evaporation can be performed while continuously evacuating with a vacuum pump or while introducing oxygen gas into the vacuum container. If necessary, an electric field can be applied or a high frequency coil electrode can be used between the substrate 6 and the evaporation source 8. can also be arranged to produce a high frequency glow discharge, resulting in ion plating. Vapor deposition can also be changed to sputtering, in which case the evaporation source of the winding vapor deposition machine may be replaced with a sputtering cathode. The method for forming cracks in the ferromagnetic metal thin film layer can be carried out by using alcohol cooled with dry ice as the cooling medium circulating in the cylindrical can 7 during the vapor deposition or sputtering, and other effective methods include: It can also be obtained by applying heat to a substrate coated with a ferromagnetic metal thin film and applying tension in a specific direction to a substrate controlled at, for example, 100°C, so that the displacement of the substrate is about 5%. . The area fraction of the cracks obtained by the method described above may be measured, and the conditions under which the area fraction falls within the range of 10 -3 to 10 -6 may be determined experimentally. The following table shows the characteristics and evaluation results of the magnetic recording medium thus obtained.

【表】 本実施例は、滑剤の供給源が樹脂層にあるた
め、ビデオテープレコーダでくり返し使用して
も、強磁性金属薄膜層の表面に塗布した滑剤が失
われても絶えず滑剤が供給されるため、走行後の
スチル寿命は充分実用水準にある。 この傾向は、パス回数が多くなつても同じで、
例えば30℃80%RH環境下で300パス走行後の本
発明品のスチル寿命は25分以上であつたが、比較
品は全て3分以下であつた。 前記した効果は、滑剤を含む樹脂層で得られる
ものであり、前記した実施例は、滑剤の他に磁性
粉末を含んでいるので、広帯域の出力の大きいビ
デオ用テープに最適な構成となつている。 なお、本実施例では5種類の試料について具体
的に効果を示したが、本発明を構成する前述の他
の材料の組み合わせにおいても、同様の効果を有
することを確認した。 さらに、前記実施例では磁気記録媒体として磁
気テープを例にあげて説明したが、本発明の要旨
を逸脱しない範囲で磁気デイスク、磁気シートの
形態をとることもできるものである。 発明の効果 本発明の磁気記録媒体は、支持体上に滑剤を含
有する樹脂層を配し、前記樹脂層上に亀裂を有す
る強磁性金属膜層を配することで、前記強磁性金
属薄膜層の表面に滑剤が亀裂を通路として析出し
てくるので、耐久性が優れ、高温高湿環境下での
くり返し使用にも充分耐えられるもので実用価値
は極めて大きいものである。
[Table] In this example, the lubricant supply source is in the resin layer, so even if the lubricant applied to the surface of the ferromagnetic metal thin film layer is lost even if it is used repeatedly in a video tape recorder, the lubricant is constantly supplied. Therefore, the still life after driving is at a sufficient practical level. This tendency remains the same even when the number of passes increases,
For example, after running 300 passes in an environment of 30° C. and 80% RH, the still life of the products of the present invention was 25 minutes or more, while all comparative products were 3 minutes or less. The above-mentioned effects are obtained by a resin layer containing a lubricant, and the embodiment described above contains a magnetic powder in addition to a lubricant, so it has an optimal configuration for a wide-band, high-output video tape. There is. In this example, the effects were specifically shown for five types of samples, but it was confirmed that the same effects were also obtained in combinations of the other materials mentioned above that constitute the present invention. Further, in the above embodiments, a magnetic tape was used as an example of the magnetic recording medium, but it may also take the form of a magnetic disk or a magnetic sheet without departing from the gist of the present invention. Effects of the Invention The magnetic recording medium of the present invention has a resin layer containing a lubricant on a support, and a ferromagnetic metal thin film layer having cracks on the resin layer. Since the lubricant is deposited on the surface using the cracks as channels, it has excellent durability and can withstand repeated use in high temperature and high humidity environments, making it extremely valuable in practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における磁気記録媒
体の断面図、第2図は同磁気記録媒体の上面図、
第3図は同磁気記録媒体の亀裂の面積分率とスチ
ル寿命、S/Nとの相関図、第4図は同磁気記録
媒体に適用される巻取蒸着機の要部構成図であ
る。 1……支持体、2……樹脂層、3……強磁性金
属薄膜層、4……亀裂、5……平面部。
FIG. 1 is a cross-sectional view of a magnetic recording medium in an embodiment of the present invention, FIG. 2 is a top view of the magnetic recording medium,
FIG. 3 is a correlation diagram between the area fraction of cracks, still life, and S/N of the same magnetic recording medium, and FIG. 4 is a diagram showing the main part configuration of a winding vapor deposition machine applied to the same magnetic recording medium. DESCRIPTION OF SYMBOLS 1...Support, 2...Resin layer, 3...Ferromagnetic metal thin film layer, 4...Crack, 5...Plane part.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体上に滑剤を含有する樹脂層を配し、そ
の樹脂上に、滑剤の通路となる亀裂を、その面積
の和が亀裂を除く面積にたいして10-3〜10-6の範
囲になるように設けた強磁性金属薄膜層を有する
ことを特徴とする磁気記録媒体。
1 A resin layer containing a lubricant is placed on a support, and cracks are formed on the resin to provide passages for the lubricant so that the sum of the areas is in the range of 10 -3 to 10 -6 relative to the area excluding the cracks. A magnetic recording medium characterized by having a ferromagnetic metal thin film layer provided on the ferromagnetic metal thin film layer.
JP19276683A 1983-10-14 1983-10-14 Magnetic recording medium Granted JPS6085418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19276683A JPS6085418A (en) 1983-10-14 1983-10-14 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19276683A JPS6085418A (en) 1983-10-14 1983-10-14 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6085418A JPS6085418A (en) 1985-05-14
JPH0546015B2 true JPH0546015B2 (en) 1993-07-12

