JPH0545017A - Multi-chamber type cooling or heating device - Google Patents

Multi-chamber type cooling or heating device

Info

Publication number
JPH0545017A
JPH0545017A JP3199323A JP19932391A JPH0545017A JP H0545017 A JPH0545017 A JP H0545017A JP 3199323 A JP3199323 A JP 3199323A JP 19932391 A JP19932391 A JP 19932391A JP H0545017 A JPH0545017 A JP H0545017A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
flow rate
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3199323A
Other languages
Japanese (ja)
Inventor
Masayuki Tanaka
優行 田中
Masao Kurachi
正夫 蔵地
Kenichiro Yano
謙一郎 矢野
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP3199323A priority Critical patent/JPH0545017A/en
Publication of JPH0545017A publication Critical patent/JPH0545017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve a high lifting performance of a system and reduce an amount of enclosed refrigerant in a multi-chamber type cooling or heating device in which a refrigerant cycle at a heat source side and another refrigerant cycle at a utilizer are separated by a method wherein a proper amount of gaseous refrigerant within a small liquid side connection pipe is mixed with refrigerant under an over-cooled state in which a condensed and liquefied state is attained with a heat exchanger at the utilizer during a heating operation. CONSTITUTION:The first flow rate valve 14a for refrigerant is connected to a heat exchanger 12a of an indoor device b1, and the second flow rate valve 15a is arranged in parallel with the first flow rate valve 14a. Temperature sensing devices 16a and 17a for detecting refrigerant temperatures at an outlet of the indoor device and the outlet of the second flow rate valve 15a are provided. A control device 18a adjusts a degree of opening of the second flow rate valve 15a in response to the detected temperature. Accordingly, since a proper amount of saturated gas in a small liquid branch pipe d1 is mixed in a multi-liquid branch pipe (e1), a resistance caused by a weight of the liquid refrigerant within the multi-liquid side connection pipe (c) and a proper refrigerant circulation can be attained even if a high height difference is found between the refrigerant transporting device 11 and the indoor devices (b1, b2) and further an amount of enclosed gas can be reduced. As for the indoor device (b2) a similar state can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱源側冷媒サイクルと
利用側冷媒サイクルに分離した多室冷暖房装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chamber cooling / heating apparatus which is divided into a heat source side refrigerant cycle and a use side refrigerant cycle.

【0002】[0002]

【従来の技術】従来、熱源側冷媒サイクルと利用側冷媒
サイクルに分離した多室冷暖房装置の冷媒サイクルは、
特開昭62−238952号公報に示されており、図4
のように構成されていた。
2. Description of the Related Art Conventionally, a refrigerant cycle of a multi-chamber cooling and heating apparatus separated into a heat source side refrigerant cycle and a use side refrigerant cycle is
As shown in Japanese Patent Laid-Open No. 62-238952, FIG.
Was configured like.

【0003】図4において、1は圧縮機、2は熱源側四
方弁、3は熱源側熱交換器、4は冷房用減圧装置、5は
暖房用減圧装置、6は暖房時に冷房用減圧装置4を閉止
する逆止弁、7は冷房時に暖房用減圧装置5を閉止する
逆止弁、8は第1補助熱交換器であり、これらを環状に
連接し、熱源側冷媒サイクルを形成している。9は第2
補助熱交換器で、第1補助熱交換器8と熱交換するよう
に一体に形成されている。
In FIG. 4, 1 is a compressor, 2 is a heat source side four-way valve, 3 is a heat source side heat exchanger, 4 is a cooling decompression device, 5 is a heating decompression device, and 6 is a cooling decompression device 4 during heating. Is a check valve for closing the heating decompression device 5 during cooling, and 8 is a first auxiliary heat exchanger, and these are connected in an annular shape to form a heat source side refrigerant cycle. .. 9 is the second
The auxiliary heat exchanger is integrally formed so as to exchange heat with the first auxiliary heat exchanger 8.

【0004】10は冷媒量調整タンクで、冷房時と暖房
時の冷媒量を調整している。11は冷媒搬送装置であ
る。上記熱源側冷媒サイクルの構成要素と冷媒量調整タ
ンク10と冷媒搬送装置11は熱源側ユニットaに収納
されている。12a,12bは利用側熱交換器で、それ
ぞれ室内ユニットb1,b2に収納され、多液側接続配
管C、少液側接続配管C’と少液側枝管d1,d2及び
多液側枝管e1,e2で熱源側ユニットaと接続されて
いる。
Reference numeral 10 is a refrigerant amount adjusting tank for adjusting the amount of refrigerant during cooling and during heating. Reference numeral 11 is a refrigerant transfer device. The components of the heat source side refrigerant cycle, the refrigerant amount adjustment tank 10 and the refrigerant transfer device 11 are housed in the heat source side unit a. 12a and 12b are heat exchangers on the use side, which are housed in the indoor units b1 and b2, respectively, and are connected to the multi-liquid side connecting pipe C, the low-liquid side connecting pipe C ′, the low-liquid side branch pipes d1 and d2, and the multi-liquid side branch pipe e1, It is connected to the heat source side unit a at e2.

【0005】13は利用側四方弁で、室内ユニットb
1,b2への冷媒の流れ方向を冷暖房でかえている。1
4a,14bは流量弁で、利用側熱交換器12a,12
bへの冷媒流量を調整している。
Numeral 13 is a four-way valve on the use side, which is an indoor unit b
The flow direction of the refrigerant to 1 and b2 is changed by cooling and heating. 1
4a and 14b are flow valves, which are utilization side heat exchangers 12a and 12
The refrigerant flow rate to b is adjusted.

【0006】第2補助熱交換器9、冷媒量調整タンク1
0、冷媒搬送装置11、流量弁14a,14b、利用側
熱交換器12a,12b、利用側四方弁13、多液側接
続配管C、少液側接続配管C’、少液側枝管d1,d
2、多液側枝管e1,e2とを環状に連接し利用側冷媒
サイクルを形成している。
Second auxiliary heat exchanger 9, refrigerant amount adjusting tank 1
0, refrigerant transfer device 11, flow rate valves 14a, 14b, use side heat exchangers 12a, 12b, use side four-way valve 13, multiple liquid side connecting pipe C, small liquid side connecting pipe C ', small liquid side branch pipes d1, d
2. The multiple liquid side branch pipes e1 and e2 are connected in a ring shape to form a use side refrigerant cycle.

【0007】以上のように構成された冷暖房装置につい
てその動作を説明する。冷房運転時は図中実線矢印の冷
媒サイクルとなり、熱源側冷媒サイクルでは、圧縮機1
からの高温高圧ガスは四方弁2を通り、熱源側熱交換器
3で放熱して凝縮液化し、逆止弁6を通って冷房用膨張
弁4で減圧され、第1補助熱交換器8で蒸発して熱源側
四方弁2を通り、圧縮機1へ循環する。
The operation of the cooling and heating apparatus configured as described above will be described. During the cooling operation, the refrigerant cycle is indicated by the solid arrow in the figure, and in the heat source side refrigerant cycle, the compressor 1
The high-temperature high-pressure gas from 4 passes through the four-way valve 2, radiates heat in the heat-source-side heat exchanger 3 to be condensed and liquefied, passes through the check valve 6 and is decompressed by the cooling expansion valve 4, and then by the first auxiliary heat exchanger 8. It evaporates and passes through the heat source side four-way valve 2 and circulates to the compressor 1.

【0008】この時利用側冷媒サイクルの第2補助熱交
換器9と第1補助熱交換器8が熱交換し、利用側冷媒サ
イクルのガス冷媒が冷却されて液化し、冷媒量調整タン
ク10、利用側四方弁13を通って冷媒搬送装置11に
送られ、この冷媒搬送装置11によって利用側四方弁1
3、多液側接続配管Cを通って利用側熱交換器12a,
12bへ送られて冷房して吸熱蒸発し、ガス化して少液
側接続配管C’を通って第2補助熱交換器9に循環する
ことになる。
At this time, the second auxiliary heat exchanger 9 and the first auxiliary heat exchanger 8 of the use side refrigerant cycle exchange heat, the gas refrigerant of the use side refrigerant cycle is cooled and liquefied, and the refrigerant amount adjusting tank 10, It is sent to the refrigerant carrier device 11 through the user-side four-way valve 13, and by this refrigerant carrier device 11, the user-side four-way valve 1
3, the use side heat exchanger 12a through the multi-liquid side connecting pipe C,
It is sent to 12b, cooled, endothermicly evaporated, gasified, and circulated to the second auxiliary heat exchanger 9 through the small liquid side connection pipe C '.

【0009】この時利用側サイクルの室内ユニットb
1、b2では、例えば室内温度を監視しながら、流量弁
14a、14bをそれぞれ調整することで、冷媒の流量
を調整している。すなわち、室内温度が低くなれば流量
弁の開度を小さくして冷媒が流れにくくなるように調整
し、、逆に室内温度が低下しない場合は流量弁の開度を
大きくして冷媒が多く流れるように調整している。
At this time, the indoor unit b of the user side cycle
In 1 and b2, the flow rate of the refrigerant is adjusted by adjusting the flow rate valves 14a and 14b, respectively, while monitoring the room temperature, for example. That is, when the indoor temperature becomes low, the opening of the flow valve is made small so that the refrigerant does not easily flow. On the contrary, when the indoor temperature does not decrease, the opening of the flow valve is made large and a large amount of the refrigerant flows. Is adjusted.