Family

ID=16296681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19276683A Granted JPS6085418A (en) 1983-10-14 1983-10-14 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6085418A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125306A (en) * 1976-04-13 1977-10-21 Fuji Photo Film Co Ltd Production of magnetic recording media
JPS5647924A (en) * 1979-09-20 1981-04-30 Matsushita Electric Ind Co Ltd Magnetic tape
JPS57205822A (en) * 1981-06-12 1982-12-17 Sony Corp Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125306A (en) * 1976-04-13 1977-10-21 Fuji Photo Film Co Ltd Production of magnetic recording media
JPS5647924A (en) * 1979-09-20 1981-04-30 Matsushita Electric Ind Co Ltd Magnetic tape
JPS57205822A (en) * 1981-06-12 1982-12-17 Sony Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS6085418A (en) 1985-05-14

Similar Documents

Publication Publication Date Title
US6641932B1 (en) Magnetic thin film media with chromium capping layer
JP2003208710A (en) Magnetic recording medium
US4835032A (en) Magnetic recording medium and recording/reproducing method therefor
EP0573026B1 (en) Magnetic recording medium and method for producing the same
US4666754A (en) Magnetic recording medium
US6875505B2 (en) Magnetic recording medium
KR940009728B1 (en) Magnetic recording medium
JP4335998B2 (en) Magnetic recording medium and magnetic recording / reproducing method
JPH0546015B2 (en)
JPH10143845A (en) Magnetic recording medium and its production
JP3360317B2 (en) Non-magnetic support with masking layer for magnetic recording medium, and magnetic recording medium
US7217468B2 (en) Magnetic recording medium and method of fabricating the same
KR960000822B1 (en) A magnetic recording medium
JP3491778B2 (en) Magnetic recording media
JPH0559570B2 (en)
JP2001344736A (en) Magnetic recording medium and magnetic recording method
JPH10105952A (en) Magnetic recording medium
JPH10241136A (en) Magnetic recording medium and its manufacture
JPH10105953A (en) Magnetic recording medium
JPH0954938A (en) Magnetic recording medium
JPH087269A (en) Production of magnetic recording medium
JP2002367135A (en) Magnetic recording medium and manufacturing method therefor
JP2000048346A (en) Magnetic record medium
JP2000048342A (en) Magnetic record medium
JP2001110039A (en) Method of manufacturing magnetic recording medium