【0010】一方、暖房運転時においては、図中破線矢
印の冷媒サイクルとなり、熱源側冷媒サイクルでは、圧
縮機1からの高温高圧冷媒は、熱源側四方弁2から第1
補助熱交換器8に送られ、放熱して凝縮液化し、逆止弁
7から暖房用減圧装置5で減圧し、熱源側熱交換器3で
吸熱蒸発し、熱源側四方弁2を通って圧縮機1へ循環す
る。
On the other hand, during the heating operation, the refrigerant cycle is indicated by the broken line arrow, and in the heat source side refrigerant cycle, the high-temperature high-pressure refrigerant from the compressor 1 passes from the heat source side four-way valve 2 to the first side.
It is sent to the auxiliary heat exchanger 8, radiates heat to be condensed and liquefied, decompressed from the check valve 7 by the heating decompression device 5, absorbed and evaporated by the heat source side heat exchanger 3, and compressed through the heat source side four-way valve 2. Circulate to machine 1.

【0011】この時利用側冷媒サイクルの第2補助熱交
換器9と第1補助熱交換器8が熱交換し、利用側冷媒サ
イクル内の液冷媒が加熱されてガス化し、少液側接続配
管C’及び少液側枝管d1,d2を通って利用側熱交換
器12a,12bへ送られ、暖房して放熱液化し、流量
弁14a,14bを通り、多液側枝管e1,e2及び多
液側接続配管C、利用側四方弁13を通って冷媒搬送装
置11へ送られ、冷媒量調整タンク10から第2補助熱
交換器9へ循環する。
At this time, the second auxiliary heat exchanger 9 and the first auxiliary heat exchanger 8 of the utilization side refrigerant cycle exchange heat, the liquid refrigerant in the utilization side refrigerant cycle is heated and gasified, and the small amount liquid side connecting pipe It is sent to the use side heat exchangers 12a and 12b through C'and the small liquid side branch pipes d1 and d2, and is heated and radiated to liquefy the heat, and passes through the flow valves 14a and 14b, and the multiple liquid side branch pipes e1 and e2 and the multiple liquids. It is sent to the refrigerant transfer device 11 through the side connection pipe C and the use side four-way valve 13, and circulates from the refrigerant amount adjustment tank 10 to the second auxiliary heat exchanger 9.

【0012】この時利用側サイクルの室内ユニットb
1、b2では、例えば室内温度を監視しながら、流量弁
14a、14bをそれぞれ調整することで、冷媒の流量
を調整している。すなわち、室内温度が高くなれば流量
弁の開度を小さくして冷媒が流れにくくなるように調整
し、逆に室内温度が低い場合は流量弁の開度を大きくし
て冷媒が多く流れるように調整している。
At this time, the indoor unit b of the use side cycle
In 1 and b2, the flow rate of the refrigerant is adjusted by adjusting the flow rate valves 14a and 14b, respectively, while monitoring the room temperature, for example. That is, when the indoor temperature is high, the opening of the flow valve is reduced so that the refrigerant does not easily flow. On the contrary, when the indoor temperature is low, the opening of the flow valve is increased so that the refrigerant flows more. I am adjusting.

【0013】[0013]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、暖房運転時の室内温度の調整のために、
冷媒流量を減少させる能力制御の方向に調整する場合
は、利用側熱交換器の凝縮能力が大きくなるので、冷媒
の状態は過冷却状態、すなわち完全な液状態となって室
内ユニットを出て行くことになる。
However, in the above configuration, in order to adjust the room temperature during the heating operation,
When adjusting in the direction of capacity control to reduce the flow rate of the refrigerant, the condensation capacity of the heat exchanger on the use side increases, so the refrigerant is in a supercooled state, that is, a complete liquid state and exits the indoor unit. It will be.

【0014】このため、多液側枝管や多液側接続配管内
にも過冷却液状態の冷媒で満たされることになり、適正
な冷媒循環を行うためには、封入する冷媒量が非常に多
く必要となる。
For this reason, the multi-liquid side branch pipe and the multi-liquid side connecting pipe are also filled with the refrigerant in the supercooled liquid state, and in order to properly circulate the refrigerant, the amount of the enclosed refrigerant is very large. Will be needed.

【0015】又、冷媒搬送装置と最下部の室内ユニット
との高低差がある値以上になると、多液側枝管や多液側
接続配管内の過冷却液状態の冷媒の重量による抵抗のた
めに、適正な冷媒循環が妨げられ、システムの運転が不
能になるという課題を有していた。
Further, when the difference in height between the refrigerant transporting device and the lowermost indoor unit exceeds a certain value, resistance due to the weight of the refrigerant in the supercooled liquid state in the multi-liquid side branch pipe or the multi-liquid side connection pipe is caused. However, there is a problem that proper refrigerant circulation is hindered and the system becomes inoperable.

【0016】本発明は上記課題に鑑み、システムの高揚
程性能を向上し、封入冷媒量を減少させることを目的と
している。
In view of the above problems, the present invention aims to improve the high head performance of the system and reduce the amount of the enclosed refrigerant.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に、本発明の多室冷暖房装置は、利用側熱交換器と直列
に連接され前記利用側熱交換器へ流れる冷媒の流量を調
整する第1流量弁と、直列に連接された前記利用側熱交
換器及び第1流量弁と並列に配設された第2流量弁とを
室内ユニットに有するとともに、暖房時の前記室内ユニ
ット出口の冷媒温度を検出する第1温度検出装置と、暖
房時の前記第2流量弁出口の冷媒温度を検出する第2温
度検出装置と、前記第1及び第2温度検出装置で検出し
た冷媒温度により前記第2流量弁を制御する制御装置と
を備えているのである。
In order to solve the above problems, the multi-room cooling and heating apparatus of the present invention adjusts the flow rate of the refrigerant which is connected in series with the use side heat exchanger and flows to the use side heat exchanger. The indoor unit has a first flow valve, the use-side heat exchanger connected in series, and a second flow valve arranged in parallel with the first flow valve, and the refrigerant at the outlet of the indoor unit during heating. A first temperature detecting device for detecting a temperature, a second temperature detecting device for detecting a refrigerant temperature at the outlet of the second flow valve during heating, and a refrigerant temperature detected by the first and second temperature detecting devices for the first temperature detecting device. A control device for controlling the two flow valves is provided.

【0018】[0018]

【作用】本発明の多室冷暖房装置は、上記した構成によ
って暖房運転時に利用側熱交換器に並列に配設された第
2流量弁を制御し、利用側熱交換器で凝縮液化し、過冷
却状態となった液冷媒に、少液側接続配管内のガス冷媒
を適量混入することとなる。
According to the multi-chamber cooling and heating apparatus of the present invention, the second flow valve arranged in parallel with the heat exchanger on the use side is controlled during the heating operation by the above-mentioned structure, and the heat exchanger on the use side condenses and liquefies the fluid. An appropriate amount of the gas refrigerant in the low-liquid-side connection pipe is mixed with the liquid refrigerant in the cooled state.

【0019】[0019]

【実施例】以下、本発明の一実施例の多室冷暖房装置に
ついて、図1の冷媒サイクル図、図2のフローチャー
ト、図3のグラフを参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A multi-room air conditioner according to an embodiment of the present invention will be described below with reference to the refrigerant cycle diagram of FIG. 1, the flowchart of FIG. 2 and the graph of FIG.

【0020】図1は、本発明の一実施例における多室冷
暖房装置の冷媒サイクルを示すもので、15a、15b
はそれぞれ直列に連接された利用側熱交換器12a、1
2b及び第1流量弁14a、14bと並列にそれぞれ配
設された第2流量弁で、16a、16bは第2流量弁1
5a、15bと第1流量弁14a、14bの合流部分
と、多液側枝管e1、e2との間にそれぞれ配置され、
室内ユニットb1、b2のそれぞれの出口温度を検出す
る第1温度検出装置である。
FIG. 1 shows a refrigerant cycle of a multi-room cooling and heating apparatus according to an embodiment of the present invention, which includes 15a and 15b.
Are the use side heat exchangers 12a, 1 connected in series, respectively.
2b and second flow valves 14a and 14b, which are arranged in parallel with each other, and 16a and 16b are the second flow valve 1
5a, 15b and the first flow valves 14a, 14b, and the multi-liquid side branch pipes e1, e2, respectively.
It is a 1st temperature detection apparatus which detects each outlet temperature of indoor units b1 and b2.

【0021】17a、17bは、第2流量弁15a、1
5bと、第2流量弁15a、15bと第1流量弁14
a、14b合流部分との間で冷媒温度を検出する第2温
度検出装置で、18a、18bは第1及び第2温度検出
装置16a、16b、17a、17bで検出した冷媒温
度により、第2流量弁15a、15bの開度を調整する
制御装置である。
Reference numerals 17a and 17b denote second flow rate valves 15a and 1b.
5b, the second flow valves 15a and 15b, and the first flow valve 14
a, 14b is a second temperature detecting device for detecting the refrigerant temperature between the merging portion, and 18a, 18b are the second and the second flow rates depending on the refrigerant temperatures detected by the first and second temperature detecting devices 16a, 16b, 17a, 17b. It is a control device that adjusts the opening degrees of the valves 15a and 15b.

【0022】第2流量弁は、前記制御装置18a、18
bから発生するパルスにより、リニアに開度を調整で
き、正のパルスを発生すれば開き、負のパルスを発生す
れば閉じる特性を持っており、少液側枝管d1、d2の
飽和ガス冷媒を多液側枝管e1、e2に少量づつバイパ
スするように常時微開状態となっている。
The second flow valve is the control device 18a, 18
The opening degree can be adjusted linearly by the pulse generated from b, and it has a characteristic that it opens when a positive pulse is generated and closes when a negative pulse is generated. The saturated gas refrigerant in the small liquid side branch pipes d1 and d2 is The multi-liquid side branch pipes e1 and e2 are always in a slightly opened state so as to be bypassed little by little.

【0023】その他の構成は従来例と同じであり、ここ
では同一符号を用いて示し、その説明を省略する。
The other structure is the same as that of the conventional example, and therefore the same reference numerals are used here and the description thereof is omitted.

【0024】また、この冷媒サイクルの動作についても
前記従来例と同一であり詳細な説明は省略するが、従来
例と異なる第2流量弁15a、15b及び制御装置18
a、18bの説明を以下に行う。
The operation of this refrigerant cycle is also the same as that of the conventional example, and detailed description thereof will be omitted. However, the second flow rate valves 15a and 15b and the control device 18 different from the conventional example are omitted.
The description of a and 18b will be given below.

【0025】図2において、ステップ1では第1温度検
出装置16a、16bで検出した室内ユニットb1、b
2のそれぞれの出口冷媒温度T1a、T1bと、第2温
度検出装置17a、17bで検出した第2流量弁15
a、15bのそれぞれの出口冷媒温度T2a、T2bか
ら、温度差Tta、Ttb(Tta=T1a−T2a、
Ttb=T1b−T2b)を演算する。
In FIG. 2, in step 1, the indoor units b1 and b detected by the first temperature detecting devices 16a and 16b are detected.
No. 2 outlet refrigerant temperatures T1a, T1b and the second flow rate valve 15 detected by the second temperature detecting devices 17a, 17b.
From the respective outlet refrigerant temperatures T2a and T2b of a and 15b, temperature differences Tta and Ttb (Tta = T1a−T2a,
Ttb = T1b-T2b) is calculated.

【0026】今、室内ユニットb2が設置された部屋の
暖房負荷が少なくなり、室内温度が上昇しているものと
すると、能力制御を行うために、第1流量弁14bの開
度は小さくなり、利用側熱交換器12bへ流れる冷媒流
量は減少するので、利用側熱交換器12b流れる冷媒は
十分熱交換し、過冷却状態となって、例えば第1温度検
出装置16bで検出する室内ユニットb2の出口冷媒温
度T1bは30℃であるとする。
Now, assuming that the heating load of the room in which the indoor unit b2 is installed is reduced and the indoor temperature is increased, the opening of the first flow valve 14b is reduced to perform capacity control. Since the flow rate of the refrigerant flowing to the usage-side heat exchanger 12b decreases, the refrigerant flowing through the usage-side heat exchanger 12b sufficiently exchanges heat and becomes in a supercooled state, for example, in the indoor unit b2 detected by the first temperature detection device 16b. The outlet refrigerant temperature T1b is assumed to be 30 ° C.

【0027】一方、第2流量弁15bは常時微開状態を
保っているために、少液側枝管d2の飽和ガス冷媒が熱
交換されずに多液側枝管e2にバイパスするため、第2
流量弁15bの出口の冷媒は、飽和ガス状態であり、例
えば第2温度検出装置17bで検出する第2流量弁15
bの出口冷媒温度T2bは40℃となっている。
On the other hand, since the second flow valve 15b is always kept in a slightly opened state, the saturated gas refrigerant in the small liquid side branch pipe d2 bypasses the multi liquid side branch pipe e2 without heat exchange.
The refrigerant at the outlet of the flow valve 15b is in a saturated gas state, and the second flow valve 15 detected by, for example, the second temperature detection device 17b.
The outlet refrigerant temperature T2b of b is 40 ° C.

【0028】一方、室内ユニットb1の設置された部屋
では、暖房負荷に変化が無く、このため、第1温度検出
装置16aで検出する室内ユニットb1の出口冷媒温度
T1aと、第2温度検出装置17aで検出する第2流量
弁15aの出口冷媒温度T2aは共に40℃となってい
るものとする。
On the other hand, in the room in which the indoor unit b1 is installed, there is no change in the heating load. Therefore, the outlet refrigerant temperature T1a of the indoor unit b1 detected by the first temperature detection device 16a and the second temperature detection device 17a. It is assumed that the outlet refrigerant temperature T2a of the second flow rate valve 15a detected in step 2 is both 40 ° C.

【0029】制御装置18aのステップ1では、第1及
び第2の温度検出装置16a、17aで検出する冷媒温
度の差Ttaは0Kで、制御装置18bのステップ1で
は、第1及び第2の温度検出装置16b、17bで検出
する冷媒温度の差Ttbは10Kとなる。
In step 1 of the control device 18a, the difference Tta between the refrigerant temperatures detected by the first and second temperature detection devices 16a and 17a is 0K, and in step 1 of the control device 18b, the first and second temperature The difference Ttb between the refrigerant temperatures detected by the detection devices 16b and 17b is 10K.

【0030】次にステップ2では、目標所定値To(例
えば、−1K)と前期演算結果の温度差Tta、Ttb
との差△Ta、△Tb(△Ta=To−Tta、△Tb
=To−Ttb)を演算する。
Next, at step 2, the target predetermined value To (for example, -1K) and the temperature difference Tta, Ttb between the previous calculation results.
Difference ΔTa, ΔTb (ΔTa = To−Tta, ΔTb
= To-Ttb) is calculated.

【0031】今、Tta=0K、Ttb=10Kである
ので、△Ta=(−1)−0、△Tb=(−1)−1
0、すなわち△Ta=−1K、△Tb=−11Kとな
る。
Since Tta = 0K and Ttb = 10K, ΔTa = (-1) -0 and ΔTb = (-1) -1.
0, that is, ΔTa = −1K and ΔTb = −11K.

【0032】ステップ3では、以上の演算結果△Ta、
△Tbに基づいて、図3のグラフに示すステップ2での
演算結果△Ta、△Tbと、決定するパルス数P1、P
2の関係から、第2流量弁15a、15bを操作するパ
ルス数を決定する。
In step 3, the above calculation result ΔTa,
Based on ΔTb, the calculation results ΔTa and ΔTb in step 2 shown in the graph of FIG. 3 and the determined pulse numbers P1 and P
From the relationship of 2, the number of pulses for operating the second flow valves 15a and 15b is determined.

【0033】ステップ2での演算結果△Tとパルスの数
Pとの関係が、1次の関係となっているのは、ステップ
2での演算結果の絶対値が大きいほどステップ3で決定
するパルス数も多くなることを示しており、今、△Ta
=−1K、△Tb=−11Kであるので、図3から第2
流量弁15aの操作パルス数Pは0パルスとなり、第2
流量弁15bの操作パルス数Pは、50パルスとなる。
The relationship between the calculation result ΔT in step 2 and the number of pulses P is a primary relationship because the larger the absolute value of the calculation result in step 2, the pulse determined in step 3. It shows that the number will increase, and now it is △ Ta.
= -1K and ΔTb = -11K, the second from FIG.
The operation pulse number P of the flow valve 15a becomes 0 pulse,
The operation pulse number P of the flow valve 15b is 50 pulses.

【0034】ステップ4では、ステップ3で決定したパ
ルス数だけ第2流量弁15a、15bを操作する。
In step 4, the second flow valves 15a and 15b are operated by the number of pulses determined in step 3.

【0035】以上のように本実施例によれば、暖房運転
時に室内ユニットb1、b2が能力制御を行い、冷媒流
量を減少させる方向に第1流量弁14a、14bを調整
する場合は、利用側熱交換器12a、12bの凝縮能力
は減少した冷媒流量に対しては大きくなり、冷媒の状態
は過冷却状態、すなわち完全な液状態となって室内ユニ
ットを出て行く場合でも、第1温度検出装置16a、1
6bと第2温度検出装置17a、17bで検出した冷媒
温度の関係から、制御装置18a、18bが第2流量弁
15a、15bを操作し、室内ユニットb1、b2の多
液側枝管e1、e2に少液側枝管d1、d2の飽和ガス
を適量混入するため、多液側接続配管C内の液冷媒の重
量による抵抗が少なくなり、冷媒搬送装置11と室内ユ
ニットb1、b2との高低差が大きくなっても、適正な
冷媒循環を実現できることとなる。
As described above, according to the present embodiment, when the indoor units b1 and b2 perform capacity control during the heating operation and the first flow valves 14a and 14b are adjusted so as to reduce the refrigerant flow rate, the user side The condensing ability of the heat exchangers 12a and 12b becomes large with respect to the reduced refrigerant flow rate, and the state of the refrigerant is the supercooled state, that is, even when the indoor unit becomes a complete liquid state, the first temperature detection is performed. Devices 16a, 1
6b and the refrigerant temperature detected by the second temperature detection devices 17a and 17b, the control devices 18a and 18b operate the second flow valves 15a and 15b to connect the multiple liquid side branch pipes e1 and e2 of the indoor units b1 and b2. Since an appropriate amount of the saturated gas in the small liquid side branch pipes d1 and d2 is mixed, the resistance due to the weight of the liquid refrigerant in the multiple liquid side connection pipe C is reduced, and the height difference between the refrigerant transfer device 11 and the indoor units b1 and b2 is large. Even then, proper refrigerant circulation can be realized.

【0036】また、多液側枝管e1、e2や多液側接続
配管C内の過冷却状態の液冷媒に、ガス冷媒を混入する
ことで、多液側枝管e1、e2や多液側接続配管C内の
冷媒密度を小さくできるので、封入ガス量を減少するこ
とができる。
By mixing a gas refrigerant into the supercooled liquid refrigerant in the multi-liquid side branch pipes e1, e2 and the multi-liquid side connecting pipe C, the multi-liquid side branch pipes e1, e2 and the multi-liquid side connecting pipe Since the density of the refrigerant in C can be reduced, the amount of enclosed gas can be reduced.

【0037】[0037]

【発明の効果】以上のように、本発明の多室冷暖房装置
は、利用側熱交換器と直列に連接され前記利用側熱交換
器へ流れる冷媒の流量を調整する第1流量弁と、直列に
連接された前記利用側熱交換器及び第1流量弁と並列に
配設された第2流量弁とを室内ユニットに有し、暖房時
の前記室内ユニット出口の冷媒温度を検出する第1温度
検出装置と、暖房時の前記第2流量弁出口の冷媒温度を
検出する第2温度検出装置と、前記第1及び第2温度検
出装置で検出した冷媒温度により前記第2流量弁を制御
する制御装置とを備えており、多液側枝管に少液側枝管
の飽和ガスを適量混入するため、多液側接続配管内の液
冷媒の重量による抵抗が少なくなり、冷媒搬送装置と室
内ユニットとの高低差が大きくなっても、適正な冷媒循
環を実現できることとなる。
As described above, the multi-room air conditioner of the present invention is connected in series with the use side heat exchanger and is connected in series with the first flow valve for adjusting the flow rate of the refrigerant flowing to the use side heat exchanger. Temperature for detecting the refrigerant temperature at the outlet of the indoor unit at the time of heating, the indoor unit having the use-side heat exchanger connected to the first heat exchanger and the second flow valve arranged in parallel with the first flow valve A detection device, a second temperature detection device that detects the refrigerant temperature at the outlet of the second flow valve during heating, and a control that controls the second flow valve based on the refrigerant temperatures detected by the first and second temperature detection devices. It is equipped with a device and mixes an appropriate amount of the saturated gas of the small liquid side branch pipe into the multi liquid side branch pipe, so the resistance due to the weight of the liquid refrigerant in the multi liquid side connection pipe is reduced, and the refrigerant transfer device and the indoor unit Even if the height difference becomes large, proper refrigerant circulation can be realized. To become.

【0038】また、多液側枝管や多液側接続配管内の過
冷却状態の液冷媒に、ガス冷媒を混入することで、多液
側枝管や多液側接続配管内の冷媒密度を小さくできるの
で、封入ガス量を減少することができるという効果があ
る。
Further, by mixing the gas refrigerant into the supercooled liquid refrigerant in the multi-liquid side branch pipe or the multi-liquid side connecting pipe, the density of the refrigerant in the multi-liquid side branch pipe or the multi-liquid side connecting pipe can be reduced. Therefore, there is an effect that the amount of enclosed gas can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における多室冷暖房装置の冷
凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a multi-room air conditioner according to an embodiment of the present invention.

【図2】本発明の一実施例の制御装置の動作を説明する
フローチャート
FIG. 2 is a flowchart illustrating the operation of the control device according to the embodiment of the present invention.

【図3】本実施例の図2のフローチャートの温度差と操
作パルス量の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the temperature difference and the operation pulse amount in the flowchart of FIG. 2 of the present embodiment.

【図4】従来の多室冷暖房装置の冷凍サイクル図FIG. 4 is a refrigeration cycle diagram of a conventional multi-room air conditioner

【符号の説明】[Explanation of symbols]

12a,12b 利用側熱交換器 14a,14b 第1流量弁 15a,15b 第2流量弁 16a,16b 第1温度検出装置 17a,17b 第2温度検出装置 18a,18b 制御装置 b1,b2 室内ユニット 12a, 12b Use side heat exchanger 14a, 14b First flow valve 15a, 15b Second flow valve 16a, 16b First temperature detecting device 17a, 17b Second temperature detecting device 18a, 18b Control device b1, b2 Indoor unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸本 一彦 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Marumoto 3-22 Takaidahondori, Higashi-Osaka City, Osaka Prefecture Matsushita Cold Machinery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源側四方弁、熱源側熱交換
器、減圧装置及び第1補助熱交換器を環状に連接してな
る熱源側冷媒サイクルと、前記第1補助熱交換器と一体
に形成し熱交換する第2補助熱交換器と、前記第2補助
熱交換器と直列に配設される冷媒搬送装置とを有する室
外ユニットと、利用側熱交換器と、前記利用側熱交換器
と直列に連接され利用側熱交換器へ流れる冷媒の流量を
調整する第1流量弁と、直列に連接された前記利用側熱
交換器及び第1流量弁と並列に配設された第2流量弁と
を有する複数台の並列接続された室内ユニットと、前記
室内ユニット、前記第2補助熱交換器及び、前記冷媒搬
送装置を環状に連接してなる利用側冷媒サイクルと、暖
房時の前記室内ユニット出口の冷媒温度を検出する第1
温度検出装置と、暖房時の前記第2流量弁出口の冷媒温
度を検出する第2温度検出装置と、前記第1及び第2温
度検出装置で検出した冷媒温度により前記第2流量弁を
制御する制御装置とを備えた多室冷暖房装置。
1. A heat source side refrigerant cycle comprising a compressor, a heat source side four-way valve, a heat source side heat exchanger, a pressure reducing device, and a first auxiliary heat exchanger connected in an annular shape, and the first auxiliary heat exchanger. An outdoor unit having a second auxiliary heat exchanger that is formed into a heat exchanger and exchanges heat, a refrigerant transfer device that is arranged in series with the second auxiliary heat exchanger, a use side heat exchanger, and the use side heat exchange First flow valve connected in series with the heat exchanger to adjust the flow rate of the refrigerant flowing to the use side heat exchanger, and a second flow valve arranged in parallel with the use side heat exchanger and the first flow valve connected in series A plurality of indoor units connected in parallel having a flow valve, the indoor unit, the second auxiliary heat exchanger, and a usage-side refrigerant cycle formed by connecting the refrigerant transfer device in an annular shape; First to detect the refrigerant temperature at the indoor unit outlet
A temperature detecting device, a second temperature detecting device that detects the refrigerant temperature at the outlet of the second flow valve during heating, and a second temperature valve that is controlled by the refrigerant temperatures detected by the first and second temperature detecting devices. A multi-room air conditioner with a control device.
JP3199323A 1991-08-08 1991-08-08 Multi-chamber type cooling or heating device Pending JPH0545017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3199323A JPH0545017A (en) 1991-08-08 1991-08-08 Multi-chamber type cooling or heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3199323A JPH0545017A (en) 1991-08-08 1991-08-08 Multi-chamber type cooling or heating device

Publications (1)

Publication Number Publication Date
JPH0545017A true JPH0545017A (en) 1993-02-23

Family

ID=16405889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3199323A Pending JPH0545017A (en) 1991-08-08 1991-08-08 Multi-chamber type cooling or heating device

Country Status (1)

Country Link
JP (1) JPH0545017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100690679B1 (en) * 2005-03-03 2007-03-09 엘지전자 주식회사 Second-refrigerant pump driving type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100690679B1 (en) * 2005-03-03 2007-03-09 엘지전자 주식회사 Second-refrigerant pump driving type air conditioner

Similar Documents

Publication Publication Date Title
US5297392A (en) Air conditioning apparatus
EP0496505B1 (en) Air-conditioning system
JP3997482B2 (en) Water source air conditioning system
JP2004085177A (en) Multi-air conditioner and operation control method of outdoor fan
GB2561752A (en) Refrigeration cycle device
JP2960218B2 (en) Control method of absorption air conditioner
JPH10185342A (en) Heat pump type air conditioner
JPH0545017A (en) Multi-chamber type cooling or heating device
JPH10148409A (en) Air conditioner
JPH04236062A (en) Air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPH0571772A (en) Multiroom heating and cooling apparatus
JPH09170824A (en) Heat conveying device
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner
JP2723380B2 (en) Air conditioner
JP2836661B2 (en) Multi-room air conditioner
JP3231376B2 (en) Multi-room air conditioner
JP3108933B2 (en) Multi-room air conditioner
JPH10141815A (en) Air conditioner
JPH06207761A (en) Multi air conditioner
JPH06159840A (en) Heat pump type air conditioner
JPH11304259A (en) Air conditioner
JPH08334274A (en) Air conditioner
JPH0545013A (en) Multi-chamber type cooling and heating device
JPH03144236A (en) Cooling and heating device for multi rooms